
Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1602

ISSN: 0974-5823 Vol. 7 No. 5 May, 2022

International Journal of Mechanical Engineering

Heuristic Oriented Process Scheduling for

Homogeneous Multiprocessor Environment
1Sunita Kushwaha, 2Varsha Thakur

1 Asst. Professor, MSIT Dept.

MATS University, Raipur, CG, India

2 Asst. Professor, CS Dept.

Govt. NPG Science College, Raipur, CG, India

Abstract. Optimize the schedule length in multiprocessor environment is indispensable and fiddly task. In

Consequence, scheduling has perpetually been a leading area of interest for researchers. Multiprocessor

scheduling is an NP complete problem. Heuristic techniques in scheduling algorithm yield good results in less

than polynomial time. In heuristic scheduling there are mainly three categories list scheduling, cluster based

scheduling and Task Duplication Based (TDB) scheduling. Task duplication based and cluster based

scheduling are applicable only for dependent task sets, whereas list scheduling algorithm is applicable for

dependent as well as independent task set both. This paper, apply heuristic techniques to achieve optimum

schedule length (Makespan) for multiprocessor system. Simulation study has been done for M numbers of

homogeneous processor and N numbers of process/task. Where all N processes are randomly arrive on

different time instances. For simulation some heuristic scheduling algorithms has been selected, and

compression of performance of newly proposed list heuristic algorithm has been done. Simulation studies

show that newly proposed algorithm performs better than some well known selected algorithms.

Keywords: Heuristic Scheduling, List Scheduling, TDB, Cluster Based Scheduling

1. Introduction

Scheduling is not a contemporary conception; it endures from long standing years in the distinct province such

as military perspective, pyramids, traditional railways etc. Without scheduling, we cannot speculate such kind

of intricate task. Scheduling is not only a technical concept; but a concept that is used in our routine life [1]. A

prevalent and engrossing problem of the multiprocessor system is “how to schedule multiple processes on

multiple processors to get optimal solution” which is known as scheduling [2]. A Scheduling problem may

consist of three main components: 1) Process 2) Processor 3) Policy (Scheduling Approach) the problem of

task scheduling is one of the most imperative and challenging issues in homogeneous computing

environments. Finding an optimal solution for a scheduling problem is NP-complete [3]. Therefore, it is

necessary to have heuristic to find a reasonably good schedule rather than evaluate all possible schedules. List

scheduling is generally accepted as an attractive approach, since it pairs low complexity with good results [4].

Therefore, list heuristic scheduling is selected for investigation.

2. Related Work

Multiprocessor system scheduling can be classified into static and dynamic scheduling classes [3-5]. Further

static scheduling algorithms are, classified into optimal and suboptimal scheduling algorithms. Suboptimal

scheduling algorithms can also be classified as heuristic and approximate scheduling algorithms [3-10].

Heuristic scheduling algorithm follows a thumb rule to moves from one point in search space to another point

in search space. Heuristic scheduling algorithms are more adaptive [14] method and are used to find near

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1603

optimal solution [15-16]. Heuristic scheduling algorithms are classified into Task Duplication Based (TDB)

scheduling, Cluster Based scheduling and List scheduling.

In TDB scheduling algorithms predecessor tasks (processes) are copied on all those processors where

successor tasks of those predecessor tasks are present. This strategy reduces communication overhead,

consequently the system in which data band width is low, TBD performs better. In cluster based scheduling, a

set of tasks that need to communicate among themselves are grouped together to form a cluster. Each of these

task clusters is then scheduled on the available processors [1, 8, 10-15]. Now entire cluster is scheduled

instead of task. Therefore, there are two levels of scheduling one is inter cluster scheduling and another is intra

cluster scheduling. In inter cluster scheduling entire cluster is schedule on one particular processor. In intra

cluster scheduling all the processes within a cluster are scheduled in a particular manner on that processor only

[1, 8, 10-15]. In a list scheduling an ordered list is generated on the basis of certain property. Higher priority

task is scheduled earlier. In list scheduling DAG (Direct Acyclic Graph) is used to define the dependencies

among the tasks. List scheduling is used to schedule both the dependent and the independent tasks [3, 10-15,

17-24, 26].

