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ABSTRACT: A two-dimensional incompressible viscous MHD nanofluid flow over a flat sheet with considering thermal
radiation and buoyancy effects is investigated.  An effective operational matrix-based method is used for the numerical
simulation. At first, based on the barycentric rational cardinal functions, the operational matrices of integration and
product are provided. Then, by employing the obtained operational matrices, the governing differential equations in
differential form are reduced to a system of nonlinear algebraic equations. The effect of different physical parameters
such as the magnetic parameter Mn, the buoyancy parameter , the nanoparticle volume fraction � and the radiation
parameter N on the temperature distribution, velocity profile, Nusselt number and skin friction coefficient is demonstrated
by graphs and tables. Also, some comparisons with the obtained results of the numerical method based on Maple's
dsolve (type=numeric) command and other existing numerical solutions are provided to confirm the accuracy and
efficiency of the proposed method.
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1. INTRODUCTION

The study of fluid flow over a stretching surface with heat
transfer due to its extensive applications in engineering
and technology has special importance in fluid
mechanics. Some typical examples of this type of
boundary-layer flow are in the metal and polymer sheets
production, cooling of electronic chips, glass-fiber
production, crystal growing, blood vessels, aerodynamic
extrusion of plastic sheets, etc. The boundary-layer flow
on continuous solid surfaces was first investigated by
Sakiadis in [1, 2]. Then, Crane [3] studied the boundary-
layer flow and heat transfer on a linearly stretching sheet.
Since then, different features of this type of boundary-
layer flow and associated problems have been studied by
many authors [4-11]. Nanofluids are a combination of a
base fluid with nanoparticles and base fluid such as water
normally has a low value of thermal conductivity.
Therefore, heat transfer can be increased by adding
nanoparticles whose thermal conductivity is higher than
the base fluid. The steady two-dimensional boundary
layer flow problem over stretching flat surface in
nanofluids, was first investigated numerically by Khan
and Pop [12]. The problem of natural convection nanofluid
flow on a linearly stretching surface in the presence of
magnetic field analytically studied by Hamad [13]. Rashidi
et al. [14] investigated the problem of steady second-order
slip nanofluid flow of an incompressible viscous water-
based nanofluid over a stretching/shrinking sheet and
reported analytical and numerical solutions. Rana and

Bhargava [15] studied the steady two-dimensional
boundary layer flow of a nanofluid past a nonlinearly
stretching flat surface. They applied the variational finite
element method (FEM) to solve the system of nonlinear
differential equations. Hayat et al. [16] employed the
homotopy analysis method (HAM) to find the approximate
solution of the steady boundary layer flow of an
incompressible nanofluid over an exponentially
stretching surface in a porous medium. Reddy et al. [17]
studied the MHD boundary-layer flow along with heat
and mass transfer of Williamson nanofluid over a
stretching plate by using the spectral quasi-linearisation
method (SQLM). The nanofluid flow on a curved surface
with nonlinear stretching velocity is analyzed by Hayat
et al. [18]. They applied the HAM to find the approximate
solution of governing differential equations.

In recent years, several studies based on the
Chebyshev cardinal functions [19- 24], Chebyshev
polynomials [25-29], Bernstein polynomials [30- 33],
radial basis function [34- 36] have been provided to solve
nonlinear differential equations. The main purpose of this
research is to provide an efficient direct method based on
the barycentric rational cardinal functions and associated
operational matrices of integral and product for solving
the problem of MHD nanofluid flow and heat transfer
over a vertical stretching surface. The barycentric form of
rational interpolants were presented in 1986 by Schneider
and Werner [37]. In 1998, Berrut [38] provided a linear
barycentric rational interpolation with no real poles.
Then, in 2007, Floater and Hormann [39], with the
combination of  local polynomials of degree
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at most , provided a family of rational interpolants with
high approximation order on the arbitrary interval .
Recently, linear barycentric rational interpolants have
been utilized to obtain the approximate solutions of
ordinary and partial differential equations, Volterra and
Fredholm integral equations and integro-differential
equations [40- 47].

The framework of this paper is organized as follows:
In Section 2, the problem of two-dimensional nanofluid
flow and heat transfer over a stretching surface is
described. The barycentric rational cardinal functions and
the associated operational matrices are demonstrated in
Sections 3 and 4, respectively. In Section 5, the operational
matrix-based method for solving governing differential
equations is described. In Section 6, the convergence
analysis of presented method is studied. The obtained
numerical results are reported in Section 7. Finally, the
conclusion is expressed in the last Section.

2  FORMULATION OF THE PROBLEM

Figure 1 shows the steady laminar two-dimensional fluid
flow and heat transfer of an incompressible viscous
nanofluid passing through a vertical semi-infinite sheet
with considering a uniform magnetic field of strength .
The flow direction is upward and the lateral direction is

Fig.  1.  Schematic of the MHD nanoûuid flow and boundary
layer.

