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Abstract 

In this paper study was to inspect the hypertension and heart disease cases in Tamilnadu between January 1, 2016 and December 

31, 2020. Cases of hypertension have been found to be connected to cases of heart disease. The Breusch-Godfrey LM 

methodology for assessing residual serial auto correlation assumes a VAR model for the error vector 𝜀𝑡,, and Granger causality 

tests showed that hypertension might cause heart disease but not the other way around. Cases of hypertension have been found to 

be linked to cases of heart disease. The model selection is the Akaike Information Criterion (AIC), Schwarz Information Criterion 

(SIC), Hannan-Quinn Information Criterion (HQ), and the Final Prediction Error (FPE) and stationarity of the data can be used to 

determine The Augmented Dickey Fuller (ADF) test, Philip Perrons (PP) test, and the Kwiatkowski-Phillip-Schmidt-Shin (KPSS) 

test were used to test the series. For the ADF and PP tests, respectively.  

Key words: hypertension, heart disease, VAR model, Breusch-Godfrey LM methodology,Granger causality tests. 

 

1. Introduction 

Instead of being a one-dimensional static measurement, blood pressure is a dynamic, multidimensional, cardiovascular indicator 

of a person's status. Blood pressure is defined as the force of blood against the artery walls. It's expressed as a ratio of SYSTOLIC 

pressure (when the heart beats) to DIASTOLIC pressure (when the heart relaxes between beats). (Thomas and colleagues, 2002). 

High blood pressure is neither a sickness or an illness; rather, it is a risk factor for illnesses that one wants to avoid. Strokes, heart 

attacks, kidney issues, and other circulatory system problems are among these ailments (blood circulation). High blood pressure is 

a common and significant modifiable risk factor for heart and renal disease. Hypertension, particularly isolated systolic 

hypertension, becomes more common as people get older is discussed in Fahey et al.(2004). 

There are two types of high blood pressure: namely and  high blood pressure affects 90 to 95 percent of people. This disease has 

no known a etiology, but  high blood pressure does have a known cause. This sort of high blood pressure is caused by another 

illness, and it normally goes away after the underlying issue is managed or cured is discussed in Pickering (1988). The more blood 

one needs to deliver oxygen and nourishment to the tissues, the more one weighs. Being inactive physically. Smoking 

momentarily elevates blood pressure. A diet high in salt leads the body to retain water, which raises blood pressure. 

 

Blood pressure can be raised by drinking too much alcohol. High cholesterol, diabetes, sleep apnea, and kidney disease are among 

chronic illnesses that increase the risk of high blood pressure. Pregnancy can sometimes contribute to high blood pressure.  Is 

discussed in Pickering (1988). The causes of high blood pressure are still a source of controversy. The great majority of people 

(over 95 percent) do not have an underlying reason. In most persons, multiple variables are likely to contribute to high blood 

pressure. Genetic factors and lifestyle choices are the leading suspects. Family history, age, and body shape are all genetic 

influences. Drinking, smoking, work out rate rate, stress, obesity, and a high salt intake are examples of lifestyle and habits.  

 

Changing one's lifestyle, adjusting one's diet, exercising, and quitting smoking are the greatest non-drug treatments for high blood 

pressure. They reduce the many dangers that can induce high blood pressure or elevate cardiovascular risk levels. According to 

statistics, increasing activity, dropping weight, reducing alcohol use, and modifying nutrition (cutting salt intake and increasing 

fruit and vegetable intake) will result in a systolic blood pressure reduction of roughly 4 mmHg on average if these changes are 

maintained. (Fahey and colleagues, 2004.) 
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2. Model description 

The Vector Autoregressive (VAR) model will be used to model the data. The VAR model, which is a multivariate version of the 

univariate Autoregressive (AR) model, demonstrates that present and previous values are related. In response, using the VAR 

model, which was pioneered by Box and Tiao, is one technique to incorporate the influence of one variable on other variables 

across time (1981). Its primary applications are structural analysis and forecasting. The Vector Autoregressive (VAR) modelling 

strategy was used in this work as the specific modeling technique. Sims(1980) are proposed the use of the VAR model for time 

series. The suitable lag length (p), which should be long enough to prevent serial correlation of the residuals, can bebased on 

established model selection criteria. 

