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ABSTRACT

This paper provides a Green element method (GEM) numerical analysis of the effects of a uniform transverse magnetic field on fluid flow. The
Green element method is a robust numerical scheme that evolved essentially from the singular integral theory of the boundary element method
(BEM) with the unique variety of numerically implementing the theory by the finite element procedure. One of the advantages inherent in this
approach is that the coefficient matrix from the discrete equations of the assembled element equations is banded and amenable to numerical
solution. For the purposes of this study, the fluid is incompressible, and electrically conducting, and flows between two parallel plates, one of
which is moving with a uniform speed while the other is stationary. The depth of the channel is taken to be much smaller than the width and the
channel is considered to be very long in the horizontal direction. As a result, the flow is assumed to be fully developed and driven by a pressure
gradient in a uniform magnetic field. Numerical solutions obtained with GEM closely match analytical results. In order to validate the physics
and numerics of the problem formulation, comprehensive parametric studies are carried out to show the effects on flow and electromagnetic
fields of Hartmann number, pressure gradient, current distributions, and temperature .
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Introduction

When a moving conducting fluid interacts with electric and magnetic fields, it yields a rich variety of phenomena
associated with magnetohydrodynamics (MHD) energy conversion. This type of interaction can be observed in
fluids or in plasmas. Practical applications of these can be found in such areas as the heat transfer characteristics of
an MHD generator channel, or in a number of industrial processes such as MHD power pump, power generation
from high temperature gases, heating and flow control in metal processing (Tillack and Morley[1]).
The study of heat transfer in an electrically conducting fluid in the presence of a magnetic field has generated a
renewed interest. This can be attributed to the fact that alternative energy sources have become a major source of
concern in recent years. Major studies and development in this area have been fully referenced in Soundalgekar
[2]; as can be witnessed by the production of such devices like MHD generators which possess advantages of
being safer to operate, more efficiency, and less hazardous to the environment.

Sutton and Sherman [3] obtained a closed form solution to the problem of transient or steady state magneto hy-
drodynamic flow of a viscous incompressible electrical conducting fluid under the influence of a constant pressure
gradient. Soundalgekar[4] analytically solved the problem of an MHD Couette flow between two parallel plates
subjected to a fixed temperature and a pressure gradient. He carried out some parametric studies to decide the
influence of certain dimensionless quantities on the flow and temperature distribution. Early work in this area
includes those of Illingworth[5], Leadon [6], Blevis[7] and Schlichting[8]. A more comprehensive work involving
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the effects of both magnetic and electric fields on the flow field was carried out by Sutton and Shermann [10].

In the present work, we are adopting a Green element numerical technique on a generalized MHD Couette flow
with heat transfer. Particularly the effects of a transversely applied external magnetic field on a fully devel-
oped laminar flow of an incompressible, viscous, electrically conducting fluid in a differentially heated horizontal
channel. The numerical solutions for the fluid velocity, magnetic and electrical fields as well as the temperature
distributions and heat transfer are obtained an interpreted in line with the influence brought about by the Hartmann
number, current density and the effects of the external circuit.

Mathematical Formulation

For a constant property, steady, incompressible, viscous, electrically conducting Newtonian fluid, the complete set
of magnetohyrodynamics equations comprises the Navier-Stokes equations , the Maxwell’s equations, the Ohm’s
Law and the equation of mass continuity. In differential form, these equations are represented by:

ρ(U • O)U = −O • p+ µO2 • U + J ×B (0.1)

where U(u, v, w) is the velocity vector, p is the pressure, ρ, µ are density and coefficient of viscosity re-
spectively. J(jx, Jy, Jz), B(bx, by, b(z)) are current density and magnetic induction vectors and J × B is the
electromotive force. The equation of Continuity is given by:

OU = 0 (0.2)

The electro-magnetic of Maxwell equations are:
At steady state;

O× E = 0 (0.3)

where E(Ex, Ey, Ez) is the electric field vector

J =
1

µm
(O×B) (0.4)

where µm is the magnetic permeability. Implicit in equations (1) to (4) are the following additional relation-
ships:

O •B = 0 (0.5)

O • J = 0 (0.6)

O× E = 0 (0.7)
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Neglecting Hall effects, the Ohms law is represented as:

