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ABSTRACT 

The present study paper confers the different models on testing the nonlinear regression hypothesis using nonlinear least squares 

(NLS) estimator through nonlinear studentized residuals and nonlinear predicted residual. Moreover this research paper mentioned 

internally nonlinear studentized residuals, externally nonlinear studentized residuals to test the hypothesis of multivariate nonlinear 

regression models. This research article proposes a new way of parameter estimation using nonlinear least squares method. 

According to Pesaran, M. Hashem, and Angus s. Deaton. (1978) uses nonlinear least squares asymptotic properties. The key 

principle of this article is to carter extremely pioneering model of testing nonlinear regression hypothesis using NLS estimator 

through nonlinear (internally and externally) studentized residuals and predicted NLS Methods.  
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1. INTRODUCTION  

Least squares method and maximum likelihood methods are the quite popular in parameter estimation of linear models. In this 

approach, the method has to satisfy all pre assumption of normality with mean zero mean and unknown population variance. But in 

the case of nonlinear models building of construction of inferential facets together with Parameter estimation and hypothesis testing 

concerning the parameters of the nonlinear regression models are quite difficult. In recent era, researchers focused on the erection 

of well-organized parameter estimation of the nonlinear regression models. Since three decades these nonlinear models have been 

studied. The parameter estimation procedures and testing of hypothesis for nonlinear regression models and error assumptions are 

common analogous to those made for linear regression models. In the present research study some methods of testing multivariate 

nonlinear hypotheses using nonlinear least square estimation, studentized and predicted residuals for multivariate nonlinear models 

has been proposed. 

 

2. LEAST SQUARE ESTIMATION OF MULTIVARIATE NONLINEAR REGRESSION MODEL 

Suppose, standard multivariate nonlinear regression model. 

 it i t itY f X , e i 1,2,...M, t 1,2,...n      

Where  t 1t 2t Mt
ˆ ˆ ˆ ˆe e ,e ,...e t 1,2,...,n    

Then the multivariate least square estimator minimizes  

       
n 1

n n t t n t t

t 1

1ˆ ˆS , Y f X , Y f X ,
n





                …(2.1) 

Here we shall tax n̂  be any random variable that converges almost surely to   and has  n
ˆn    bounded in probability.  

i.e., given S>0, there is bound ‘b’ and sample size N, such that  

 n
ˆP n b 1 S n N         
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Here   is the typical element  . 

3. TESTING OF MULTIVARIATE NONLINEAR REGRESSION HYPOTHESIS TESTING USING NLLS 

ESTIMATOR 

The ,  multivariate nonlinear regression model 

 0

it i t itY f X , e t 1,2.,, ,n         …(3.1) 

Where  0

i tf X ,  is a functional form and ite  is i.i.d with  InN o,  

 Test procedure for multivariate nonlinear hypothesis is 

 0

0H : h 0    …..  0

1H : h 0   

Here  0n   is continuously first-order differential function; Map’s 
p¡  and 

q¡  with Jocobian. 

   0 0H h


    
 

      …(3.2) 

Here  0H   is an order of q p  

 In order to estimate  0H   at 
0 0

n
ˆ   , where n̂  i.e. iterative multivariate NLLS estimator of  . 

 Here are two commonly used estimators of    and that satisfy the condition under both null and alternative hypothesis. 

     
n

1

t t t t

t 1

S , Y f X , Y f X ,




                 …(3.3) 

be the sum of square residual, evaluated under the restricted nonlinear least square estimate. 

 According to the asymptotic F-test, for  0H : h 0  , the standard form is 

   
   

2

q

ˆˆ ˆS , S , q
F ~

ˆ ˆS , nM P

     
  

  

%

     …(3.4) 

Further  
 

2

ˆ ˆS ,
S

nM P

 



is independently distributed to  

0̂  as the 
2  distribution with  n p  degrees of freedom, Here 

2S  is 

UBE of unknown variance 
2 . 

  The nonlinear counterpart to the Wald Test staristic for testing  0

0H : h 0   is given by  

 
 

  

1

2

ˆ ˆˆˆ ˆh HCH h
W ~ q, n p ,

qS



 
        …(3.5) 

Here  ˆ ˆh h   and  ˆĤ H   

4. STUDENTIZED RESIDUALS FOR MULTIVARIATE NONLINEAR MODELS  

 Consider the general multivariate nonlinear regression model 

  0

t t tY f X , E             …(4.1) 

Here 
0

  is p-dimensional vector matrix 

Suppose ̂  is the nonlinear least square estimator of   for large sample, nonlinear least square residual vector. 
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  i t
ˆe Y Y   

       ˆY f          …(4.2) 