2.1. The Vector Autoregressive models. 

suppose𝑌𝑡 is a 𝐾 by 1 vector stochastic process. A 𝑝𝑡ℎ order VAR model of consistent time series, written as VAR(p), is a process 

evolve according to 

𝑌𝑡 =  𝛷0 + 𝛷0𝑌𝑡−1 + 𝛷0𝑌𝑡−2 ⋯ 𝛷0𝑌𝑡−𝑝 + 𝜖𝑡                                                                                  ⋯ (1) 

Where,𝛷0 is a 𝑘 by 1 vector of interrupt parameters, 𝛷𝑗 is a 𝑘 by 𝑘 parameter matrices, with 𝑗 = 1,2, … . , 𝑝 and 𝜖𝑡 is a vector.The 

general approach to VAR model estimation is to fit the𝑉𝐴𝑅 (𝑝) with the order 𝑝 =  0, . . . , 𝑝𝑚𝑎𝑥  and the “value of 𝑝 should 

minimize some model selection criteria. Model selection criteria for VAR (𝑝)” models have the form 

𝐼𝐶(𝑝) = 𝑙𝑛 |∑(𝑝)| + 𝑐𝑇 . 𝜑(𝑛, 𝑝) 

Where,  

∑(𝑝) =  𝑇−1𝜀�̂�  𝜀�̂�
′ is the residual covariance matrix without a df. of correction from the 𝑉𝐴𝑅 (𝑝) model, "𝑐𝑇 is a sequence indexed 

by the sample size 𝑇, and 𝜑(𝑛,𝑝) is a penalty function which penalizes large VAR (𝑝) models”.The Akaike (AIC), Schwarz-

Bayesian (BIC) and Hannan-Quinn (HQ) derived to 

𝐴𝐼𝐶(𝑝) = 𝑙𝑛 |∑(𝑝)| +
2

𝑇
𝑝𝑛2                                                                                                      ⋯ (2) 

 

𝐵𝐼𝐶(𝑝) = 𝑙𝑛 |∑(𝑝)| +
𝑙𝑛[𝑇]

𝑇
𝑝𝑛2                                                                                            ⋯ (3) 

𝐻𝑄(𝑝) = 𝑙𝑛 |∑(𝑝)| +
2𝑙𝑛[𝑙𝑛𝑇]

𝑇
𝑝𝑛2                                                                                     ⋯ (4) 

 

After a VAR-model has been estimated, it's crucial to examine if the residuals follow the model's assumptions. That is, the error 

process should be checked for serial correlation and heteroscedasticity, as well as if it is regularly distributed. The LM test devised 

by Breusch [1978] and Godfrey [1978] is used to check for serial correlation in the residuals of a VAR (p)-model. 

2.2. The Breush-Godfrey LM Test VAR models. 

For testing residual serial auto correlation, the Breusch-Godfrey LM methodology assumes a VAR model for the error 

vector“𝜀𝑡 =  𝐷1𝜀𝑡−1 + ⋯ +  𝐷ℎ𝜀𝑡−ℎ + 𝑣𝑡 where 𝑣𝑡 is white noise.𝜀𝑡 is equal to 𝑣𝑡 if there is no residual serial correlation”. As a 

result, we test the hypotheses. 

  𝐻0: 𝐷𝑖 = 𝐷1. . . . . 𝐷ℎ = 0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 

        𝐻1: 𝐷𝑗 ≠ 0                   𝑓𝑜𝑟 𝑗 = 1,2, ⋯ , ℎ 

The Breusch-Godfrey LM test statistic is given by for any K dimensional VAR model 

𝐿𝑀ℎ = 𝑡(   𝑘 − 𝑡𝑟  (𝛴𝑅
−1�̂�𝑒))                                                                                                                    ⋯ (5) 

2.3.  The Granger Causality test for VAR models. 

Forecasting is one of the most common applications of VAR models. The VAR model's structure gives information about a 

variable's or a collection of variables' capacity to forecast other variables. Granger is responsible for the following intuitive notion 

of a variable's predicting capacity (1969). Granger causality is a good indicator that a VAR is required instead of a univariate 

model. If a scalar random variable {𝑥𝑡} does not Granger cause {𝑦𝑡}, it is said to not Granger cause {𝑦𝑡} 

𝐸[𝑦𝑡 𝑥𝑡−1,𝑦𝑡−1,𝑥𝑡−2,𝑦𝑡−2, …⁄ ] = 𝐸[𝑦𝑡 𝑦𝑡−1,𝑦𝑡−2,⁄ ⋯ ] 

Forecasting is a common application of VAR models. The VAR model's structure reveals how well a variable or a collection of 

variables can forecast other variables. Granger is responsible for the following intuitive sense of a variable's ability to forecast 

(1969). Granger causality is a good indicator that a VAR is needed instead of a univariate model. If a scalar random variable 

{𝑥𝑡}does not Granger cause {𝑦𝑡}, it is said that it is not Granger cause. 

