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Abstract - This paper presents the details on the investigation and classification of various 316 grades of stainless Steel based on 

their mechanical properties. The results facilitate in espousing a certain grade of steel for marine applications. The different grades 

of 316 Stainless steel have their unique chemical composition. With the advancement in soft computing techniques, Artificial 

Neural Network (ANN) is used to classify the different grades of 316 Stainless Steel based on the changes in their tensile strength 

with respect to their chemical composition and to subsequently identify the grade of 316 stainless steel for the specified 

application. The twelve-different sets of the chemical composition of the various grades of stainless steel are given as input to the 

neural network. The mechanical properties such as Ultimate Tensile strength and Yield strength are chosen as the target. This 

neural network could predict the changes in the above-mentioned mechanical properties due to the changes in overall chemical 

composition. The neural networks are trained using the Back propagation Levenberg-Marquardt algorithm and it yielded 316L 

grade stainless steels as an optimal choice of marine-grade material. Knowledge on these properties is inevitable to understand its 

behaviour for various dynamic loading conditions when subjected to joining and machining. Based on the obtained results, 

validations are carried out. The outcome signifies the observance of close coherence between existing data and estimated data. 

Considering the vitality, the same neural network is adopted and customised for Cold Metal Transfer (CMT) joinability.  

Keywords: Ultimate Tensile strength, Yield strength, Backpropagation Levenberg-Marquardt algorithm 

 

INTRODUCTION 

CMT is a modified Gas Metal Arc Welding (GMAW) process which is invented by the Fronius Company [1]. This welding 

technique is suitable for joining materials like steel, aluminium, zinc, etc. The major advantage of CMT is no-spatter, low input 

heat with a good deposition rate [2]. Recent, weld experiments concentrate more on the mechanical properties influences on weld 

quality. From the obtained test results optimal weld parameters are designated. This process not only wastes manpower, material, 

and financial resources, but also the experimental results are sometimes not precise. It is beneficial to examine the mechanical 

properties such as tensile strength and yield strength of material before welding so that better weld results could be obtained based 

on the material properties. In this study, for the prediction of mechanical properties, a soft computing technique is proposed. The 

Artificial Neural Network is one of the promising optimizing tools to analyse the mechanical characteristics of the austenitic 

stainless steel (ss) grade 316. The technological importance of 316 stainless steel accounts for high corrosion resistance, in 

addition to high toughness, good strength and oxidation resistance at wide range operating temperatures, making it a candidate 

material for marine applications [3]. Basic, prediction on mechanical properties of the materials using their empirical equations is 

considerably difficult. Therefore, the ANN technique is applicable for this purpose, provides a different approach to the material 

modelling techniques than numerical or statistical methods. From the available literature, it is noted that the feedforward 

backpropagation algorithm based neural networks are widely used to train the network due to their high reliability.  

In the present study, the mechanical behaviour predictions are done for various grades of 316 austenitic stainless sheets of steel 

using the ANN model. Levenberg-Marquardt Backpropagation algorithm is used to train the neural network such that it predicts 

the Ultimate tensile strength (UTS) and Yield tensile strength (YTS) of various 316-grade austenitic stainless steel (316, 316L, 

316H, 316F, 316Ti, 316J1, 316J1L, 316LN, and 316N). The material could be then implemented for Cold Metal Transfer joining 

process 
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MATERIALS AND METHODS  

The materials used in this analysis are 316, 316L, 316H, 316F, 316Ti, 316J1, 316J1L, 316LN, and 316N. These grades of 

stainless steels are categorized by their good strength and high toughness at wide range operating temperatures and oxidation 

resistance. Marine-grade stainless alloys contain molybdenum to resist the corrosive effects of salt in the marine environment. The 

salt concentrations in the seawater vary, thus increasing the concentration due to the spray and evaporation in splash zones. The 

Austenitic 316 stainless steel grades are more suitable for marine environments, intermittent submersion and splash zone 

environments in the seawater. The chemical composition of different 316-grade steels used is given in Table 1. ANN model is 

developed using MATLAB software. In total 1080 datasets are trained in the Levenberg-Marquardt Backpropagation algorithm. 