3. Problem Statement

Optimization of scheduling in multiprocessor environment is seemed a fiddly task, it is not easy due to obtain

better solution in cost effective way. In this situation heuristic techniques are used to achieve simple and

optimal or near optimal solution. Heuristic follows a thumb rule, where one or two attributes are selected in

scheduling process and other attributes going to be ignored.

Let consider the N number of processes/tasks are arrived randomly, and scheduled on M number of

homogeneous processors.

Suppose that Ts is set of tasks/ processes in which {T1, T2, T3,…..,TN} are n tasks/processes. Release time or

arrival time of these tasks are {A1,A2,A3,….,AN}. Similarly the processing time are {{P1,P2,P3,…..,PN}. Also

the completion time of a task/process are {C1,C2.C3,…..,CN}

So that

Ti(Ci) ≥ Ti(Ai)+ Ti(Pi)

And Ti(Ci) ≤ Makespan , Where i =1,2,3,….,N.

Where Ti (Ci) is completion time of ith task/process and Ti (Ai) as arrival/release time and Ti (Pi) is processing

time of ith task/process. Makespan is overall completion time of task set Ts (scheduled on M number of

homogeneous processors). Minimization of the makespan has been used to achieve the balancing the load over

the M processor, which is an important objective in multiprocessor environments.

4. Performance Parameters

In these investigational studies it is seen that all the processors of multiprocessor system are not busy exactly

for same time. Consequently the busy time of all processor of multiprocessor system is always less than or

equal to their makespan. Hence, the idle or inactive time of all processor is calculated as a performance

parameter under the name of “Average Idle Rate” (AIR). As the idle time minimize performance of system

goes high. Thus, Average Idle Rate (AIR) defined as:

𝐴𝐼𝑅 =
(Cmax ∗ M) − Total processing time

Makespan ∗ M

Where M is number of processors.

5. Proposed List Heuristic Algorithm:

Proposed List Heuristic Algorithm:

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1604

Step 1: Let M number of processors (homogenous) and N number of processes with Processing time Pi and

random Arrival/Release time Ai, where i=1,2,3….,N.

Step2: Sort the set of processes according decreasing order of processing time. If two or more processes have

equal processing time then process with minimum arrival time is arranged first and store in MLPT(Pi,Ai).

Step3: Sort the set of process according to increasing order of arrival time. If two or more processes have equal

arrival time then processes with longest processing time is arranged first and store in MEST(Pi,Ai).

Step4:for I=1 to M , compare the arrival time of first process of both the matrix MLPT (Pi,Ai) and

MEST(Pi,Ai). Select the process that have minimum (earlier) arrival form MLPT (Pi,Ai) or MEST(Pi,Ai) and

store in the new matrix MNEW(Pi,Ai) as first process. And remove this process from both the matrix

MLPT(Pi,Ai) and MEST(Pi,Ai).

Step5: for I = M+1 to N, Calculate Ai+Pi for named as PAT(processor available time) for each process after

placing first process on all processors. And compare the arrival time of MLPT(Pi,Ai) first process with the

minimum PAT. If Arrival Time of MLPT(Pi,Ai) process is higher than the minimum PAT then goto the step4

otherwise assign the remaining processes into the MNEW(Pi,Ai) according to LPT manner.

Step6: Schedule the process according to MNEW(Pi,Ai), and calculate PAT as Pi + min(PAT). To identify

the availability of processor form the given set of processors. And schedule the next process from

MNEW(Pi,Ai) on it.

Step7: End

Flow chart of Proposed List Heuristic Algorithm:

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1605

6. Performance Analysis

List heuristic scheduling techniques assign a priority to each task to be scheduled and then sort the list of tasks

in decreasing order of that priority. As processors become available, the highest priority task in the task list is

assigned to be processed and is removed from the list. If more than one task has the same priority, ties are

broken using some method [10, 15] or typically by random method [16]. Some well known list heuristic

scheduling algorithms are selected for analysis proposes namely: LPT (Longest Processing Time) are arranged

the task in descending order of processing time. SPT (Shortest Processing Time) are arranged the tasks in

increasing order of their processing times. In the ECT (Earliest Completion Time first), process with minimum

completion time is scheduled first. Completion time is the summation of arrival time and processing time. In

EST (Earliest Starting Time), processes are arranged in increasing order of their starting time. In EDD

(Earliest Due Date) processes are arranged in increasing order of their due date. In EDF (Earliest Deadline

First), process with earliest deadline is selected to schedule first. In WSPT (Weighted Shortest Processing

Time) first of all the ratio of processing time and weight (Pi/Wi) is calculated. Then the process which has

minimum Pi/Wi is scheduled first where Pi is processing time of ith task and Wi is weight of ith task [17-22] etc.