[
𝑥𝑡

𝑦𝑡
] = [

𝜙11.1 𝜙12.1

𝜙21.1 𝜙22.1
] [

𝑥𝑡−1

𝑦𝑡−1
] + [

𝜙11.2 𝜙12.2

𝜙21.2 𝜙22.2
] [

𝑥𝑡−2

𝑦𝑡−2
] + [

𝜖1,𝑡

𝜖2,𝑡
] 
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If 𝜙21.1 = 𝜙21.2 = 0, then {𝑥𝑡}does not Granger cause {𝑦𝑡}in general. If {𝑥𝑡}does not Granger cause {𝑦𝑡}and 𝜖1,𝑡 and 𝜖2,𝑡 have no 

contemporaneous correlation, {𝑦𝑡} is said to be weakly exogenous, and {𝑦𝑡} can be modelled totally independently of {𝑥𝑡}. This 

test can be performed regardless of whether {𝑥𝑡} Granger is the cause of {𝑦𝑡}. The coefficients of the past values of 𝑋 are then 

tested using an F-test to see if they are all zero. The null hypothesis in this test is that 𝑋 does not cause 𝑌. Consider the following 

bivariate VAR (p) model given in scalar form: 

𝑥𝑡 = 𝜙1 + ∑ 𝜙11
(𝑖)

𝑝

𝑖=1

𝑥𝑖,𝑡−𝑖 + ∑ 𝜙12
(𝑖)

𝑝

𝑖=1

𝑥𝑖,𝑡−𝑖 + 𝜖1𝑡 

𝑦𝑡 = 𝜙1 + ∑ 𝜙21
(𝑖)

𝑝

𝑖=1

𝑥𝑖,𝑡−𝑖 + ∑ 𝜙22
(𝑖)

𝑝

𝑖=1

𝑥𝑖,𝑡−𝑖 + 𝜖2𝑡 

Then an F-test for the joint significance of OLS regression of F-statistic for evaluating the hypothesis is an F-test for Granger 

causality from 𝑥 to 𝑦. in any regression model is 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ 𝛽𝑘𝑥𝑘 + 𝜇                                                                                                           ⋯ (6) 

𝐹 =
(𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑢𝑟) 𝑞⁄

𝑆𝑆𝐸𝑢𝑟 (𝑛 − 𝑘 − 1)⁄
⋯ (7) 

where "𝑆𝑆𝐸𝑟  is the residual sum of squares from the model under 𝐻0 and 𝑆𝑆𝐸𝑢" is (the residualsum of squares for the model in 

equation (6). Under the null hypothesis the test statistic in equation (7) is F-distributed with𝑞 = 𝑑𝑓𝑟 − 𝑑𝑓𝑢𝑟 and 𝑛 − 𝑘 − 1 degrees 

of freedom.) 

The Granger causality in a bivariate 𝑉𝐴𝑅 (𝑝) model we drop "𝑞 =  𝑝 variables in a model with 𝑛 =  𝑇 observations and 𝑘 =  2𝑝 

variables”clear of the constant. 

Hence, 

𝐹 =
(𝑆𝑆𝐸𝑟 − 𝑆𝑆𝐸𝑢𝑟) 𝑝⁄

𝑆𝑆𝐸𝑢𝑟 (𝑇 − 2𝑝 − 1)⁄
 ~ 𝐹(𝑝, 𝑇 − 2𝑝 − 1)                                                                               ⋯ (8) 

 

2.4. Forecast Error Variances. 

The forecast error variance into components due to shocks in the series is referred to as variance decomposition. We may 

decompose the error variance of the s step-ahead forecast of 𝑦𝑖𝑡 into components accounted for by these innovations since shocks 

𝜐𝑡 is are uncorrelated. Consider a vector MA representation of an orthogonalized VAR with m components. 