The UTS and YTS of austenitic stainless steel grades are analysed. 

 

Table 1 Chemical composition (in wt.%) of 316 stainless steel grades 

Austenitic 

stainless 

steel 316 

C Si Mn P S Ni Cr Mo Cu N Ti Fe 

SUS316 0.08 1.00 2.00 0.045 0.030 
10.00-

14.00 

16.00-

18.00 

2.00-

3.00 
0 0-0.10 0 

61.7-

71.9 

SUS316L 0.03 1.00 2.00 0.045 0.030 
12.00-

15.00 

16.00-

18.00 

2.00-

3.00 
0 0-0.10 0 

61.7-

71.9 

SUS316N 0.08 1.00 2.00 0.045 0.030 
10.00-

14.00 

16.00-

18.50 

2.00-

3.00 
0 

0.10-

0.22 
0 

61.9-

71.9 

SUS316LN 0.03 1.00 2.00 0.045 0.030 
10.50-

14.50 

16.50-

18.50 

2.00-

3.00 
0 

0.12-

0.22 
0 

61.7-

71.9 

SUS316Ti 0.08 1.00 2.00 0.045 0.030 
10.50-

13.50 

16.50-

18.50 

2.00-

3.00 
0 0 

0.4-

0.7 

61.1-

70.1 

SUS316J1 0.08 1.00 2.00 0.045 0.030 
10.00-

12.00 

17.00-

19.00 

1.20-

2.75 

1.00-

2.50 
0 0 

60.6-

70.5 

SUS316J1L 0.03 1.00 2.00 0.045 0.030 
12.00-

16.00 

17.00-

19.00 

1.20-

2.75 

1.00-

2.50 
0 0 

60.5-

70.5 

SUS316F 0.08 1.00 2.00 0.045 0.10 
10.00-

14.00 

16.00-

18.00 

2.00-

3.00 
0 0 0 

61.7-

71.9 

SUS316H 0.40 0.75 2.00 0.045 0.030 
10.00-

14.00 

16.00-

18.00 

2.00-

3.00 
0 0 0 

61.7-

71.5 

 

 

LEVENBERG-MARQUARDT NEURAL NETWORK MODELING 

The ANN is created and trained using MATLAB software. Our input data set is divided into time steps based on the number of 

data samples. The three categories of time steps are Training, Validation and Testing. An optimal material in an arc welding 

process influences the mechanical properties of the weldment in its respective application. 
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Figure. 1 ANN model for the prediction of material properties 

 

To train the neural network, the chemical composition in the percentage of the 316 Stainless Steel comprising; Carbon (C), Silicon 

(Si), Manganese (Mn), Phosphorous (P), Sulphur (S), Nickel (Ni), chromium (Cr), Molybdenum (Mo), Copper (Cu), Nitrogen (N) 

and Iron (Fe) are fed as input data to the neural network. The mechanical properties (Minimum and maximum range) such as yield 

strength and ultimate tensile strength are set as a target to the neural network as shown in Figure. 1. The Backpropagation LM 

algorithm is used to train the ANN and the neural network could provide an optimal solution as the best suited marine grade 

material which could be welded using the CMT process. The back-propagation algorithm is widely being implemented as a 

learning algorithm in the feed-forward multilayer neural networks. The Levenberg-Marquardt backpropagation algorithm is used 

for training our neural network. The Training stops automatically when there is no improvement in the generalization, which is an 

indication of an increase in the Mean Square Error (MSE) of the samples [6]. Levenberg-Marquardt (LM) algorithm is a widely 

used optimization algorithm that provides a solution called non-linear least square minimization [7]. This iterative technique is 

designed to minimize the sum of the squared error function of the form shown in Eqn (1), 

