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ABSTRACT

In this paper, we give some results for the W-weighted Drazin inverse of a modified matrix M = A — CW Dy ,,W B in terms of the W-
weighted Drazin inverse of the matrix A and the generalized Schur complement Z = D — BW A; ,,W C, generalizing some recent results
in the literature.
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1. Introduction

Let C"*"™ denote the set of m x n complex matrices. The Drazin inverse of A € C"*" is the unique matrix X,
denoted by A, satisfying the following equations

Al x = Ak XAX = X, AX = XA, (1.1)

where k = ind(A) is the index of A, the smallest nonnegative integer for which rank(A**1) = rank(A¥)
(see[1-3]). In particular, when ind(A) = 1, the Drazin inverse of A is called the group inverse of A and is denoted
by A,. If A is nonsingular, it is clearly ind(A) = 0 and AP = A~!. Throughout this paper, we denote by
A™ = I — AA, and define A° = I, where I is the identity matrix with proper sizes. In addition, the symbols r(A4)
and || A|| will stand for rank and spectral norm of A € C"™*".

Let A € C™*" W € C™"*™ with ind(AW) = k and X € C™*" be a matrix such that

(AW)EFFLXW = (AW)E, XWAWX = X, AWX = XWA, (1.2)

then X is called W-weighed Drazin inverse of A and denoted by X = Ay ,, [4]. In particular, when A is square
matrix and W = [ then A4, = Aq.

The importance of the Drazin inverse (W-weighted Drazin inverse) and its applications are very useful which
can be found in [1-13]. In 2006, Hartwig et al. [5] gave some expressions for the Drazin inverse and the W-
weighted Drazin inverse in order to find the solution of a second-order differential equation

Ez"(t) + Fa2'(t) + Gz(t) = 0.

In 1975, Shoaf [6] found the result of the Drazin inverse of modified square matrix, in 1994, Radoslaw et al.
[14] presented an explicit representation for the generalized inverse of a modified matrix, and in 2002, Wei [11]
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have discussed the expression of the Drazin inverse of a modified square matrix A — C'B. Recently, in 2008, Xu
et al. [15,16] gave some explicit expressions for the weighted Drazin inverse of a rectangular matrix A — C'B and
A—-CWB.

This paper is organized as follows. In section 2, we give some results for the W-weighted Drazin inverse of
the modified matrix M = A — CW Dy ,,W B in terms of the W-weighted drazin inverse of the matrix A and the
generalized Schur complement Z = D — BW A4 ,,WC. Some relative results in [10,11,17] are the corollaries of
our paper.

2. The W-weighted Drazin inverse of a modified matrix

In this section, we present some results for the W-weighted Drazin inverse of the modified matrix M = A —
CW Dy ,W B in terms of the W-weighted drazin inverse of the matrix A and the generalized Schur complement
Z =D — BWA;,WC. As aresult, some conclusions in [10,11,17] are obtained directly from our results.

Let A, B, C, D € C™*" W € C™*™_ Throughout this paper, we adopt the following notations:

K =A4,WC, H=BWAg,, I = HWK, @2.1)

P=(I—-AWAg,W)C, Q=B(I - WAg,WA). 2.2)

Theorem 2.1. Suppose P =0, Q =0, CU-WDg ,WDYWZ3,WB =0, CWDg W({I-ZWZ4.,W)B =
0, CI-WZguWZ)WDgy, ,WB=0and CWZy,,W(I — DWDy,,W)B =0, then

Mg = Ad,w +KWZ4.,WH. 2.3)
Proof. Let the right hand side of (2.3) be X. Since

MWX

= (AW — CW Dy oy WBW)(Ag + KW Z4.,,WH)

= AW Agy + AWKW Zg wWH — CW Dq,, WBW Ag.,,
—CWDawWBWKW Zg,WH

= AW Agy + CW ZgyWH — CW Dy, WH
~CWDawW(D — Z)W Zyg.,WH

= AW Ag + C(I = WDy, WD)YW Zg W BW Ay
—CWDa W (I — ZW Zg.,W)BW Ag,

= AW Ag

and

XWM

= (Aguw + KW Zg yWH)(WA = WCW Dy, WB)

= AgwWA = AguWCWDyyWB + KW Zg ,WHW A
—KW Z4,WHWCW Dy ,W B

= Ag WA~ KWDy,,WB+ KW Zy.,WB
~KW ZgyW(D — Z)W Dy, WB

= AgwWA = AguWC(I =W Zg,WZ)WDgy.,WB
+AgWCW Zy oy W (I — DWD4.,W)B

= Ag,WA.