𝑦𝑡 = ∑ 𝜓∗(𝑙)𝜐𝑡−1

∞

𝑙=0

                                                                                                                                 ⋯ (9) 

The 𝑠step-ahead forecast for 𝑦𝑡is then 

𝐸𝑡(𝑦𝑡+𝑠) = ∑ 𝜓∗(𝑙)𝜐𝑡+𝑠−𝑙

∞

𝑙=𝑠

                                                                                                                     ⋯ (10) 

Defining the 𝑠 step-ahead forecast as, 

𝜃𝑡+𝑠 = 𝑦𝑡+𝑠 − 𝐸𝑡(𝑦𝑡+𝑠)                                                                                                                    ⋯ (11) 

We get, 

𝜃𝑡+𝑠 = ∑ 𝜓∗(𝑙)𝜐𝑡+𝑠−𝑙                                                                                                                           ⋯ (12)

∞

𝑙=𝑠

 

and its 𝑖’th component is given by 

𝑒𝑖,𝑡+𝑠 = ∑ ∑  𝜓∗
𝑖𝑗

(𝑙)𝜐𝑗,𝑡+𝑠−𝑙

𝑚

𝑗=0

  = ∑ ∑  𝜓∗
𝑖𝑗

(𝑙)𝜐𝑗,𝑡+𝑠−𝑙

𝑠−1

𝑙=0

𝑚

𝑗=0

                                               ⋯ (13)

𝑠−𝑙

𝑙=0

 

We now have for the error variance because the shocks are both serially and contemporaneously uncorrelated. 

𝑉(𝑒𝑖,𝑡+𝑠) = ∑ ∑ 𝑉 ( 𝜓∗
𝑖𝑗

(𝑙)) 𝜐𝑗,𝑡+𝑠−𝑙

𝑚

𝑗=0

  = ∑ ∑  𝜓∗
𝑖𝑗

(𝑙)2𝜐𝑗,𝑡+𝑠−𝑙

𝑠−1

𝑙=0

𝑚

𝑗=0

𝑠−𝑙

𝑙=0

 

All shock components have the same unit variance, which means that 
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𝑉(𝑒𝑖,𝑡+𝑠) = ∑ (∑  𝜓∗
𝑖𝑗

(𝑙)2

𝑠−1

𝑙=0

)                                                                                                        ⋯ (14)

𝑚

𝑗=0

 

𝑦𝑗is error variance is taken into account. By comparing this to the total number of innovation responses, we can gain a sense of 

how important variable j is innovations are in explaining variance in variable 𝑖 at various step-ahead estimates, i.e., 

𝑅𝑖𝑗,𝑠
2 = 100

∑  𝜓∗
𝑖𝑗

(𝑙)2𝑠−1
𝑙=0

∑ ∑  𝜓∗
𝑖𝑗

(𝑙)2𝑠−1
𝑙=0

𝑚
𝑘=1

⋯ (15) 

(Forecasting the ℎ − 𝑠𝑡𝑒𝑝 𝑎ℎ𝑒𝑎𝑑 𝑜𝑓 𝑎 𝑉𝐴𝑅 (𝑝) process, �̂�𝑡+ℎ|𝑡 is given by the formula) 

𝐸𝑡[𝑦𝑡+ℎ] = ∑ 𝛷1
𝑗
𝛷0 +

ℎ−1

𝑗=0

𝛷1
𝑗
𝑦𝑡                                                                                                                 ⋯ (16) 

(Forecasts from higher order VARs can be constructed by direct forward recursion beginning at h = 1, but it is often computed 

using the deviations from the VAR since it includes no intercept) 

�̃�𝑡 = 𝛷1�̃�𝑡−1 + 𝛷2�̃�𝑡−2 +    ⋯ + 𝛷𝑝�̃�𝑡−𝑝 +  𝜖𝑡 

Using the deviations form ℎ-step ahead forecasts is 

𝐸𝑡[�̃�𝑡+ℎ] = 𝛷1𝐸𝑡[�̃�𝑡+ℎ−1] + 𝛷2𝐸𝑡[�̃�𝑡+ℎ−2] + ⋯ + 𝛷𝑝𝐸𝑡[�̃�𝑡+ℎ−𝑝] ⋯ (17) 

 

(starting at 𝐸𝑡[�̃�𝑡+ℎ−1]. Once the forecast of 𝐸𝑡[�̃�𝑡+ℎ]has been computed the ℎ-step ahead forecast of 𝑦𝑡+ℎ ahead is constructed by 

adding the long run mean) 