J = ρ(E + V ×B) (0.8)

The electromotive force, which constitutes a body force term arising from interaction of electromagnetic effects
and which contributes to the Navier-Stokes equation is given by:

Fm = J ×B (0.9)

The energy equation is

κO2T +
J2

σ
+ Φ = 0 (0.10)

where J2

σ represent the heat due to Joules and viscous dissipation respectively.
Implicit in all the assumptions arising from the complete set of the magnetohydrodnamic equations, and relating

them to the problem geometry (Fig.1), the equations of motion and energy become:

µ
[
d2u
dy2

]
− σ(Ez + uB0)B0 −

dp

dx
= 0 (0.11)

κ
d2T

dy2
+ µ

(
du
dy

)2
+ σ(Ez + uB0)2 = 0 (0.12)

The viscosity, the electrical conductivity and thermal conductivity µ, σ, κ are taken to be constant. We normalize
the governing differential equations so that the relative strengths of the different terms can be inferred by the size
of the multiplying factors. The equations of motion and energy can be put in dimensionless forms by making the
following substitutions.

Y ∗ =
y

L
, U∗ =

u

uw
, µ∗ =

µ

µw
, T ∗ =

T

Tw

κ∗ = Pr, E =
u2wµw
κTw

, Le =
Ez
uwB0

, σ∗ =
σ

σw

Ha =
√(σw

µw

)
LB0 , PRe =

dp/dx

µwuw/L2

where Le, Ha, pre are the electric field loading parameter, Hartmann number, and the non dimensional pressure
gradient term. The non dimensional version of the governing equation now become (the stars are dropped for
convenience):

d2U

dY 2
−Ha2(U + Le)− Pre = 0 (0.13)
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d2T

dY 2
+K

(
dU
dY

)
+KHa2

[
(Le + U)2

]
= 0 (0.14)

The following dimensionless boundary conditions are assumed for this problem:

U(0) = 0, U(1) = 1.0, T (0) = 0.5, T (1) = 1.0

Other useful equations are
The total current per unit length of channel is given as:

It =

∫ 1

0

JzdY =

∫ 1

0

(Le + U)dY (0.15)

The current density is:J = (Le + U), and the flow per unit width of channel is given by:

It =

∫ 1

0

UdY

For the open-circuit case:Le = 0

Green element discretization

Our primary aim is to provide reliable means of discretizing the governing transport equations by adopting a hybrid
boundary element methodology based on the Greens function of the Laplace diffusion operator in 1-D . Applica-
tion of the boundary element technique to transport equations has continued to receive a lot of attention because
of its relevance to a broad spectrum of scientific and engineering fields and the need to effectively deal with the
problem domain. Earlier attempts relied mainly on the use of the Laplace transform technique (LT) which has the
capability of transforming a parabolic equation into an elliptic type and also avoids the time stepping associated
with transient problems(A.H.-D Cheng, O.K. Morohunfola [10]). Although some of the earlier formulations expe-
rienced difficulties in inverting from the LT plane to the real plane, a lot of improvements seem to have been made
in their use. The use of the Greens function (A.E. Taigbenu, J.A. Liggett[11]), and Poissons techniques (A.E.
Taigbenu and Liggett[12]) and lately to the application of reciprocity formulations specially designed to deal with
challenges arising from the problem domain(C.A. Brebbia, D. S. Nardini[13],L.C. Wrobel, C.A. Brebbia and D.
Nardini [14]) have also featured prominently in boundary element method (BEM) discretization.

The Green element method (GEM) came into the picture when the boundary-only implementation of the bound-
ary element theory could not be easily amenable to the solution of nonlinear, heterogeneous, and transient prob-
lems. We refer specifically to those problems whose numerical solutions demand an encounter with the problem
domain. A lot of attention was therefore concentrated on a hybrid method which not only takes advantage of
the second-order accuracy of BEM formulation but also incorporates the efficiency of the finite element method
(FEM)in handling domain discretization(A.E. Taigbenu[15], A.E. Taigbenu and O.O. Onyejekwe[16] and Onye-
jekwe[17]). Domain integral in line with GEM has since then become a permanent feature of BEM (Sladek et
al.[18])