Thus
MWX = XWM.
While

XWMWX = Ag wWAW (Agw + KW Z4,,WH)
= Ag W WAW Aq .y + AgwWAWKW Zy,WH
=Agw +EKWZe ,WH
= X.

Finally, by induction we will prove that

(MW)EFFLXW = (MW)F,

(2.4)

(2.5)

where k > | = Ind(AW). For the case | = Ind(AW) = 1, it is easy to see from (AW)2 Ay, W = AW that

(MW)?XW = MWMWXW
= (A— CWDgq,WB)WAW Ay ,W
= AW — CW Dy, W BW
= MW.

Generally, for | = Ind(AW) > 1, note the fact (AW)!*1 A4, ,W = (AW)! that

(MW) 1 xW
= (MW)MWXW
= [(A— CWDg4,WB)W]|'AW Ay, W
= (A~ CWDy ,WB)YW(A—~CWDgy,WB)W -
X (A — CW Dy, WB)WAW Ag,,W
= (I —CWDgwWBW AgwW)AW (I — CW D, WBW Ay, W)AW - -
X (I — CW D gWBW Ag oy W)AW AW Ay W
= (I = CWDgwWBW AgwW)[I — AWCW Dy, WBW (Ag,W)*|(AW)? - -
X (I — CW D gWBW Ay W)AW AW Ay W

= (I = CWDg,WBW Ay ,W)[I — AWCW D, WBW (Aq.,W)?]
x[I — (AW)2CW Dg ., WBW (AgwW)?*] - -
X[I — (AW)' "LOW Dy, W BW (A g W) (AW) 1 Ay, W
= (I —=CW Dy wWBW AgwW)[I — AWCW D4, WBW (AgW)?] - -
x[I — (AW)'"2CW Dy, W BW (A g, W) =1 (AW)! 1
X (AW — CW Dy, W BW Ay, W AW)

= (AW — CW D4, WBW Ay, WAW)(AW — CW D, WBW Ag , WAW) - - -
X (AW — CW Dy, W BW Ay, W AW)

= [(A— CWD,,,WB)W]

= (MWL



For k > [ = Ind(AW), now we obtain that
(MW)FHLXW = (MW)*.

Therefore, (2.5) holds, which completes the proof. O

When A, B, C, D are square and W = [ in our Theorem 2.1, we obtain Theorem 2.1 in [17] as a corollary of

our Theorem 2.1.

Corollary 2.1 ([17]). Let A, B, C, D € C™*™_ and W = [ in (2.1) and (2.2). Suppose P = 0, @ = 0,

C(I—-DDy)ZyB=0,CDy(I —ZZ3)B=0, C(I—ZZ4)DyB =0and CZ;(I — DD4)B = 0, then
Mg=Aq+KZ4H.

Specially, when D = I, we get
Mg =Aq+ KZ4H.

Moreover, if Z is nonsingular, then
M;=A;+KZ 'H.

From Corollary 2.1, when C' = I, we get a result of perturbation of the Drazin inverse.

Corollary 2.2 ([10]). Suppose B(I — AAy) =0, (I — AAy)Dg = 0and ||A4| - ||DaB]| < 1, then
(A—=DyB)g = (I — AgDyB) *Aq = Aq(I — DgBAy) ™"

and
(A—DyB)g— Ag = (A— DgB)gDgBAg = AgDyB(A — DyB)g,

with

[(A = DaB)a = Aall _ _ka(A)[|DaBll/[| Al
[ Adll ~ 1= ka(A)IDaBll/IAll"

where k4(A) = ||A||||Aa| is the condition number with respect to the Drazin inverse.