The considered velocity  distribution is 
and  represents the the stretching factor. The temperature
of the stretching sheet is , and ambient temperature
(tempertaure at infinity) is .  With a good
approximation, one can neglect the slip between
nanoparticles and base fluid, also two phase are in
thermal equilibrium condition. By emplementing the
similarity transformations [50]

The Navier-Stokes equations can be reduced to a set
of nonlinear ODEs as follow:

  (1)

        (2)

The corresponding boundary conditions are:

                 (3)

                      (4)

where  is the solid volume fraction,  is the electric

conductivity,  is the thermal expansion,  is

the magnetic parameter,  is the radiation

parameter,  is the mean absorption coefficient of the

nanoûuid,  is the Prandtl parameter,

 is the buoyancy parameter and  is the

acceleration due to gravity. Here, subscripts ,  and 
stand for nanofluid, based fluid and nano-solid-particles,
respectively. So,  is the nanofluid density,  is the thermal

conductivity,  is the effective dynamic viscosity, 
is the heat capacitance and are computed as follows[51]:

Also, the skin friction coefficient  and the reduced
Nusselt number  are defined as:

 

where ,  is the Stefan-Boltzmann

constant [52] and  denotes the local Reynolds

number.



International Journal of Mechanical Engineering • January-June 2020 • Volume 5 • Issue 1

An effective operational matrix method based on barycentric cardinal functions to study nonlinear MHD... 53

3  BARYCENTRIC RATIONAL CARDINAL
FUNCTIONS

Suppose that , ,

 is a set of distinct

points and  for  are the given
data.

Definition 3.1  For a given set of interpolation nodes

such as , the cardinal functions (cardinal basis) ,  are
defined as [20, 48]:

                     (5)

where  is the Kronecker delta function.

Here, consider a set of cardinal functions based on
the linear barycentric rational interpolation. A linear
barycentric rational interpolant can be expressed as:

                                (6)

where  are arbitrary nonzero set of weights.
Floater and Hormann [39] proposed a family of rational

interpolants based on the barycentric weights  as
follows:

  (7)

The barycentric formula with the weights defined in (7)
can be rewritten as:

 (8)

where  is an integer parameter and  is
the polynomial of degree at most  and interpolates 
at local nodes .

Now, using the interpolation formula (6), the
barycentric rational cardinal functions ,

 can be definned as follows:

       (9)

where

and  are arbitrary nonzero numbers. From
Definition 3.1, any function  on the interval  may
be approximated by cardinal functions (9) as:

          (10)

where

Remark 3.2  Based on the Kronecker property (5), one can get

 where  is the -th column of unit matrix of order .

Theorem 3.3 [39] Suppose that . Then

where

4  OPERATIONAL MATRICES OF BARYCENTRIC
RATIONAL CARDINAL FUNCTIONS

In this section, the operational matrices of integration and
product based on the cardinal functions (9) will be
derived. For this purpose, consider  is  a

 vector as follows:

             (11)

 where  are the cardinal functions defined in
(9).

Lemma 4.1 Let  be the vector defined in (11), then

where  is the  operational

matrix of integration and is defined as follows:

       (12)

Proof.  Using (10), any functions ,
 can be estimated as
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where

So,

Remark 4.2 The entries of the operational matrix  can be
approximated by using the Legendre-Gauss-Lobatto quadrature
rule as follows:

 where  is the Legendre polynomial of order  on

,  are the zeros of  and

are the Legendre-Gauss-Lobatto weights [49]. Also, from
(12), the following equation can be obtained:

Remark 4.3 Let  and  be arbitrary integers,  and

                          (13)

where  and

 is the vector function described in (11). By

integrating both sides of (13) from  to , the below
approximation can be dervied:

 By following the above process, it is observed that

       (14)

where

is a polynomial of order . Also,  can be
approximated as follows:

                      (15)

where

Finally, by substituting (15) in (14), we get

Lemma 4.4 Let  be a column vector

and  be the vector function defined in (11), then

where  is a  product operational
matrix and is defined as follows:

Proof.  It is clear that  is  a

 matrix as

 (16)

 Using (10), any functions , 
can be approximated as

(17)

According to Kronecker property (5), we obtain

 Substituting (17) in (16) yields

Now, by multiplying the vector , the desired result is

obtained.