𝐸 =
1

2
∑ 𝑘( 𝑒𝑘

2)  =
1

2
∥ 𝑒 ∥2 (1) 

Where ek is the error, e is a vector with element ek. When the difference between previous weight and new weight is small, the 

error vector is expanded using Taylor’s series into a first-order equation as shown in Eqn (2), 

e (j + 1)  =  e(j) 
𝛿𝑒𝑘

𝛿𝑤𝑖
(w(j + 1) –  w(j)) 

(2) 

𝐸 =  
1

2
∥ 𝑒(𝑗) +  

𝛿𝑒𝑘

𝛿𝑤𝑖
 (w(j + 1) –  w(j)) ∥2 

 

(3) 

The error function is expressed in Eqn (3), 

EXPERIMENTAL VALIDATIONS 

 The desired set of input and output data is fed into the neural network. In this work, NARX (Nonlinear autoregressive with 

external input) neural networks are used which can learn to predict one-time series data when given with past values of the same 

time series, along with the feedback input [8].  The neural network is created and trained using the Levenberg-Marquardt (LM) 

algorithm in the open-loop form initially [9], [10], [11].  Here, open-loop (single-step) is highly efficient than closed-loop (multi-

step) training. The Open-loop training allows the user to feed the network with past outputs while it is being trained to result in the 



Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022) 

International Journal of Mechanical Engineering 

405 

correct present outputs. Once the training is complete, the network can be converted to closed-loop form or any form depending 

on the application and requirement. After training, the mean squared error (MSE) and Regression R can be seen in the training 

window [12]. The Mean Squared Error (MSE) is the average squared difference between the targets and neural network outputs. 

Low values of MSE are better [13]. Zero MSE indicates is no error. The Regression Analysis R is done to measure the correlation 

between targets and neural network outputs. The experimental implementation is shown in the following workflow Figure. 2 

Start

Input variables identification

(316-Chemical Composition)

Set target variables (Tensile strength)

Initialise and Train the neural network

Evaluate and prediction of results

Result analysis

Investigation on Tensile strength

End

 

Figure. 2 Work Flow 

 

RESULTS AND DISCUSSION 

This section presents the various results and inferences investigated in the study. 

 

5.1  Artificial Neural Network Modelling 

The input data of the first neural network (training set) consists of 1080 datasets of which each has twelve input variables which 

are the concentration of C, Si, Mn, P, S, Ni, Cr, Mo, Cu, N, Ti, Fe. The output variables are ultimate tensile strength (UTS) and 

yield tensile strength (YTS). The objective of this study is to classify the input data and develop an ANN model for predicting the 

accurate UTS and YTS. The optimal values of UTS and YTS are represented in Figure. 3 and Figure. 4  respectively for each 

grade. 
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Figure. 3 UTS for various 316 grades of stainless steel 

 

Figure. 4 YTS for different 316 grades of stainless steel 

 

5.2 Performance of ANN 

The performance validation of the neural network in predicting the UTS and YTS are shown in the performance plots Figure. 5 

and Figure. 6. 
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Figure. 5 Performance of ANN while predicting UTS 

 

 

Figure. 6 Performance of ANN while predicting YTS 

 

5.3 Regression Plot analysis 

The regression plots while predicting the UTS and YTS are shown in the following Figure. 8 and Figure. 8. The accuracy is 

prediction increases when the regression coefficient R is close to 1. 
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Figure. 7 Regression plot while predicting UTS 

 

Figure. 8 Regression plot while predicting YTS 

 

5.4 Prediction Plot analysis 

The predicted UTS and YTS are shown in Figure. 9 and Figure. 10. The x-axis is split into equal 10 readings where 0-10 indicates 

class1, 10-20 indicates class 2, and 20-30 indicates class 3. Likewise, till 80-90 indicating class 9. The prediction errors observed 

are ±10%. 
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Figure. 9 Prediction plot for UTS 

 

 

Figure. 10 Prediction plot for YTS 

5.5 Interpretation 

The mechanical properties of the chosen grades of the 316-stainless steel are classified as low, moderate and high after predicting 

the tensile properties. 