𝐸𝑡[𝑦𝑡+ℎ] = 𝜇 + 𝐸𝑡[�̃�𝑡+ℎ] 

3. Results and Discussion. 

Two aggregate series of cases, namely hypertension and heart disease cases, are used in the empirical study. Table 1 shows some 

descriptive data, such as the mean, median, lowest, and maximum values of the instances. According to the table, the minimal 

number of monthly hypertension cases during the study period is 3 and 0 for cardiac cases. The highest number of instances of 

hypertension was 717, while the highest number of cases of heart disease was 57. In Tamilnadu, the average monthly number of 

hypertension cases was 132.92, and the average monthly number of heart disease cases was 9.935. The sample data for the five 

years contains 60 data points, with the median number of hypertension and heart disease cases being 65 and 6, respectively. 

Table – 1: Descriptive Analysis of Hypertension, Heart Disease. 

Diseases Observations Mean. Median. Minimum Maximum 

Hypertension. 

Heart. 

60. 

60. 

133.920 

09.9330 

64 

8 

03 

00 

727 

56 

 

Table 2 shows an investigation of the amount of hypertension cases every month. The month of January had the greatest average 

number of cases during the study period (1 January 2016 to 31 December 2020), with 270 cases on average, which could be linked 

to overindulgence in fatty foods and alcoholic beverages during the holidays. Many people are also too concerned during this time 

because they are worried about how they will provide for their families. 

The month of October has the lowest average number of instances (46.81 number of cases). In terms of the maximum and 

minimum number of instances, the highest number of hypertension cases (716 cases) happened in February, while the lowest 

number of cases occurred in October (3 cases). 
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Table-2: 

Month Mean. Minimum Maximum Median. 

JANUARY 

FEBRUARY 

MARCH 

APRIL 

MAY 

JUNE 

JULY 

AUGUST 

SEPTEMBER 

OCTOBER 

NOVEMBER 

DECEMBER 

270.0 

215.02 

106.0 

60.02 

65.60 

62.40 

136.80 

188.40 

120.0 

46.80 

159.40 

163.20 

28 

5 

28 

29 

29 

11 

5 

6 

6 

2 

11 

20 

711 

707 

269 

97 

114 

203 

561 

611 

283 

181 

527 

533 

227 

76 

74 

58 

60 

28 

32 

64 

42 

22 

78 

83 

 

Table 2 also includes summary information for cases of heart disease, just as it does for cases of hypertension. The month of 

March had the highest average number of heart disease cases (16.8), while November had the lowest average number of cases 

(11.2). (ie 4.4 average number of cases). The highest number of heart disease cases (57 cases) occurred in March, and the lowest 

number (0 instances) occurred in June. 

 

Table-3: 

Month Mean. Minimun Maximum Median. 

JANUARY 

FEBRUARY 

MARCH 

APRIL 

MAY 

JUNE 

JULY 

AUGUST 

SEPTEMBER 

OCTOBER 

NOVEMBER 

DECEMBER 

10.40 

11.60 

16.80 

14.40 

5.3 

13 

9.20 

12.14 

11.16 

5.02 

4.04 

5.18 

3 

0 

2 

0 

1 

0  

3 

4 

2 

5 

0 

2 

26 

32 

58 

53 

13 

34 

19 

30 

26 

8 

12 

11 

8 

7 

9 

6 

4 

8 

8 

7 

12  

  4 

         3 

4 

 

3.1. Unit root  series appears to be stationary result. 

Time series plots, the Augmented Dickey Fuller (ADF) test, the Philip Perrons (PP) test, and the Kwiatkowski-Phillip-Schmidt-

Shin (KPSS) test were used to determine the series' stationarity. Unit Root Test Results for Hypertension for both the ADF and PP 

tests Figure -1 shows that, despite the fact that some of the monthly numbers of hypertension cases are extremely high, there is no 

pattern. The series appears to be stationary as a result of this. Even though there is a considerable increase at the first lag of the 

PACF, the ACF plots do not slowly decline, which supports this observation. However, until the numerous unit root tests validate 

these facts, they may only be considered a suspicion. The ADF test, the PP test, and the KPSS test were used to determine 

stationarity in this study. 
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Figure -1: A forecasting the hypertension cases at levels in Tamilnadu district 

 

 Whether or not a constant and/or trend is included, or none at all, the hypertension series is stationary. Tables 4 and 5 

provide evidence for this claim. As a result, the series does not need to be differentiated. In this instance, the series is said to be 

integrated of order zero, i.e. 𝐼(0). 