   5  DESCRIPTION OF THE COMPUTATIONAL
TECHNIQUE

This section presents  an effective operational matrix-
based method for solving nonlinear differential equations
(1) and (2) with the corresonding boundary condistions.
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First, we replace the asymptotic boundary conditions (4)
with the following conditions

                   (18)

where  should be chosen sufficiently large. Then,

by using the cardinal functions (9),  and 
can be approximated as follows:

                       (19)

where

                     (20)

are unknown vectors and must be determined. By
integrating from (19) and (20) over the interval , the
below approximations for velocity and temperature (and
their derivatives) will be obtained:

and

By employing the initial condition (3), the below
aproximations can be obtained:

                 (21)

         (22)

          (23)

and

                (24)

         (25)

Using (22), (25) and boundary conditions (18),  and

 can be computed as:

Now, using Remark 4.3, equations (21)-(25) can be
simplified as follows:

(26)

 (27)

By applying (26), (27) and Lemma 4.4:

  (28)

(29)

(30)

where  are  diagonal
matrices. By substituting (19), (20) and (26)-(30) in (1) and
(2) and canceling ,  one can botain:

 (31)

   (32)

Finally, by solving the system of nonlinear algebraic
equations (31) and (32), the unknown vectors  and 
will be determined. Also, according to the above notations
and Remark 3.2, the followng equations can be obtained:

The algorithm of the operational matrix-based method to
solve two-dimensional incompressible viscous MHD
nanofluid flow over a flat sheet is as follows.

Algorithm

Input:  

Output:  The  barycentric cardinal solutions:

 and  from (26) and
(27), respectively.

Step 1: Set ,  and 

Step 2: Define 

where 
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Step 3: Construct  from (9) and

define  .

Step 4: Compute the operational matrix of integration

 using (12).

Step 5: Define the unknown vectors 

and 

Step 6: Compute

.

Step 7: Compute

Step 8: Compute  and 

from Remark 4.3.

Step 9: Compute 

and .

Step 10: Compute ,  and  in (28)-(30) using
product operational matrix.

Step 11: Solve the nonlinear algebraic system (31)-(32)
and compute the unknown coefficients and .

6  CONVERGENCE ANALYSIS

 In this section the convergence analysis for the applied
numerical technique is investigated. As it is clear, the
barycentric rational cardinal functions (9) with the weight
that introduced by Floater and Hormann, are free of real
poles. So, the resulting rational interpolant (8) is infinitely
smooth. Cirillo et al. [40] proposed the convergence rate
for derivatives of FH-interpolant in the case of well-spaced
nodes like Chebyshev-Gauss-Lobatto nodes.

Definition 6.1 Consider ,

 be a set of interpolation points,

.

Then,  describes a family of well-spaced nodes

if there exist constants  independent of  so that

the following conditions hold for every set of nodes :

Theorem 6.2 [40] Let , , ,

 and  be the approximation
solution obtained by FH-interpolant (8) . Then, for any set of
well-spaced interpolation nodes,

                (33)

where  is a constant dependent on , , the derivative of

 and the constants  and  that defined in
Definition 6.1.

Suppose that ,  and

 and  are the obtained approximation

solutions of  and  respectively by using the FH-
interpolant (8). The residual functions of the differential
equations (1) and (2) will be represented as

where  and .

Due to Theorem 6.2 there is constants 
such that

where

Thus, we have
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   7   NUMERICAL RESULTS AND DISCUSSION

In this section, the influences of different embedding
parameters on the velocity profile , temperature
distribution , skin friction coefficient  and Nusselt
number  are investigated. Also, to verify efficiency and
high accuracy of the barycentric cardinal functions
method, the results of the proposed method (PM) on the
interval  are compared with the numerical results
based on Maple’s dsolve (type=numeric) command. Here,
the shifted Chebyshev-Gauss-Lobatto nodes was used as
flollow:

to construct the barycentric rational cardinal functions
(9) and compute the relative error percentage (RE(%)) from
the following formula:

The thermo-physical properties of the nanofluids and the
base fluid are given in Table 1. Copper (Cu) and copper
oxide (CuO) act as nanoparticles and water is the base
fluid.

Table 1: Thermo-physical properties of pure water and nanoparticle [50]

Fig. 2 depicts the effect of different values of  on the
velocity profile  and temperature distribution 
for Cu-water and CuO-water. The increase of the magnetic
parameter leads to a decrease in the velocity profile and
an increase in the temperature distribution at all points
for both Cu and CuO nanofluids. As a result of the increase

in temperature, the thermal boundary layers become thick.
According to Fig. 2, the velocity profile for CuO
nanoparticle is higher than of Cu nanoparticle and the
difference in temperature distribution between Cu and
CuO nanoparticles is negligible.

Fig. 2: The velocity profile  (a) and temperature distribution  (b) for different values of  when , , ,

, ,  and .

