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Inverse Heat Conduction Problem in a Semi-infinite Hollow Cylinder and
its Thermal Deflection by Quasi-static Approach
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ABSTRACT

In this study inverse heat conduction problem is to simultaneously determine unknown temperature and thermal deflection on the outer curved
surface of a semi-infinite hollow circular cylinder from the knowledge of temperature distribution within the cylinder. The hollow circular
cylinder is subjected to an arbitrary known temperature under unsteady state condition. Initially the cylinder is at zero temperature and
temperature at the lower surface is at zero heat flux. Also the inner boundary surface of the cylinder is at zero temperature. The governing heat
conduction equation has been solved by using integral transform method. The results are obtained in series form in terms of Bessels functions.
Mathematical model has also been constructed with the help of numerical illustration.

c© 2015, Darbose. All rights reserved.

1. Introduction

The inverse thermoelastic problem consists of determination of the temperature of the heating medium, the heat
flux on the boundary surfaces of the solid when the conditions of the displacement and stresses are known at the
some points of the hollow cylinder under consideration. Conventionally these quantities were obtained by actual
experiments. The experimental methods require equipments and manual efforts as well as it may also consume
large time. While the studies of inverse heat conduction problems provides best alternative to the experimental
methods due to which one can avoid all constraints of it and can determine these quantities quite easily and with
great accuracy. Now in recent years many analytical and numerical techniques have been developed to solve
inverse heat conduction problems.

Sabherwal [1, 2] studied inverse problem in heat conduction. Deshmukh and Wankhede [3] solved an inverse
problem of thermoelasticity in a thin circular plate by determining the temperature on the curved surface of the
plate, displacement and thermal stresses using quasi-static approach by employing integral transform techniques.
Khobragade and Deshmukh [4], studied an inverse axially symmetric quasi-static problem of thermoelasticity for
a thin clamped circular plate in which a heat flux is prescribed on an internal cylindrical surface of the plate and
suitable heat exchange conditions are met on the upper and lower surfaces of the plate is solved with the help of a
generalized integral transform technique. Tikhe and Deshmukh [5] studied the inverse heat conduction problem in
a thin circular plate and its thermal deflection on the outer curved surface. Kulkarni and Deshmukh [6], studied an
inverse quasi-static steady state thermal stresses in a thick circular plate. Recently Deshmukh et. al [7], studied an
quasi-static thermal deflection of a thin clamped circular plate due to heat generation. Very recently Deshmukh et.
al [8] studied inverse heat conduction problem for a semi-infinite circular plate and discussed thermal deflection.
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Figure 1: Geometry of the Problem

In this paper the hollow cylinder is subjected to an arbitrary known temperature under unsteady state condition
considered and discussed the thermal deflection where the inner surface is built in. Initially the cylinder is at
zero temperature and temperature at the lower surface is at zero heat flux. Also the inner boundary surface of the
cylinder r = a is at zero temperature. The governing heat conduction equation has been solved by using integral
transform method. The results are obtained in series form in terms of Bessel’s functions. Mathematical model has
also been constructed with the help of numerical illustration. No one previously studied such type of problem.
This is a new contribution to the field.

The inverse problem is very important in view of its relevance to various industrial mechanics subjected to
heating such as the main shaft of lathe, turbines, and the role of the rolling mill. Also arise the quenching studies,
the analysis of experimental data and measurement of aerodynamic heating. Also typical practical applications
include determination of the temperature and the heat flux at the highly heated outer surface of a recently vehicle in
the atmosphere from measurements taken inside the body, calorimeter type instrumentation, combustion chamber
etc.

2. Formulation of the problem

Consider a hollow cylinder defined by a ≤ r ≤ b, 0 ≤ z < ∞. Let the cylinder be subjected to arbitrary
known interior temperature f(z, t) within the region, a ≤ r ≤ b. Initially the cylinder is at zero temperature and
temperature at the lower surface z = 0 is at zero heat flux. Also the inner boundary surface of the cylinder r = a
is at zero temperature. Under these more realistic prescribed conditions, the unknown temperature g(z, t) on the
outer surface of hollow cylinder at r = b and quasi-static thermal deflection due to unknown temperature g(z, t)
are required to be determined. The differential equation satisfying the deflection function W (r, t) is given as

∇4W = − ∇
2MT

D (1− ν)
(2.1)
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Where, MT is the thermal moment of the hollow cylinder defined as

MT = atE

∫ ∞
0

T (r, z, t) z dz (2.2)

D is the flexural rigidity of the hollow cylinder denoted as

D =
Eh3

12 (1− ν2)
(2.3)

at, E and ν are the coefficients of the linear thermal expansion, the Young’s modulus and Poisson’s ratio of the
hollow cylinder material respectively and