Table -4: ADF test results for hypertension cases 

HYPERTENSION  TEST STATISTIC P-VALUE 

CONSTANT  

CONSTANT+TREND  

NONE  

-4.1020 

-4.0604 

-3.1675 

0.0020 

0.0118 

0.0020 

 

From Table 4 all the p-values for the ADF tests are less than the conventional significancelevel of 0.05 which is an indication of 

stationarity per the test of hypotheses provided above. 

Table -5: The PP Stationarity test  for hypertension. 

HYPERTENSION. Test Statistics P-s 

CONSTANT. 

CONSTANT+TREND  

NONE. 

-4.1526 

-4.1098 

-3.2019 

0.0017 

0.0103 

0.0018 

 

Table 5 also shows that all of the PP test's p-values are smaller than the traditional significance criterion of 0.05, indicating that 

the hypotheses are stationarized. 

Table -6:KPSS unit root test results for hypertension 

Test Test Statistics. P-value. 

KPSS. 0.063 0.1 

 

Because a p-value greater than 0.05 is an indication of stationarity in the data for the KPSS test, the results of the ADF and the PP 

tests are confirmed. 
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Table -7: ADF units root test result for heart diseases cases 

HEART DISEASE, Test Statistic. P-value. 

CONSTANT. 

CONSTANT+TREND. 

NONE. 

-4.2458 

-4.4031 

-3.0821 

0.0013 

0.0045 

0.0026 

 

Table -8: PP units root test results for heart diseases cases 

HEART DISEASES TEST STATISTIC P-VALUE 

CONSTANT. 

CONSTANT+TREND. 

NONE  

-4.2153 

-4.2973 

-2.9628 

0.0014 

0.0061 

0.0037 

 

Table -9: KPSS units root test results. 

Test Test Statistic. P-value. 

KPSS  0.3962 0.0788 

 

The heart instances, like the hypertension patients, are stationary at levels, according to Tables 7, 8, and 9. 

3.3. Estimation for  the VAR model. 

The number of delays contained in a VAR model determines its order. The lag length (p) should be calculated to ensure that the 

residuals are not serially correlated. In diagnostic testing as well as the estimation of VAR models for impulse response analysis 

and variance decomposition, the lag length is critical (Bhasin, 2004). The inclusion of two lags for the VAR order is supported by 

four of the selection criteria: the Final Prediction Error (FPE), Akaike Information Criterion (AIC), Schwarz Information Cri terion 

(SC), and Hannan-Quinn Information Criterion (HQ). 

 

The inclusion of two lags is supported by the majority of the criteria, as well as the AIC, which was the key guideline. As a result, 

the predicted VAR is VAR(2), and the long run association for heart disease and hypertension cases is estimated. Table -11 shows 

the long run association results for heart disease cases estimated by the VAR (2) model. 

Table -10: The long run estimation for result in heart disease  

Variable.  

Lag. Estimates 
Standard 

error 
t-values p-values 

Heart,  

Hypertension  

Heart,  

Hypertension  

Constant  

1 

1 

2 

2 

0.4084 

0.0070 

-0.0923 

0.0342 

2.9840 

0.0931 

0.0138 

0.1871 

0.0339 

1.9300 

3.0983 

0.8401 

-0.0983 

3.9330 

1.2300 

0.0023** 

0.3012 

0.2331 

0.1020** 

0.3891 

 

Table -12 shows the long run association outcomes for hypertension patients predicted by the VAR (2) model. 

