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Abstract

The purpose of this paper is to study various properties of Mittag-Leffler function and introduce some new theorems which give the
images of this Mittag - Leffler function under the generalized fractional integral operators in terms of Beta, Mellin, Laplace,
Whittaker and K-transforms. On account of general nature of results in the form of Mittag - Leffler function, several known and
new results involving simpler functions can be obtained by taking suitable values of parameters involved.
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1. Introduction

In the literature, it is evident that many researchers have worked on special functions involving with fractional calculus operators
and integral transforms and studied their properties with applications in science and technology [1,2,3,4,7,8,10,12,14,15,16,18].
Following the sequence, in this paper our objective is to study some properties of Mittag-Leffler function [11] and identify some
new image formulas under the generalized fractional integral operators with the use of integral transformations like Laplace
transform [19], Mellin Transform [5], Beta transform [19], Whittaker transform [20] and K-transform [6]. The generalized fractional
operators those we used here, involves well known I-function given by Saxena [17] as kernel, are the extension of the operators
given by Saxena and Kumbhat [16]. In study of the properties of Mittag-Leffler function and the related image formulas, we first
find the images of the function under the generalized fractional integral operators and then we obtain the integral transforms of these
images.

The I-function, given by Saxena [17] is defined as:

(), “f)l s (@i i) 1 1
I — In?'n“ n n+1,p; - f d
[Z] pudit ‘ (bj’ﬁj)Lm: (bji’ﬁji)m+1.Qi 21w de)(g)Z g
.. (L1)
where w = v/—1 and
b (&) = L T(B = BT — a; + ;)

- {H;Iimﬂ I'(1 = by + Bjig) H?inﬂ I'(aj; — a’jif)}

..(1.2)
For more details, one can refer [17].

The generalized Mittag-Leffler Function introduced by Prabhakar [13] and defined as

n n

)= LG+ pmi”

; LB,y €C);Re(A) >0,Re(B) > 0,Re(y) >0

... (1.3)

The Generalized Fractional Integral Operators involving I-function as kernel defined and used here, are the extension of fractional
integral operators given by Saxena and Kumbhat [16] and can be verified smoothly for I-function along with the conditions
mentioned here. These operators are defined as
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... (15)
Where
™\ T\ T\ F x™\Y
X = (_T) (1—7> and Y = (—) (1——) ;7,0 >0
X x tr tr
...(1.6)

The sufficient conditions of these operators are
D1<pg<opl+qgt=1

(ii)Re <u +rT (%)) > —q7'; Re (a +rv (Z—j)) >—q7

bj )
Rele+a+rt [)T >-pLj=1,.,m
j

(iii) f(x)€L, (0, )
(iv) largk| < nz—/l,l >0

where
m n pi qi

1= @+ Y By —max| Y (@) + Y ()
j=1 j=1 T | j=nt j=m+1

The Beta Transform [19] of a function f(t) is defined as

1
B{f(t);a, b} = f t 11 —t)P"t f(t) dt ;a,b € C,Re(a) > 0,Re(b) >0
0

.. (17
The Mellin Transform [5] of a function f(t) is defined as

[ee]

M{f(t); s} =f t57t f(t)dt ;Re(s) >0

0

... (1.8)
The well-known Laplace Transform [19] of a function £ (t), is defined as
L{f(t);s} = J e Stf(t)dt ;Re(s) >0
0
... (19
The Whittaker transform given by Whittaker and Watson [20] holds the following result
1 1
© t F(§+w+C)F(7—w+C) 1
26w, , (Ddt = sRe(w () > —5
| e, e ewt0) >~
... (1.10)
where W, , (t) is the Whittaker confluent hypergeometric function and defined as
Ir'(—2w) rw)
Wy (£) = ———— M, (6) + My (©)
Fz—)(—w F(§+)(+W)
where
1 t 1
M, () = t(7+w)e_51F1 (E +w—yx2w+1; t)
... (1.11)
The K-Transform [6] is defined as
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R,1f (0); p) = glp; v] = f (K, (o) f () dx
0

.. (1.12)

where Re(p) > 0; K, (x) is the Bessel function of the second kind [13], defined by
1

K, = (5) Wou(20)
.. (1.13)
here Wy, (.) is the Whittaker function [20].
The following result given by Mathai [9] will be used here in evaluating the integrals

J- tP~1 K, (ax)dx = 2P~2q7P F(pg > Re(a) > 0; Re(ptv) >0
0

.. (1.14)
2. Main Results

In this section we study the properties and obtain the images of Mittag-Leffler function under the generalized fractional integral
operators defined in (1.4) and (1.5).