∇2 =
∂2

∂r2
+

1

r

∂

∂r
(2.4)

Since, the edge of the hollow cylinder is fixed and clamped;

W =
∂W

∂r
= 0 at r = a (2.5)

InitiallyT =W = 0when t = 0 (2.6)

The temperature of the hollow cylinder satisfies the heat conduction equation

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
=

1

α

∂T

∂t
, a ≤ r ≤ b, 0 ≤ z <∞, t > 0 (2.7)

with the boundary conditions

T (r, z, t) = 0 at r = a (2.8)

T (b, z, t) = g(z, t) (Unknown) (2.9)

∂T

∂z
= 0 at z = 0 (2.10)

T (r, z, t) = 0 at z =∞ (2.11)

and interior condition

T (ξ, z, t) = f(z, t) (Known) (2.12)

and the initial condition

T (r, z, t) = 0 when t = 0 (2.13)

where, α is thermal diffusivity of the material of the cylinder.
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3. Solution of the problem

The equations 2.7 - 2.13 defines boundary value problem of heat conduction. This problem is solved by using
technique of integral transform suggested by Ozisik [9]. Applying Fourier cosine transform over the variable z
and then applying Laplace transform one obtains the reduced system as

∂2T
∗

∂r2
+

1

r

∂T
∗

∂r
− q2T ∗ = 0 (3.1)

with

T
∗
(a, β, s) = 0 (3.2)

T
∗
(b, β, s) = g∗(β, s) (3.3)

T
∗
(ξ, β, s) = f

∗
(β, s) (3.4)

where, q2 = β2 + s
α

where, T (r, β, t) is the infinite cosine transform of T (r, z, t), β is the cosine transform parameter, T
∗

denotes
Laplace transform of T and s is the Laplace transform parameter.
The solution of equation 3.1 is obtain in terms of modified Bessel’s functions of first and second kind I0(qr) and
K0(qr)of order zero respectively. Then applying conditions 3.2 – 3.4 one obtains solution as

T
∗
(r, β, s) = −f∗(β, s)

[
I0(qr)K0(qa)− I0(qa)K0(qr)

I0(qa)K0(qξ)− I0(qξ)K0(qa)

]
(3.5)

and

g∗(β, s) = −f∗(β, s)
[
I0(qb)K0(qa)− I0(qa)K0(qb)

I0(qa)K0(qξ)− I0(qξ)K0(qa)

]
(3.6)

Finally employing the Laplace inverse transform and inverse cosine transform the temperature distribution ob-
tained as

T (r ,z, t) = − 2α
√

2
π

∫∞
β=0

Cos (β z) ×
∑∞
n=1

{
λ2
nJ0(λna) J0(λnξ)

[J2
0 (λnξ)−J2

0 (λna)]

× [J0(λnr)Y 0(λna)− J0(λna)Y 0(λnr)] ×
[∫ t

0
f(β, t′) e−α (λ

2
n+β

2) (t−t′)dt′
]}

dβ

(3.7)

and the expression for g(z, t), the unknown temperature at r = b as

g(z, t) = − 2α
√

2
π

∫∞
β=0

Cos (β z) ×
∑∞
n=1

{
λ2
nJ0(λna) J0(λnξ)

[J2
0 (λnξ)−J2

0 (λna)]

× [J0(λnb)Y 0(λna)− J0(λna)Y 0(λnb)] ×
[∫ t

0
f(β, t′) e−α (λ

2
n+β

2) (t−t′)dt′
]}

dβ

(3.8)
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where, λn are positive roots of the transcendental equation

J0(λna)Y 0(λnξ)− J0(λnξ)Y 0(λna) = 0 (3.9)

Using equation 3.7 into equation 2.2, one obtains

MT = −2α
√

2
π atE

∫∞
0

z

[∫∞
β=0

Cos (β z) ×
∑∞
n=1

{
λ2
nJ0(λna) J0(λnξ)

[J2
0 (λnξ)−J2

0 (λna)]

× [J0(λnr)Y 0(λna)− J0(λna)Y 0(λnr)] ×
[∫ t

0
f(β, t′) e−α (λ

2
n+β

2) (t−t′)dt′
]}

dβ
]
dz

(3.10)

Hence,

∇2MT =
(
2α
√

2
π atE

) ∫∞
0

z

[∫∞
β=0

Cos (β z) ×
∑∞
n=1

{
λ4
nJ0(λna) J0(λnξ)

[J2
0 (λnξ)−J2

0 (λna)]