Table -11: The estimation  for the results in  hypertension  

Variable.  
Lag. Estimates 

Standard 

error 
t-values p-values 

Heart,  

Hypertension  

Heart,  

Hypertension  

Constant  

1 

1 

2 

2 

 

-1.4034 

0.5060 

1.0973 

-0.0362 

67.9840 

2.0931 

0.0038 

2.1891 

0.0439 

33.9360 

-3.098 

4.841 

0.983 

-0.930 

2.200 

0.0923 

0.0001*** 

0.2531 

0.6020** 

0.0891* 
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Estimated VAR (2) models are 

𝐻𝑅𝑇𝑡  =  0.4084 𝐻𝑅𝑇𝑡−1  +  0.0070 𝐻𝑌𝑃𝑡𝑡−1  −  0.0917𝐻𝑅𝑇𝑡−2  +  0.0261 𝐻𝑌𝑃𝑡−2  
+  2.4621                                                                                                          ⋯ (18) 

    𝐻𝑌𝑃𝑡 =  − 1.6614 𝐻𝑅𝑇𝑡−1  +  0.6070 𝐻𝑌𝑃𝑡−1  +  1.200𝐻𝑅𝑇𝑡−2  −  0.0968𝐻𝑌𝑃𝑡−2  
+  71.4235                                                                                                          ⋯ (19) 

Equation (18) shows that when the lagged values of heart disease change by one unit, the disease is greatly changed positively by 

40%. It may also be deduced from the equation that when the lagged values of hypertension vary by two units, heart illnesses are 

changed favorably by roughly 3%. When the lagged values are changed by a unit, hypertension is influenced by almost 61 

percent, and the constant term is affected by 71 percent, according to equation (19). 

3.4.  The Granger Causality Test. 

When the coefficient of the lagged of the other variable is not zero, the Granger causality test is considered a useful tool for 

identifying whether one time series is good for predicting. At the standard significance threshold of 5%, the results suggest that 

hypertension Granger causes heart disease. This indicates that hypertension data from the past can be used to predict future heart 

disease rates. In the case of this study, however, the opposite is true. 

Table -12: presents the result from the Granger causality tests. 

NULL HYPOTHESIS  F-STATISTIC P-VALUE 

Hypertension does not Granger-cause 

Heart Disease  

-28.938 

 

0.0005 

 

Heart Disease does not Granger-cause 

Hypertension  
-20.3293 0.7209 

 

At the standard significance threshold of 5%, the results suggest that hypertension Granger causes heart disease. This indicates 

that hypertension data from the past can be used to predict future heart disease rates. In the case of this study, however, the 

opposite is true. The preceding test clearly failed to disprove the premise that "heart disease does not induce hypertension." 

In the VAR model, the dependent variables are exposed to shocks caused by each of the variables. It aids in determining how the 

variable reacts when the error terms are given a positive shock of one standard deviation, as well as how the variables react to 

each other. So a unit shock is administered to the erroneous terms for each variable from each equation independently, and the 

consequences on the VAR system over time are observed. The shocks on the level of the endogenous variables in the VAR are 

identified using a conventional decomposition. 

4. Conclusion 

In Tamilnadu, the forecast for the year 2020 predicts a slight increase in the number of cases of heart disease. The fact that the 

trend or increase is minor does not mean that the area's stakeholders should let their guard down. Instead, the Ministry of Health 

should engage with local health workers to give indigenes with extensive education on heart disease risk factors, emphasising 

hypertension and the importance of reporting to medical facilities to have their blood pressure checked. 

For the study period, the highest number of monthly cases of hypertension documented in Tamilnadu was 717, and the highest 

number of monthly instances of heart disease was 57. The average monthly number of hypertension patients was 132.96, whereas 

heart disease cases were 9.934. The months of March (16.9 instances) had the highest average number of monthly heart disease 

cases, while the months of November had the lowest average number of monthly heart disease cases. The months of January were 

related with the greatest average number of monthly hypertension cases during the study period. The months of October were 

connected with the fewest monthly average hypertension cases. 

This means that as the number of cases of hypertension rises, the number of cases of heart disease rises as well, and vice versa, as 

the number of cases of hypertension falls, the number of cases of heart disease falls. It was also shown that heart disease is 

influenced by the immediate past movements of their own cases as well as the previous two hypertension cases. As a result, these 

lagged factors can be used to forecast future heart disease case numbers. Accordingly, a unit change in the lagged values of 

hypertension affects heart disease cases positively by about 41%, and two unit changes in the lagged values of hypertension affect 

cases positively by almost 3%. 

According to our findings, hypertension cases can only be significantly explained by their first lag, and at this lag, a unit change in 

hypertension lagged values can explain around 61 percent of hypertension instances. At the conventional 5% level of significance, 

it was clear that lags associated with heart disease could not be used to explain hypertension, and this confirms the Granger 

causality test results, which showed that past heart disease values are not helpful in the prediction of hypertension in Tamilnadu 

State. 
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