Theorem 2.2. Suppose P =0, Q =0, Z =0, C(I — WDy, ,WD)WTI'y,WB =0, CWDg,W({ —

I'WTlg ,W)B=0, C(I—WTquwWTI')YWDg,WB=0and CWTI'y,W({I —DWD;,W)B =0, then
Miw=I—-KWT 4 ,WHW)Agw(I - WKW, WH).
Proof. Let the right hand side of (2.6) be X. Firstly, we have

MWX

= (A= CWDy wWBYW (I — KWT gy WHW)Aq (I — WKWT4.,WH)

= (AW — CWDg.,WBW)(Ag — AgWEWT g ,WH
—KWT g WHW Ag + KWT 4y WHW A WKWT g, WH)

= AW Agy — AW Ag W WEWT gy WH — AWKWT g, WHW A,
FAWEKWT gy WHW Ag oy WEKWT g WH — CW Dy, WBW Aq.,,
+CWDqwWBW Ag oy WEKWT 4, WH + CW Dy, WBWEKWT .,
XWHW Agy — CW Dy oy W BWEKWT gy WHW Ag oy W KWT g, W H



and

ie.,

AW Ag — KWT g wWH — CWT g, WHW Ay,

+CWT gy WHW Ag (yWEKWT 4y WH — CW Dy, WBW Ag o,
+CW D gy WIWT g W H + CW Dy WDWT g, WHW Ag.,,
—CW Dy (yWDWT gy WHW Ag oy WEKWT g, W H

AW Ag — KWTq ,WH

XWM

(I — KWT gy WHW)Ag(I = WEKWT g, WH)W (A~ CWDg.,WB)
(Agw — AquWEWT g WH — KWT g, WHW A,

+KWT 4 WHW Ag (yWKWT 4, WH)(WA—WCW Dy, W B)

Ag WA= AgwWCWDgwWB — Ag wWKWT g, WHW A

+Ag W WEWT 4y WHWCW Dy, WB — KWTq ,WHW Ay, WA
+KWT .y WHW Ag y WCW Dy WB + KWT gy WHW Ag y WEKWT g,
XWHWA = KWT g, WHW Ag oy WEKWT g, WHWCW Dy, WB

Ag WA= AgwWCWDgwWB— Ag yWKWT4.,WB

+ Ay WEKWT 4y WDWDg yWB — KWT 4.,WH
+KWT 4 WIW Dy, WB + KWT g WHW Ay, WKWTy,,WB
—KWT g WHW Ay oy WKWT 4.,,WDW Dy ,,WB
AgwWA—KWTy,WH,

MWX = XWM.

Secondly, we get

XWMWX
(AgwWA = KWT gy WH)W (I — KWT g, WHW)Ag

x(I — WKWTq,WH)

(AgwWAW — Ag wWAWKWT 4, WHW — KWT4.,WHW
+KWT gy WHWEWT 4,3 WHW)Ag (I — WKWT 4, WH)
(AgWAW — KWT 4, WBW AgyW)Ag.(I — WEWT 4, W H)
(I — KWT gy WBW AgyW)AqwW AW Ag (I — WEWT g, WH)
(I — KWT g WHW)Agw(I — WEKWTq,,WH)

= X.

Finally, we shall prove that

(MW)MIXW = (MW)*,

2.7

2.8)

by inductionon k > [ = Ind(AW). For the case | = Ind(AW) = 1, itis easy to see from (AW )2 Aq ,W = AW

that

(MW)2XW = MWMWXW



— (A= CWDg,WB)W (AW Aqy — KWT g, WH)W

= (AWAW Aqy — AWKWT g ,WH — CW Dy, WBW AW Ag .,
+CW DgwWBW KWT g, WH)W

= (AWAW Aq,y — CWD g, WBW AW Ag )W

(A— CW Dy ,WB)W

= MW.