× [J0(λnr)Y 0(λna)− J0(λna)Y 0(λnr)] ×
[∫ t

0
f(β, t′) e−α (λ

2
n+β

2) (t−t′)dt′
]}

dβ
]
dz

(3.11)

Assume the solution of the equation 2.1 satisfy condition 2.5 as

W (r, t) =
∑∞
n=1 Cn(t) { 2a [J0(λnr)Y 0 (λna)− J0(λna)Y 0 (λnr)]

+
(
r2 − a2

)
λn [J1(λna)Y 0(λna)− J0(λna)Y 1 (λna)]

(3.12)

Substituting equation 3.11 and 3.12 into equation (2.1), one obtains the expression for thermal deflection as

W (r,t)
P =

∑∞
n=1

J0(λna) J0(λnξ)

[J2
0 (λnξ)−J2

0 (λna)]
× { 2a [J0(λnr)Y 0 (λna)− J0(λna)Y 0 (λnr)]

+
(
r2 − a2

)
λn [J1(λna)Y 0(λna)− J0(λna)Y 1 (λna)] }

×
(∫∞

z=0
z
{∫∞

β=0
Cos (β z)

[∫ t
t′=0

f(β, t′) e−α (λ
2
n+β

2) (t−t′)dt′
]
dβ
}
dz
) (3.13)

4. Numerical calculation

In the previous sections one has formulated and solved the problem of heat conduction and thermoelasticity. For
the numerical calculation one consider a special case of copper hollow cylinder with specifications as defined
below.
Special Function
f(z, t) = (1− e−ω t) z2 e−z with ω > 0, t→ t′ = 5 sec .
Dimensions of cylider
Inner radius a = 1 m
Outer radius b = 2 m
Material properties
Thermal diffusivityα = 112.34× 10−6 m2s−1

Density ρ = 8954 kgm−3

Specific heat cp = 383 J kg−1K−1

Poisson ratio ν = 0.35
Coefficient of linear thermal expansion, at = 16.5× 10−6 K−1

Lame′ constantµ = 26.67.
For convenience one sets
P =

√
2
π

αat E
aD(1−ν) 10

3,X1 = 2α
√

2
π 104 andX2 = 2α

√
2
π 106.
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Figure 2: Temperature distribution along radial direcion at z = 10m.

Figure 3: Unknown Temperature distribution along axial direction at r =
2m.

Figure 4: Thermal deflection along radial direction.

Fig. 2 shows the temperature distribution along radial direction at z = 10m. Due to prescribed interior heat
source the temperature changes its profile at r = 1.5m as the direction of heat flow is in opposite. Temperature
decreases in the region 1 ≤ r ≤ 1.4m and then suddenly increases in the region 1.4 ≤ r ≤ 1.6m. In the
region 1.6 ≤ r ≤ 2m it remains steady and negligible towards outer curved surface r = 2m of the hollow cylinder.
In Fig. 3 it is observed that unknown temperature distribution at outer curved surface r = 2m along axial direction
decreases in the annular region 0 ≤ z ≤ 20m. Temperature rapidly increases in region 20 ≤ z ≤ 30m and then
steady towards upper end. The maximum temperature is observed at lower edge z = 0. In Fig. 4, thermal
deflection goes on increasing from inner to outer curved surface of the semi-infinite hollow cylinder. Since, the
inner curved surface is fixed and clamped, the thermal deflection is zero at this surface and also negligible in the
region 0 ≤ r ≤ 1.2m. Thermal deflection increases rapidly in the region 1.4 ≤ r ≤ 1.6m.

5. Conclusions

In this problem one solved the inverse problem of thermoelasticity and determined the unknown temperature on
the outer curved surface and thermal deflection in a semi-infinite hollow cylinder. As a special case, Mathematical
model is constructed for Copper semi-infinite solid cylinder with the material properties specified in the numerical
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calculations.
Here, one consider a semi-infinite hollow cylinder subjected to interior temperature at the region r = ξ =

1.5m, 0 ≤ z < ∞ in the form off(z, t) = (1 − e−ω t) z2 e−z . Due to the prescribed interior heat source, the
temperature distribution observed at level of height z = 10m. The temperature changes its profile at r = 1.5m as
the direction of heat flow is in opposite and remains high in the region 0.1 neighborhood of r = ξ. Unknown
temperature distribution is observed at outer curved surface which decreases from lower end to upper end of the
cylinder.

Due to built-in inner curved boundary surface of the cylinder, the thermal deflection increases from inner to
outer curved surface of the cylinder. Due to the prescribed interior heat source at r = 1.5m, the thermal deflection
increases rapidly in the region 1.4 ≤ r ≤ 1.6m and maximum deflection occurs at outer curved surface.
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