Our current GEM discretization is based on the Fredholm singular integral theory which employs the free-
space Green function of the term with the highest derivative, namely d2/dx6′2 . It is worthwhile to note that
for the purposes of this paper, and in order to avoid any confusion that may arise as a result of nomenclature or
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departure from previous work, we have chosen to represent a generic independent variable. The main feature of
this formulation is the conversion of the governing differential equation into its integral analog, and its eventual
solution on each element of the problem domain. We initiate this procedure by proposing a differential equation
complementary to the governing differential equations, namely: d2G/dx2 = δ(x − xi), (−∞,∞)) , whose
solution often referred to as the free-space Green function or the unit response function is of the form: G(x

′
, x

′

i) =
(
∣∣x′ − x′

i

∣∣ + κ)/2 where κ is an arbitrary constant, and is the distance between the point of application of a unit
input at and any other point. Both the Greens second identity as well as the free space Greens function are then
applied to the governing differential equation to arrive at its integral analog . With this in mind, equation (13) is
represented as:

−2λUi + [H(x
′

2 − xi)−H(x
′

i − x
′

2)]U2 − [H(x
′

1 − xi)−H(x
′

i − x
′

1)]U1−
(|x′

2 − x
′

i|+ l)ψ2 + (|x′

i − x
′

1|+ l)ψ1 +
∫ x2

x1
(|x′

2 − x
′

i|+ l)(Ha2{U + le}
+Pre)dx

′
= 0 i = 1, 2

(16a)

where ψ ≡ dU/dx , λ and takes on the value of 0.5 when x
′

i is either at x
′

i or x
′

2, H is the Heaviside function, and l
is set to the length of the longest element of the problem domain (for non uniform element s) in order to guarantee
the positive-definiteness of the coefficient matrix. By the same token, the integral analog of equation(14) becomes:

−2λTi + [H(x
′

2 − xi)−H(x
′

i − x
′

2)]T2 − [H(x
′

1 − xi)−H(x
′

i − x
′

1)]T1−
(|x′

2 − x
′

i|+ l)ϕ2 + (|x′

i − x
′

1|+ l)ϕ1 +
∫ x2

x1
(|x′

2 − x
′

i|+ l)(
−K{dU/dy}2 −KHa2[(Le+ U)]2+

)
dx

′
= 0

i = 1, 2

(16b)

Equations (16) are implemented on each element of the problem domain in a finite element sense. Unlike the BEM
which relies on global support by seeking information from all the nodes in the problem domain to obtain solution
at any of the boundary nodes, GEM obtains solution at any node by the implementation of integrations within
each element to which belongs the node or any of the shared nodes without recourse to other nodes in the entire
problem domain (local support). Adopting such an approach not only guarantees that any spatial variability or
nonlinearity in the material properties of the problem domain be sufficiently addressed but also that the coefficient
matrix is sparsely populated, banded and equipped to handle field problems.

The element-by-element solution of the coupled equations requires that the computational domain be discretized
into suitable elements over which the primary variable assumes some functional distribution. For this study, the
functional variables are assumed to have linear variation over the elements. For example the primary variable as
well as its derivative can be approximated in space using linear interpolating functions, namely:

U ≈ Ωj(ζ)Uj (17)

where Ωj(ζ) is the interpolating function, ζ is a local coordinate represented as ζ = (x
′−x′

i)/l , and l = x
′

2−x
′

1

is the length of an element. Substituting the approximation for the distribution of the dependent variables and their
functions into the governing equations and evaluating the line integrals yields a system of element equations which
can be represented generically as:

RijΨj + LijΛj + TijΘj (18)
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Figure 1: Problem geometry Figure 2: Effect of PrEc on temperature profile

Figure 3: Relative effects of Hartmann number and PrEc on tem-
perature profiles Figure 4: Effect of Hartmann number on velocity distribution

Values of the element matrices can be found in GEM literature( Onyejekwe (19)). Following a FEM approach,
the solutions for each element in the computational domain are assembled to yield the global matrix equation

[
A
]{Ψ

Λ

}
=
{
S
}

(0.16)

where [A] is a matrix of coefficients, it comes with a half bandwidth of 2 and a row dimension that is twice the
number of elements, while the unknown vector contains the primary variable and its flux Λ, the right side vector
{S}contains boundary values of the primary variables Ψ or their derivatives, as well as any internal or externally
imposed sources or sinks.