Table 2. Classification of 316-grade stainless steel based on mechanical properties 

Grades of SS UTS YTS 

SUS316 High Moderate 

SUS316L High High 

SUS316N Moderate High 

SUS316LN Moderate Moderate 

SUS316Ti Moderate Moderate 
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SUS316J1 Low Low 

SUS316J1L Low Low 

SUS316F High Moderate 

SUS316H Moderate Moderate 

 

From the Table 2, it is observed that the 316L grade stainless steel has higher values of UTS, and YTS when compared with that 

of the other 316 stainless steel grades depending on the variations in chemical composition.  

 

5.6 Experimental validation 

After performing a tensile test on the various grades of stainless steel (as explained in section), the Strain-Strain curve was plotted 

which indicates their tensile test (as shown in Figure 11) 

 

Figure 11 Experimental Validation of tensile strength 

The UTS and YTS are significant parameters requiring high values to make the material best suited for a specific application. 

Thus, 316L could be an optimal material for marine applications. Thus, 316L could be an optimal grade of stainless steel for 

marine applications. The 316L grade stainless steel material was then welded using Cold Metal Transfer process as per the 

experimental runs shown in Table 3 and the welding setup and weldment sample are shown in  

Figure 12 and Figure 13 respectively. 

Table 3 Experimental Parameters 

Trial 

No 

Weld Current 

(Amps) 
Voltage (Volts) 

Travel Speed 

(mm/min) 

Wire Feed 

Rate (m/min) 

Weld Time 

(Sec) 

Heat Input 

(J/mm) 

1 90 16.9 400 3.1 14 228.15 

2 90 16.9 450 3.1 13.3 202.8 

3 90 16.9 500 3.1 12 182.52 

4 85 16.8 400 2.9 14 214.2 

5 85 16.8 450 2.9 13.3 190.4 

6 85 16.8 500 2.9 12 171.36 

7 80 16.5 400 2.6 14 198 

8 80 16.5 450 2.6 13.3 176 

9 80 16.5 500 2.6 12 158.4 
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Figure 12 Welding setup 

 

Figure 13 Welded sample of 316L using CMT 

 

CONCLUSION 

This study emphasizes the requirement of optimal material selection for a joining process. The cold metal transfer (CMT) process 

is an advanced Gas Metal Arc Welding process (GMAW) that enables material transfer with reduced power consumption and 

material wastage. The final weldment depends on the quality of the material and its corresponding mechanical properties which 

necessitates choosing an optimal material from the available grades. Direct or indirect choosing is possible. Direct methods like 

visual inspection, trial and error procedures are tedious resulting in time, energy and material wastage. With the evolution of soft 

computing techniques like Artificial Neural Networks (ANN), optimization of the welding parameters have become easier. The 

inferences drawn from this study are: 

 The exploration of ANN in the CMT processes being limited, paved a way for us to extend this optimisation tool for the 

CMT process of Stainless steel welding.  

 The mechanical properties investigated in this work are Ultimate tensile strength (UTS) and Yield tensile strength (YTS) of 

all 316 grades of stainless steel.  

 After the training of the ANN using the Back Propagation LM Algorithm, the neural network predicted the mentioned 

mechanical properties accurately based on the variations in their chemical compositions. This is assured since the regression 

plots of all the grades indicated that the R-value is close to 1.  

 From the obtained network output, the properties are classified into three grades namely; low, moderate and high. Hence, the 

developed ANN model has proven to be an effective nonlinear regression analysis method in identifying material 

behavioural trends and suggested 316L grade as an optimal material for marine application.  

 The experimental validation results also agree with the predicted results thereby making 316L a favourable marine-grade 

application based on the mechanical properties; UTS and YTS. 
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