Fig. 3 displays the effect of different values of  on 

and . For both Cu and CuO nanoparticles, increasing
the buoyancy parameter increases the velocity profile and
reduces the temperature distribution. Therefore, by

increasing , the boundary layer becomes thicker and the
thermal boundary layer becomes thinner. As it is clear,
the velocity profile for Cu-water is lower than CuO-water
and the difference in temperature distribution for Cu and
CuO nanoparticles is inconsiderable.
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Fig. 3: The velocity profile  (a) and temperature distribution  (b) for different values of  when , , ,

, ,  and .

The effect of different values of  on  and  for
Cu and CuO nanoparticles is illustrated in Figs. 4-5. Fig.
4 reveals that, by applying higher magnetic parameter
and increasing , the velocity profile and temperature
distribution increase for both Cu and CuO nanoparticles.

According to Fig. 5, it is clear that with increasing  along
with the small amount of the magnetic parameter, the
velocity decreases and temperature distribution increases.
Therefore, increasing  in the presence of magnetic
parameter causes the thermal boundary layer to thicken.

Fig.4: The velocity profile  (a) and temperature distribution  (b) for different values of  when , , ,

, ,  and .

Fig. 5: The velocity profile  (a) and temperature distribution  (b) for different values of  when , ,

, , ,  and .
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The effect of different values of  on the temperature
distribution is represented in Fig. 6. For both Cu and CuO

The effect of parameters  and  on the Nusselt number
and skin friction coefficient is shown in Fig. 7. By
increasing, the skin friction coefficient increases and the

nanoparticles, increasing the radiation parameter reduces
 and thins the thermal boundary layer.

 Fig. 6: The temperature distribution  for different values of  when , , , , , 

and .

Nusselt number decreases. Also, increasing  with a constant
magnetic parameter leads to a decrease of the Nusselt
number and an increase of the skin friction coefficient.

Fig. 7: The s kin friction coefficient (a) and Nusselt number (b) for different values of  and  of Cu-water when ,

, , ,  and .

Tables 2- 4 give a comparison between the proposed
method and the numerical method for the skin friction
coefficient and the reduced Nusselt number. These tables
reveal that the results of the proposed method are in good

agreement with the numerical results based on Maple’s
dsolve and Runge”Kutta method results that described
in [50].
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Table 2: Comparison between the proposed method and numerical results for  with ,  and

 for Cu-Water.

Table 3: Comparison between the proposed method and numerical results for  with ,  and

 for CuO-Water.
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 Table 4: Comparison between the proposed method and numerical results for  with ,  and

.

Also, from Table 5, it is clear that the results of the
proposed method in comparison with the numerical

results which represented in [53] and [54], are in good
agreement with the analytical results that reported in [13].

Table 5: Comparison results for  with ,  and .

8  CONCLUSION

In this research, the steady two-dimensional viscous
incompressible MHD nanofluid along a semi-infinite
vertical stretching sheet accompanied by thermal
radiation and buoyancy parameter has been studied. The
barycentric rational cardinal functions with associated
operational matrices of integration and product were
employed to approximate the numerical solutions of the
governing nonlinear differential equations. The
advantage of the proposed method is that, without using
any collocation points, the system of differential equations
is converted to the system of algebraic equations. An
appropriate agreement between the results of the proposed
method and the numerical method by using Maple’s
dsolve, the analytical results in [13] and the numerical
results in [50],  [53] and [54] confirms the accuracy and
efficiency of the proposed scheme. The summary of the
obtained results from this research is as follows:

• Increasing  decreases the velocity profile
thickness and increases the temperature
distribution. Therefore, by increasing magnetic

parameter, the thermal boundary layer becomes
thicker.

 • An enhancement in  increases the velocity profile
and vice versa decreases the temperature
distribution. So, the velocity boundary layer
becomes thick and thermal boundary layer
becomes thin.

 • By increasing , the velocity profile increases if
the magnetic parameter is high and vice versa
the velocity profile decreases if the magnetic
parameter is small. In both cases, the increase of
makes the temperature to enhance and results in
thickening of the thermal layer.

 • Increasing the radiation parameter results in a
decrease in the temperature.

 • The velocity profile with copper oxide
nanoparticles is higher than copper
nanoparticles, while changes in temperature
distribution with copper and copper oxide
nanoparticles are negligible.
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Nomenclature

 Velocity component in the  direction

 Velocity component in the  direction
 Temperature
 Temperature of sheet

 The ambient temperature

 Dimensionless velocity

 Local Reynolds number
 Prandtl number
 Nusselt number
 Radiation parameter
 Specific heat

 Skin fraction coefficient
 Thermal conductivity
 Mean absorption coefficient
 Magnetic field

Greek symbols
 Cylindrical coordinate
 Stefan-Boltzmann constant,
 Dimensionless angle
 Density
 Dynamic viscosity
 Kinematic viscosity
 Solid volume fraction

Subscripts
  Nanofluid

  Base fluid
  Nano-solid-particle
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