Results and Discussions

The numerical method discussed herein, is deployed to handle the governing differential equations for various
values of Hartmann number, pressure gradient and the product of Prandtl and Eckert numbers and comments are
made on their effects on the problem dependent variables. The influence of the external circuit configuration on

Darbose

40



Int. J. of Applied Mathematics and Computation, 5(2), 2013 15

Figure 5: Effect of Hartmann number on current density Figure 6: Heat flux for the closed circuit case (Hartmann number:
5.0, 3.0, .001 PrEc: .01)

Figure 7: Relative effect of PrEc and Hartmann numbers on heat
flux (open circuited case)

Figure 8: Profiles of velocity gradient for an closed circuited case
(Hartmann number: 5.0, 3.0 .001)

the velocity, temperature and current density are also discussed considering the two extreme cases of short and
open circuits.

The temperature distribution in the problem domain depends strongly on the product of Prandlt and Eckert num-
bers. The shape of the temperature profiles in Fig. 2 is similar to those found in standard fluid mechanics texts.
It can be seen that when heat flows from the upper wall to the fluid but reverses when. This is in agreement with
Setayeshpour[20]. However Fig.3 illustrates the relative importance of the Hartmans number on the temperature
profile. Lower values of Hartman number have no significant effect on the temperature profile.

Fig.4 illustrates the influence of the Hartmann number on the velocity profile. Since the Hartmann number gives
the measure of the relative importance between the drag forces resulting from magnetic body force and the viscous
forces, a lager value of Hartmann number indicates a relatively small value of velocity.

The influence of the external circuit configuration on the flow and temperature profiles will be discussed by con-
sidering the two extreme cases of short and open circuits. For the short circuit consideration, there is no electric
field, and consequently the electric field loading parameter, the electromotive or Lorentz force is perpendicular to

Darbose

41



16 Int. J. of Applied Mathematics and Computation, 5(2), 2013

Figure 9: Profiles of velocity gradient for an closed circuited case
(Hartmann number: 5.0, 3.0 .001) Figure 10: Effect of pressure gradient on velocity distribution

the flow direction, and is a retarding force. The retarding effect of this force is clearly demonstrated in Fig. 5 for
the case of current density where for each particular channel position a smaller value of current density is recorded
for a greater value of Hartmann number.

Figures 6 and 7 show a comparison between the temperature gradient profiles for closed and open configuration
of the external circuit. Note that for small values of Hartmanns number, the temperature gradient throughout the
flow domain is infinite . In the short-circuit configuration, both the electric field and the electric loading parameter
are zero; hence the induced current density is in the positive z direction, and the resulting electromotive force is a
retarding force. This causes a build up of the fluid particles and a consequential rise in the temperature gradient.
This effect is easily noticeable from the bottom of the plate to slightly more than fifty percent of the total channel
depth where temperature gradient profile is almost infinite. Whereas in the in the open-circuited case, the total
current throughout the channel is zero, it can be seen from Fig. 8 that the temperature gradients are flatter com-
paratively because the current density is less for most parts of the channel.

A similar trend follows Figs.8 and 9 for the velocity gradient involving closed and open circuit configurations.
Since less viscous forces attend to lower values of Hartman number, relatively higher velocities are recorded for
small Hartmann numbers and a high velocity gradient builds up from the bottom of the plate because of the no-slip
boundary condition. For Fig. 9 or the short circuited case, a higher value of Hartmann number guarantees a higher
viscosity, a lower velocity and a lower value of the velocity gradient. On the other hand, for the open-circuit
configuration , different signs are recorded in the upper and lower parts of the channel, when the velocity gradient
is negative, it indicates a flow from the upper to the bottom part of the plate, an vice versa.

Fig. 10 illustrates the effect of the influence of the pressure gradient on the flow profile. For the pressure gradient
values of 2 and 4 and for a fixed value of Hartmann number, the velocity profile changes from negative to positive
within the channel depth of Y=0.4 to Y= 0.6. This underscores the influence of the retarding force to almost fifty
percent of the channel depht. There is no change in flow direction for negative values of pressure gradient. All the
velocity profiles irrespective of the values of pressure gradient reflect the effect of the upper moving plate
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