Generally, for I = Ind(AW) > 1, note the fact (AW)!*1 A, ,W = (AW)! that

MW)FLXW
MW)MWXW
(A—CWDy . ,WBYWI] (AW Ay, — KWT 4 ,,WH)W
(A~ CWD4 ,2WBYW|'"AW Ay, W (I — AgyWCWT g, WHW)
(A~ CWD4 ,2WBYW](I — Ay y WOWTy,WHW)
= [(A—= CWD4 ,WB)W]' = [(A = CWDg,WB)WIJ'Ay , WCWT g, WHW
(A~ CWD4,WB)W]' — [(A—~ CWDg,WB)W]'!
X (AW Aq oy WOWT gy WHW — CW Dy, W BW Ay, WCWT ., WHW)
= [(A— CWD4,WB)W]' - [(A— CWDgy,WB)W]'~!
X (CWT guWHW — CW Dy, WDWT 4, WHW)
= [(A— CWD,,,WB)W]
= (MW).

For k > [ = Ind(AW), it is easy to verify that
(MW)FHLXW = (MW)*.
Therefore, (2.8) holds, which completes the proof. O

By Theorem 2.2, when A, B, C, D are square and W = I, we can directly get Theorem 2.2 in [17].

Corollary 2.3 ([17]). Suppose P =0, Q =0, Z =0, C(I — DDyg)T'4B =0, CD4(I —TTy4)B = 0,
C(I = TTy)DyB = 0 and CTy(I — DDy)B = 0, then

My=(I—-KU H)Ay(I — KT4H).
By Corollary 2.3, when D = I, we get Theorem 2.2 in [11].
Corollary 2.4 ([11]). Suppose P =0, Q =0, Z =0,and C(I —TT4)B = 0, then
My=(A—CB)g= (- KUyH)Aq(I — KT 4H).
Next, we present another result of this paper.

Theorem 2.3. Suppose P =0, Q@ =0, Ind(ZW) =1, C(I —WD4,WD) =0, (I —DWDy,W)B =
0, CWDg W({I —TWTLy,W) =0, (I -WTlg ,WI'WDy,WB = 0and WZ,;,WZWTq,W =
WTqwWZW Z4,,W, then

My = [I = KW (I — ZguWZW)T gy WHW]Agy x



Proof.

[I—-WEKWLy W —-2ZWZg ,W)H])+ KW Z,,WH. 2.9)
Let the right hand side of (2.9) be X. First, note the facts:

MWII — KW(I — Zg.,WZW)Tg oW HW]
= MW — (AW — CWDgq,, WBW)(KWT 4., WHW
—KW ZyyWZWT gy WHW)
= MW — AWKWT g ,WHW + AWKW Zg .y W ZWT g ,WHW
+CW DgwWBWKWT 4., WHW
—CW Dy WBWEKW Zy W ZWT g, W HW
= MW

similarly, we get

([ - WEKWT g wW(I — ZW Zg wW)H|WM = WM,

now, we have

and

MWX
= MWI[I — KW (I = Zg W ZW)T g WHW]Ag
X[I = WEWT g uW(I — ZW ZgwW)H] + MW KW Zy ,,W H
= (AW — OW Dy, WBW)Aq,w[I — WKWT g, W (I — ZW Zy,,W)H|
+(AW — CW Dy W BW)KW Zy ,,W H
— AW Agy — AW Ay WEWT g W (I — ZW Zy oy W)H
—~CW Dy WBW Agy + CW Dy (y WBW Ag oy WKWT g, W (I
—ZW ZgW)H + AWKW Zg wWH — CWDg W BWKW Zg ,WH
= AW Ag — KWTqwWH + KWT 4,WZW Zg.,WH — CW Dy, WH
+CW Dy wWIWT gy WH — CW Dy (y WEWT g, W ZW Zg.,,W H
+CW Zg(wWH — CWDg,yWDZagwH + CW Dy WZW Zy,,W H
= AW Agy — KWTqwWH + KWT 4y WZW Zg W H — CW Dy, W
X (I = TWT g W)H + CW Dy W (I — TWT 4. W) ZW Zy ., W H
= AW Agy — KWL wWH + KWT g.,WZW Zg ,, W H