Performance analysis of newly proposed heuristic list scheduling LPEST (Longest Processing Earliest Starting

Time first) with selected heuristic scheduling algorithms has been done with the help of TORSCHE simulation

tool based on MATLAB.

Table1: Environmental Setup

Parameters Value

No of processors 1, 2, 3, 4, 5, 6

No of processes 10, 15, 20, 25

Scheduling algorithms
LPT, SPT, EST, ECT, WSPT, EDF,

EDD, LPEST

Range of time instant for arrival [0-4]

Range of processing time for each process [5-10]

Makespan: In scheduling makespan is an important parameter which shows the maximum time taken to

schedule a set of processes on given set of processors. For better performance makespan should be minimum

[25-29].

Figure 1: Makespan for 10 processes

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

M
A

K
ES

P
A

N
 in

 s
e

c

No. of Processors

LPT

SPT

ECT

EST

WSPT

EDF

Edate

TPB

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1606

Figure 2: Makespan for 15 processes

Figure 3: Makespan for 20 processes

0

20

40

60

80

100

120

1 2 3 4 5 6

M
ak

e
sp

an
 in

 S
e

c

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6

M
ak

e
sp

an
 in

 S
e

c

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1607

Figure 4: Makespan for 25 processes

Speedup: Speedup is the ratio of parallel time of uniprocessor system P(1) and multiprocessor system P(N).

For better performance speedup should be high.

Figure 5: Speedup for 10 processes

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6

M
ak

e
sp

an
 in

 S
e

c

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

0

1

2

3

4

5

6

1 2 3 4 5 6

Sp
e

e
d

u
p

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1608

Figure 6: Speedup for 15 processes

Figure7: Speedup for 20 processes

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6

Sp
e

e
d

u
p

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6

Sp
e

e
d

u
p

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1609

Figure8: Speedup for 25 processes

Average Idle Rate (AIR) is a newly proposed performance parameter. Average Idle Rate is the idle rate of

multiprocessor system. Average Idle Rate defined as – ratio of difference between Total busy time of

processors and Total processing time and Total busy time of processors. For better performance AIR should

be low.

Figure 9: AIR for 10 processes

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 2 3 4 5 6

sp
e

e
d

u
p

No. of Processes

LPT

SPT

ECT

EST

WSPT

EDF

Edate

TPB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 2 3 4 5 6

A
IR

No of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1610

Figure 10: AIR for 15 processes

Figure 11: AIR for 20 processes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6

A
IR

No. of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6

A
IR

No. of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1611

Figure 12: AIR for 25 processes

Performance metrics in terms of Makespan has been obtained and their relative values have been compared

from some selected scheduling algorithms. Figure1, Figure 2, Figure3, and Figure 4. The values obtained by

experiments are shown in the form of graphs, from graphs (figure 1 to figure 4) it is shows that the makespan

of proposed scheduling algorithm (LPEST) has least in most of the time as compare to other list heuristic

scheduling algorithms.

Similarly, Speedup has been obtained and their relative values have been compared with selected scheduling

algorithms. Related values of speedup for selected scheduling algorithms and newly proposed algorithm are

shows in Figure 5, figure 6 figure 7 and figure 8, These figures shows that proposed scheduling algorithm

(LPEST) has higher Speedup than other list heuristic scheduling algorithms. Performance metrics in terms of

AIR has been also obtained and their relative values have been compared and revealed in. Figure 9, figure 10,

figure 11 and figure 12. In these figures AIR has least values for proposed scheduling algorithm (LPEST) it

means in this algorithm Average idle time of multiprocessor system has reduced and performance of algorithm

should be increases.