Theorem 2.1 Leta, 4, 8,9,y € A > 0,x > 0,Re(1) > 0,Re(9¥) > 0,Re(B) > 0,Re(y) > 0,1 <p < 2 then

() (ax")"

A (0 p(at™)) () = x07
n

= F(Ain+pB) n!
{ (af'“i)l,n; (aji'aji)n+1,pi ’ (1 B <w”>>‘(_a' V)]
X L 4| k (u+9+wvn) }
<_+ -a,T+ v) ) ( '81)1m ( jio ﬁji)m+1,qi J

.. (21)
Provided the conditions, mentioned with operators (1.4) are satisfied.
Proof. To establish the result (2.1), using (1.6) and definition of I-function on left-hand side of (2.1), we have

ALe (tl‘f‘ 1Eyﬁ(at”)) (x) = A, (say)

X 1 © n
= T'X_u_”x_lf tﬂ+19_1 (xr - tr)a {%J ¢(f)(kX)€df} % (at”)” dt
0 L n=0 '

Now, changing the order of the integration which is valid under the given conditions, we get

A= rx H-Ta-1 (Y)nan ¢(€) kgxra rt€ tu+19+vn+rr€ 11— ﬂ
! s I'(An + ,B)n' 2w xT
n=

a+vé

dt} dé
Lett"/x"=y=> t= xyl/r, we get

A= x9-1 (V)n n fd’('f) kEx7¢ x {le(u+19r+vn)+rf(1 _ y)““’f dy} d&

F(/ln + B) n!2nw
Using the deflnltlon of Beta function in the inner integral, we have

. IS (¥)n(ax”)" j(;b(f) 1€ (e +9+vn)/r) + 8T (a + 1 + vé) d
F(/UH'ﬂ) n! 2w I‘(((,u+19+vn)/r)+a+1+(r+v)€)

A1:

Further by using the definitlon of I-function under (1.1) and (1.2), we reached at the desired result.
Theorem 2.2 Leta, 4, 8,9,y € C,x > 0,Re(1) > 0,Re(¥) <1, 1 <p < 2,then

K& (670 E] 5 (at™)) (o) = x~ W
n

— I(An + g)n! (ax™)" x
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(e+9 +vn)
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Ik <— (6+]9r—+vn) —art U) (b3, By), (bﬁ'ﬂﬁ)mﬂ,qi J
...(22)
Provided the conditions, mentioned with operator (1.5) are satisfied.
Proof. Using (1.6) and definition of I-function on left-hand side of (2.2), we have

5 (7] p(at™)) (x) = 8, (say)

[oe] 1 it n
= rng gmETYITamL (¢ — x4 {%I ¢(€)(kY)fdf} 2

LiTGn+p)

Now, changing the order of the integration which is valid under the given conditions, we get

r.a+vé

. C In 1 £.,7TE ° —e—9-vn-rté— x
Bo=rx L, TGn + f)n! anqub(f) ex {fx ‘ 1<1 _t_r>

dt} de
Let x"/t" = y then t = x/y/™ in the above term and using beta function, we get

I C (y)nan x™ I3 ! M##rf—l a+vé
85D ot iz o e { [ STy ayfag

Using the definition of Beta function in the inner integral, we have

o W
T r(An+ B)n!

px I‘(((£+19+vn)/r)+rf)l’(a+1+vf)d

1
-n\n__ k{
(ax™) an£¢(f) XF(((5+19+vn)/r)+a+1+(T+v)€)

Further by using the definition of I-function under (1.1) and (1.2), we reached at the desired result.
Theorem 2.3 The operator defined in (2.1) and Re(y + 9) > 0, then

VA9 E] y(at™) | () = AP0 E) (e (o)
(23)

Provided the conditions, mentioned with operator (1.4) are satisfied.
Proof. Letususe (2.1) in left hand side of (2.3), we get

[oe]