XWM

= [I = KW(I = ZgwWZW)TquWHW]Aq.
X[I = WKWT g wW(I — ZW ZgwW)H|WM + KW Zg.,WHW M

= [I = KW(I = Zg W ZW)T g WHW]Aq (WA — WCW Dy, WB)
+KW ZqwWH(WA—WCW Dy, WB)

= Ag WA= KW(I = Z4WZW)T 4., WHW Ay, W A
—AgwWCW Dy WB + KW(I — ZgyWZW)L gy WHW Ag oy W
XCW Dy wWB + KW Zg s WHW A — KW Zg ,WHWCW D, W B

= AgwWA—KWT g WH + KW Zg wWZWTg,WH — KWDg4.,WB
+KWT g wWIWDgwWB — KW Zg.,WZWT 4, WIW Dy, WB



+KW ZguWB — KW Zg W DW Dy yWB + KW Zg wW ZW Dy, W B

= AgqwWA— KWL WH + KW Zg(yWZWT g yWH — K(I — WT 4, WT)
XWDgwWB + KW Zg.,WZW(I — WL, W)W Dy ,W B

= AguwWA— KWL WH + KW Zy ,WZWTy,,WH,

ie.,
MWX = XWDM. (2.10)
Secondly, we get

XWMWX = (AguWA— KWL WH + KW Zg W ZWT g WH)W
X[I = KW(I = Zq W ZW)TquWHW]Ag .,
X[I = WEWT g W (I — ZW Zg,W)H] + (Ag.sW A
~KWT g wWH + KW Zg WZWT 4, WH)WEKW Zg.,,WH
= (I — KWT 4 WHW + KW Zg W ZWT g, WHW)
X[ — KW (I = ZaguwW ZW)T 4. WHW] A W AW Ag oy
X[I = WEKWT g wW(I — ZW Zg.,W)H]| + KW Zy ,W H
= (I - KWT g WHW + KW Zg wW ZWT g, WHW)
X(I = KWT gy WHW + KW Zg W ZWT g, WHW ) A,y
X[I = WEKWT g wW(I — ZW Zg.,W)H] + KW Zy ,WH
= [I = KW(I = Zg W ZW)T g WHW]Aq,
X[I = WEKWT g W (I — ZW ZqwW)H] + KW Zg ,WH
= X.

Finally, we shall prove that

(MW)FIXW = (MW)*, 2.11)
by induction on k > | = Ind(AW). For | = Ind(AW), note the facts:

MW(I —-KW(I - Z3 ,WZW)y WHW)=MW
and

(MW) AW Ay W = (MW)".

Now, we have

)

)

V(AW AW — KWT g WHW + KWT g ,WZW Zg.,WHW)

YW(I — KWTygwWH + KWT g ,WZW Zg ., WH)W AW Ag ., W

VUMW (I — KWT g WH + KWT g, W ZW Zg W H)|W AW Ag o, W
VTIMW AW Ag W

) (2.12)

For k > | = Ind(AW). From (2.12), we get (2.11), which completes the proof. O



When A, B, C, D are square and W = I, we get the following corollary.

Corollary 2.5. Suppose P =0, Q =0, Ind(Z) =1, C(I-DDy) =0, I—DDy)B =0, CD4(I-TT4) =0,

(-

FdF)DdB =0and ZdZFd = FdZZd, then
My=[I-K(I—ZZ))TqH)Ag[I — KUyq(I — ZZ,)H] + K Z4H.

By Corollary 2.5, when D = I, we have the following result.

Corollary 2.6. Suppose P =0, Q =0, Ind(Z) =1, C(I-ITy) =0, (I-T4I')B=0and Z;ZT 4y =T4ZZ,,

then

My=(A—CB)g=I - K(I — ZZy)TqH|A4[I — KTy(I — ZZ4)H) + K Z4H.
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