Here  
1ˆ F F F


   ;        …(4.3) 

And     i

j n p

ˆF F f X ,



 
    

  
      …(4.4) 

Here  i

j

f X ,





 is the  
th

i, j  elements of  n p  matrix  F   then general relationship between ‘e’ and ‘  ’ is  

e M;  

Here   
1

M I F F F F
   

 
 

or  e I H ;  where    
1

ijM H F F F F


    is a symmetric idempotent  matrix (or) HAT matrix 

In scalar form 

 

n

i i ij j

j 1

e H , j 1,2,...,n


 
    
 

;     …(4.5) 

Here  H is HAT Matrix 

 Trace (H) = Rank (H) = P  and  

n
2

ij ij

i j

H H


  

Here   follows  2

0N 0, I , so   following normal distribution with zero mean and variance is 
2I . Here H controls the e. 

 As we know, variance of each ie  is a function of both 
2  and ijH ,i 1, 2,...n.  

 The nonlinear least square residuals have a probability distribution that is scalar dependant. So, the nonlinear studentized 

residuals do not depend on either of these quantities and they have probability distribution and we have both internally nonlinear 

studentized residuals and externally nonlinear studentized residuals. 

 

a) INTERNALLY NONLINEAR STUDENTIZED RESIDUALS 

In nonlinear regression models, internally nonlinear studentized residuals are define by 

  * i
i

ij

ê
e ~ N 0,1 i 1,2,...n

ˆ 1 h
 
 

    …(4.6) 

Here 
2 e e

ˆ
n p


 


 

      

n
2

i

i 1

e

n p





        …(4.7) 

Here 

2*

ie
~

n p

 
 

  
- distribution with parameters 

1

2
 and 

 n p 1
2

 
 

It follows,  *

iE e 0

  &  iVar e 1 i 1,2,...,n    
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 
  

ij* *

i j

ii jj

h
Cov e e i j 1, 2,..., n

1 h 1 h


   

 
 

Here ijh  add up to the trace of the hat matrix = P. Average ‘h’ is p n  which should be small, so usually
ii1 h . 

b) EXTERNALLY NONLINEAR STUDENTIZED RESIDUALS: 

The externally nonlinear studentized residuals are define by 

 
 

   
i ij**

i

iji

ˆ 1 h
e

MSE 1 h

 



      …(4.8) 

       

   
i

iji

ˆ

MSE 1 h





      …(4.9) 

Here 
 iMSE  is nestimate of 

2  not baring data point 1. 

i.e.  

   
** i
i

iji

e i 1,2,..., n
ˆ 1 h


  
 

     …(4.10) 

Based on the Normal distribution 
 
2

i
  and i  are  

i.e.,  M.S.E (or) 
   2 2

i i ii2
ˆn p 1 1 h

ˆ
n p

     
 


 

 (or)  

*
2 2 i

i

n p e
ˆ

n p 1

  
    

  
 

So, the relationship between internally and externally nonlinear studentized residuals is given by 

 
** *

i i *

i

n p 1
e e , i 1,2,...,n

n p e

  
  

  
     …(4.11) 

5. PREDICTED RESIDUALS FOR MULTIVARIATE NONLINEAR MODELS  

 Predicted residual sum of squares (PRESS) is also called Leave-one-out (LOO) stochastic, is regularly used in nonlinear 

regression analysis for cross-validation. In general, In non linear least squares, and studentized residuals fittiing is dependents on 

all the variables in the data. But in predicted residuals for nonlinear model i.e. ith nonlinear predicted residual is depends on the fit 

to the data, where ith care is excluded. 

 Suppose ̂  is the nonlinear least square estimate of   based on the full data, and  i̂  be the respective estimate where the ith 

case is excluded. 

 Now the ith nonlinear predicted residuals i.e.,  

     i ii i
ˆe Y f i 1,2,...,n    

 
     …(5.1) 

 Here 
 ie  is the prediction error 

 the nonlinear PRESS defined by 

 

N
2

i
i=1

NLPRESS = e          …(5.2) 

So, finally, the relationship between nonlinear predicted residuals and nonlinear studentized residual are given by 
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(i) 
 

 
i*

i

ij

e
e

ˆ 1 h

 

      …(5.3) 

(ii)  
 

   
i**

i

iji

e
e

ˆ 1 h

 

               … (5.4) 

and  
   

i

i

ij

e
e i 1,2,...,n

1 h
  


     …(5.5) 

 

6. CONCLUSIONS  

In the present research study, some inferential methods pertaining to testing of multivariate nonlinear regression models using NLLS 

estimator, studentized and predicted residuals for multivariate nonlinear models are proposed.  
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