)

wpkal, 91y _ n 9+p+vn—1

XVREF [0 B (a0 = OF(An+B)n!anx "
n=

(u+9+wvn) A
00,5050, 1 (55 0))

r
X Im,n+2

. a3k
Pit2ai+il < (u+9 +vn)
T

—aT+ V) (b, B)), (bji'ﬁji)mﬂ,qi
(2.4)
By using (2.1) in right hand side of (2.3), we have

A [tww_lE/{ﬁ (atv)](x) = Y=o F(A(Zi;) @ AT X

(w+9+wvn)
Jmn2 Ik (aj’ aj)1,n; (aﬁ’ a]'i)n+1.pi ! (1 N <f,‘[ ,(—a,v)
pi+2,q;+1;l

+9+
<_u —a, T+ U) , (bj;ﬁj)l_m; (bﬁ'ﬁﬁ)mﬂ.m J

r
...(2.5)
By observing (2.4) and (2.5), the result (2.3) is true.
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Theorem 2.4 The operator defined in (2.2) and Re(y +9) > 0, then
xVKES (670 (@t ™)) () = KE P (679 VE] y(at™)) ()

...(2.6)
Proof. Using (2.2) in left side of (2.4), we get

x VKT (t‘ﬁE}[ﬁ(at‘”)) x) = F(Arf+)nﬂ)n!a
n=0
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(09,5500 (1= (1))

n x—t?—lp—vn X

mn+2 T

Lo 13k
Pit2aitil < (e+9+wvn)
T

—a, T+ v) ) (bj’ﬁj)l‘m; (bﬁ’ﬁﬁ)mn.qi

.27
using (2.2) in right side of (2.4), we have

[ee]

n
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{ (aj, aj)l,n; (aﬁ, aji)n+1,p- , (1 - <(£+19T—+vn)‘ T)) ,(—a, ‘U)]
Im,n+2 4 k t $
I
\
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pi+2,qi+1;l |

—a,T7+ v) , (bj: 'Bf)Lm; (bﬁ‘ 'Bﬁ)m+1,qi J

...(2.8) By observing (2.7) and (2.8),

(e+9+vn)
gaus

the result (2.6) is true.
Theorem 2.5 The Beta — transform of the operator defined in Theorem 2.1, gives the following result

o (na’ Te+9—1+vn)I(d)
wa 9-1Y v . -
B {Ax,r (t E; plat )) 6 d} s T(An + p)n!T(c+d + 9 —1+vn)
n=

(u+9+vn)
(00, (@000, (1= (5727) ) ()

mn+2
X1 k (u+9+vn)
(—f -, T+ v) ) (bj"Bj)l,m' (b]uﬁ]l)

pit2,q9;+1;l

m+1,q;

... (2.9)
Provided that the conditions mentioned with the operator and Beta-transform are satisfied.
Proof. Applying Beta — transform defined in (1.7), on the operator (2.1), we get

o ()na y
E, r'(An + g)n!

(m+9+wvn) h
(aj, aj)l’n; (aﬁ, aji)n+1’pi ) (1 - <—,T>) ) (—0(, U)

r

B {Aﬁ;‘;‘ (tﬁ‘lE){ﬁ(at”)) ;¢ d} =

1m,n+2 k
P2t (u+9+vn)
- —arttv), (55, Bj) 1 i (B Bjt)mH,%
1
X f tc+19+vn—1—1 (1 _ t)d_l dt
0

Further by using the definition of Beta-function, we readily arrive at the desired result.
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Theorem 2.6 The Beta — transform of the operator defined in Theorem 2.2, gives the following result

O M@y T -9 +vn)I(d)
}_ =0F(An+[?)n! F'c+d—9+wvn)

( (e+9+wvn) )
o (22, o

r

B {K,ﬁf;"‘ (t‘ﬂE,{ﬁ (at"’)) i, d

Im,n+2 k
petzactl < (e+9 +wvn)
r

—a_—(‘[+17));( ﬁf)lm ( Jl’ﬁﬁ)m+1,qi

.. (2.10)
Provided that the conditions mentioned with the operator and Beta-transform are satisfied.
Proof: Applying Beta — transform defined in (1.7), on the operator (2.2), we get

Bkl (0B () e d) = Y e
xr 4B T LT(n + B)n!
n=0

( (e+9+wvn)

- |(a]"aj)1‘n; (aji'aji)n+1,pi ! (1 <f )) ( * v)
musz g
Pit2qitLil (e+9+vn)

- —a, T+ v ;( ﬁ])lm ( ]l’ﬁji)m+1_qi )

T
fol tc—ﬁ—vn—l (1 _ t)d_l dt
Further by using the definition of Beta-function, we readily arrive at the desired result.
Theorem 2.7. The Mellin — transform of the operator defined in Theorem 2.2, gives the following result
M {Als (e971E) y(at™)} ()

_ Wn__a” 1
B :0[‘(/1n+[>’)n! (s+9+vn—-1)

(u+9+wvn)
{ (aj, aj)l,n; (aji, aji)n+1,pi , (1 — <# )) ( a, v)l
|
)

(u+9+vn)
r

o |
k < —a;T+v),( 'Bj)lm (]1',8]1 m+1,q;
.. (211)
Provided that the conditions mentioned with the operator and Mellin-transform are satisfied and Re(s) > Re(v).
Proof: Applying Mellin — transform defined in (1.8), on the operator (2.1), we get

miay (e 5] e )} ) = m(y—lm— x
n=0

(u+9+vn)
. { (a;, af)Ln; (aj;, aji)n+1,pi ) (1 - <7r ,7) ], (—a,v)
Imn

pi+2,q;+1;l
| (u+9+wvn) I
k (_f —a, T+ v) ) ( :31)1m ( ﬂ'ﬁﬁ)mﬂ.qi )

oo
xfts‘lt‘ﬁ‘”" dt

0
Solving the integral and with simple simplifications, we readily arrive at the desired result.

Theorem 2.8. The Mellin — transform of the operator defined in Theorem 2.2, gives the following result

ol B T~ W, a 1
M{KEE (B p(at™))} () = FrOn+p)n! (s—9—vn)
n=0
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mn+2
X Lysvaqietit

I (aj, aj)l,n; (aji' aji)n+1,pi , (1 - <(€+]9r—+1m)’ —T)> , (—0.’, U)l

(e +9 +vn)
k <_ # —-a, T+ 1_7) ) (b}, Bj)l,m; (bji' Bji)m‘i'l.‘h J

... (212)
Provided that the conditions mentioned with the operator and Mellin-transform are satisfied and Re(1 —9) < 1, Re(s) > Re(v).
Proof: Applying Mellin — transform defined in (1.8), on the operator (2.2), we get

MK (70E] y(at ™)} (5) = By 2 @

r(An+p) n!
. (e+9+vn)
[mnt2 (a]-, af)Ln' (aﬁ’ aﬁ)nﬂym ' (1 B (f' _T)) o)
pi+2,qi+1;L (u+9+1+vn)
(_ ———a—(r+ v)) , (b, ﬁf)l,m; (e aji)m+1rfh

(oo}

X f es7 g
0
Solving the integral and with simple simplifications, we readily arrive at the desired result.

Theorem 2.9 The Laplace — transform of the operator defined in Theorem 2.1, gives the following result
o e (as™)"

L{REF (€71 E) p(at?); s} = 570 e e ACROR
n=0
(u+9+vn)
a2 (), “f)mi (aji, “ﬁ)nHJ,i , (1 - (w T)) ,(—a,v)
pit2,q;+1;l (u+9 )
(_ T ”) (B B7) i Bjis Bii) 4,
.. (2.13)

Provided that the conditions mentioned with the operator and Laplace-transform are satisfied and Re(d + vn) > 0.
Proof: Applying Laplace — transform defined in (1.9), on the operator (2.1), we get

L {Aﬁﬁf[tﬂ‘lE}{ﬁ (at”)]; s}

( ( (1t +9+wvn) 1)
IR O ok || )y (e i)y (1 - <T.r ()] |
=Lye ), ek
! F(An+pB) n! Pit2a+l (u+ 9 +vm)
e +v], (bj"Bj)l,m; (bji"gji)m+1,qi
(w+9+wvn)

= i & ()" mn+2 (a]-, aj)l'n' (aji' aji)n+1,pi ’ (1 - <f, )], (—a,v)
TGy (1 + 9 + vn) |
n=0 (— — T &Tt v) (B, Bj)l‘m} (Bji, Bji)m+1,qi )

(oo}

X f e—stt19+vn—1 dt
0
Using the definition of Laplace transform and with simple simplifications, we readily arrive at the desired result.

Theorem-2.10: The Laplace — transform of the operator defined in Theorem 2.2, gives the following result

L{K;f,'f‘ (t‘ﬁE{B(at—v))} (s) = 501 o n ()"

rl-9—wvn) x

L FrAn+pB) n!
o~ {k (a5 9)), (aji’afi)n+1,pi'<1 - <(£+19r—+m)r—f)>,(—a, v)\
T () ), i, )
r 1m TP mat1,q;
... (2.14)
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Provided that the conditions mentioned with the operator and Laplace-transform are satisfied and Re(1 — 9 — vn) > 0.
Proof: Applying Laplace — transform defined in (1.9), on the operator (2.2), we get

L{Ker (6] g(at ™)} (5)

( (e+9 +wvn) AR
W @ ()10 (0 O, (1 ) (T T)) (e

=L t_ﬁ 1 pi+2,q;+1l k
ZOF(ATL-I-ﬁ) n: et (e+9+wvn)
- r _a’T+U ’( ﬁj)lm (]l’ﬁji)m+1_qi
(e+9+vn)
o) (]/)n o ( (aj, aj)l,n; (aji' aji)n+1,pi , (1 - <f,’[ , (—(Z, 17)\ .
;n_;n2+qz+1 . 4 k ¥ xf e~st t—(ﬂ+vn) dt
P T(An + B) n! Pi+2ai | (e+9 +vn) | 0
- - —at+v), (b ﬁj)lm ( Jl’ﬁjl')m+1,qi

Using the definition of Laplace transform and with simple simplifications, we readily arrive at the desired result.
Theorem 2.11. The Whittakar — transform of the operator defined in Theorem 2.1, gives the following result

[ e o A (0 8 )

o10¢ M S TWw+9+{+vn—1/2)FO—-w+{+vn—1/2)
ZF(An+B)n' ) FrO—xy+7+wvn)
(u+9+vn)
( (aj, aj)l,n; (aﬁ, aﬁ)n+1.m , (1 — (f"[)) ,(—a, v)]
Ig‘lf;;‘ﬂ : { k (u+9+wvn) }
(- ko). (60, ),

.. (2.15)

Provided that the conditions mentioned with the operator and Whittakar-transform are satisfied and Re[w + (9 + { + vn — 1)] >
1

>
Proof: Applying Whittakar — transform defined in (1.10), on the operator (2.1), we get

Lme—wt/ztéﬂwxm((po {Aua (t19 IEyﬁ(at"))}

( (u+9+wvn) \
N (¥)n a” 2 (aj' aj)l.n; (aﬁ’ aji)n+1,pi ’ (1 - <+' 7], (—a,v)
— mmn+ k
T'(An + B) n! Pit2ai+il (it 9+ o)
- - - s
< - a’,‘L’+U):( .Bj)lm ( Juﬁﬂ)m_'_l‘qi

(o]
XJ e—(pt/z t(ﬁ+{+vn_1)_1]/|/3(_w((pt)dt
0
Let us take ¢t = z, then we have

fo e~#t2t5 W, L, (t) {A‘”‘(t19 'EJ p(at” )}

( 9 1
(al’al)m (aﬂ,aﬂ)nﬂp (1 - <M,T)>,(—a, v)

_ (V)n Jmnt2 '
L TGn + Bl 2 (wt9+wm)
—aT+ U) (BB, (@i @)
105 vn e~2/2 z(9+{+vn-1)- Wyw(2)dz
, W

0
Now by using the result (1.10), we reached at the desired result.

Theorem 2.12. The Whittakar — transform of the operator defined in Theorem 2.2, gives the following result ,

Lwe“ﬂf/z W, , (pt) {K,i'ﬁ‘ (t‘ﬁEVB(at "))}
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59~¢ Wn o Tw=9+{—vn+1/)I(-9—w+{—vn+1/2)
ZF()In+B)n' ") % rl—-9—xy+J—wn)

( (e+9 +vn) A
(aj, aj)l,n: (aji, aji)nﬂ.m ) (1 - <+, T)) ,(=a,v)
mmn+2

X I TR
pi+2,q;+1;l (g + 9+ vn) 5
~ - 7 v ,( ﬁf)lm ( Jjir ji)m+1.qi

T
.. (2.16)

Provided that the conditions mentioned with the operator and Whittakar-transform are satisfied and Re[w +
(—94+¢—-vn—-1)]>1/2.
Proof: Applying Whittakar — transform defined in (1.10), on the operator (2.2), we get

fme“l’f/z 5w, m((pt){ ( tE) (at‘”))}dt

( (e+9 +vn) A
V. D e {k(%ﬂﬂmi%h%&”W“<l_<v~’0>i_%w$

T L TQn o+ ymt retast (e +9 +vm)
_7— v ,( ﬁ])lm ( J“ﬁji)m+1.qi

xf e~ ¥t/2 t(_19+(_vn)_1WX_w(g0t)dt
0

Let us take ¢t = z, and proceeding on the similar lines that we have taken in the proof of Theorem 2.12, we get the desired result.
Theorem 2.13. The K — transform of the operator defined in Theorem 2.1, gives the following result

fo tP7K, (wt {Aﬁ;‘;‘ (t""‘lE/{ﬁ (at"))}) dt
 pi9—3 1epe M 2\Y p+I9+vn—-1 =7
= 2P *+9=3(y)( pﬁ);if‘(ln+ﬁ)n!<a<w>).r( 3 )
{( |(aj' aj)l‘n; (aji! aji)n+1,pi , (1 — <(‘ll‘|'197'7+1m)’ T)) , (_a’ 1])\}
k
)
<_@¢_izﬂ_aJ+v)( CT

Im,n+2

X Ly h2,qi+ 130

T
. (2.17)

Provided that the conditions mentioned with the operator and K-transform are satisfied and Re(w) > 0, Re((p +9+wvn—-1)+
£) > 0.
Proof. Applying K — transform defined in (1.12), on the operator (2.1), we get

fo tP71K, (wt{A““(tﬂ 1E”B(at”))})

{ (aj, aj)l,n; (aji! aﬁ)n+1,pi , (1 — <w’ T)) , (—(Z, v)l

i (¥)n a™ Jrent2 k
), Tin + ) nl Pi+2ait1i (u+9+vn)
- | (_%- + 17),( ﬁ])lm ( ]l"gji)m+1,qi J

Xf (t)(p+19+vn—1)—1K€(wt)dt’
0

In view of (1.14), we readily arrive at the desired result.
Theorem 2.14. The K — transform of the operator defined in Theorem 2.2, gives the following result

[ etk (we (ks (191 ) ) e
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- S ale (B (5705

(e+9 +vn) A
I (aj, aj)l,n: (aji, aji)n+1,pi , (1 — <+,T>> ,(—a,v)
X

a3k
pi+2ai+1l < (e+9 +vn)
r

mmn+2

—a,r+v>,( ﬁ])lm ( Jl’ﬁji)m+1,qi
.. (2.18)

Provided that the conditions mentioned with the operator and K-transform are satisfied and Re(w) > 0, Re((p —9—vn)+ f) >
0.

Proof: By taking K-transform of the operator (2.2) and proceeding like the proof of Theorem 2.13, we get the desired result.
3. Special cases

If we take [ =1 in I-function, then it reduces to well known H-function [9,17] and the results (2.1) and (2.2) gives following
corollaries-

Corollary 1

w1 (£ ) ) o)

u+19+vn)
T

Wl O Dn (@) (
A (7] pat™)) () = 207 Tt )l rizan 4' k
n=0 t

—a,r+v>,(bq,,8q) J

.. (3.1)
Provided the conditions, mentioned with (2.1) are satisfied.

(| (e+9 +wvn) A
oo (a,a),(l_( IT>>I(_alv)
N7 S— {k e : $

ca (.- v o -v\n
K (0B g@™) 0 =x~* 0, TGn + pym (¥ oszan (e +9 +vn)
n= (_7—Q,T+U),(bq,ﬁq) }

Corollary 2

r
..(3.2)
Provided the conditions, mentioned with (2.2) are satisfied.
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Conclusion

In the present paper, we have studied the properties of Mittag-Leffler function under the extension of generalized fractional integral
operators given by Saxena and Kumbhat [15] and developed some new images. The results obtained here involves special functions
like Mittag Leffler function and | -function, due to their general nature and usefulness in the theory of integral operators and relevant
part of computational mathematics they may have an important place in the literature. Also, the special functions involved here can
be reduced in simpler functions, those have variety of applications in different domains of science and technology and can be
observed as special cases, those we have not mentioned here explicitly.
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