After the extensive studies some interesting observation are found i.e. when number of processes and number

of processors are equal then all scheduling algorithms will take same time. That means, proposed algorithm is

not better in this case than other algorithms. This algorithm is a combination of LPT and EST. Hence it utilizes

the feature of both the algorithms and gives better results than LPT and EST. If sequence of incoming

processes is already in decreasing order in term of processing time then proposed algorithm and LPT will give

same result. However, effect of the proposed algorithm is obvious only when number of processes is quite

larger than the number of processors.

7. Conclusion

Heuristic scheduling is widely used in multiprocessor system for find optimal scheduling.. This work surveyed

the different classes of heuristic scheduling algorithms and proposed a new one. On the basis of this survey, it

is found that the list heuristic scheduling algorithm suitable for both dependent and independent process sets.

Several list heuristic scheduling algorithms are implemented and compared. In most of the cases, it is difficult

to compare different scheduling algorithms since each has different assumptions (random arrival time, zero

arrival time, dependent task set, independent task set), system type (homogeneous, heterogeneous) etc.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 2 3 4 5 6

A
IR

No. of Processors

LPT

SPT

ECT

EST

WSPT

EDF

EDD

LPEST

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1612

Performance of proposed list heuristic scheduling algorithm has been evaluated by changing number of

processors and processes under some assumption. For that, some performance parameters such as makespan,

speedup and AIR have been obtained by simulation. Simulation result shows that performance of proposed

scheduling algorithm in most of the time better than some well known selected list heuristic scheduling

algorithms such as LPT, SPT, EST, ECT, EDF, EDD and WSPT. Proposed algorithm-LPEST is more suitable

in case of set of independent process where processes arrived at random time.

Reference

[1] C. Mihaila, “Evolutionary Computation in Scheduling”, Ph.D. dissertation”, Babes-Bolyai University,

Cluj-Napoca, Romania, 2011.

[2] A. S. Tanenbaum, “Modern Operating Systems”, 3rd Edition, PHI, 2012, pp 23, 536, 560, 565, 581.

[3] T. Casavant and J. G. kuhl, “A Taxonomy of Scheduling in General- Purpose Distributed Computing

Systems”, IEEE Trans. on Software Engineering, Vol. 14, No. 2, 1988, pp. 141-154.

[4] T. Hagias and J. Janacek, “Static vs. Dynamic List-Scheduling Performance Comparison”,

ActaPolytechnica, Vol.3, No. 6, 2003, pp 16-21.

[5] Chapin, Steven J. and Weismann Jon B, “Distributed and Multiprocessor Scheduling”, Electrical

Engineering and Computer Science, Headbook, 2002, paper 40.

[6] Silberschatz, Galvin and Gagne, “Operating System Concepts”, 6rd Edition, John Wiley & Sons, 2003, pp

12, 169.

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan, “Optimization and approximation in

deterministic sequencing and scheduling theory: a survey”, Ann. Discrete Math, 1979, pp 287-326.

[8] K. Hwang and F. A. Briggs, “Computer Architecture and Parallel Processing”, International edition 1985,

Tata McGraw Hill, 2012, pp 25,459, 460, 468, 590, 591, 592, 596,598.

[9] K. Hwang and N. Jotwani, “Advanced Computer Architecture”, 2nd edition, Tata McGraw Hill, 2011, pp

17, 18, 22, 30, 95.

[10] I. Ahmad, Y. K. Kwok and M.Y. Wu, “Analysis, Evaluation, and Comparison of Algorithms for

Scheduling Task Graphs on Parallel Processors”, Parallel Architectures, Algorithms and Networks

Symposium, Beijing, China, 1996.

[11] L. Zhou and S. Shi-Xin, “A Self-Adaptive Genetic Algorithm for Tasks Scheduling in Multiprocessor

System”, IEEE International Conference on Communications, Circuits and Systems, Guilin, China, 25-

28 Jun 2006, pp 2098-2101.

[12] M. I. Daoud and N. Kharma, “An Efficient Genetic Algorithm for Task Scheduling in Heterogeneous

Distributed Computing Systems”, Congress on Evolutionary Computation, Vancouver, BC, Canada,

2006, pp 3258-3265.

[13] R. Kaur and R. Kaur, “Multiprocessor Scheduling Using Task Duplication Based Scheduling Algorithms:

A Review Paper”, IJAIEM, Vol. 2, No. 4, 2013, pp 311-317.

[14] X. Tang, K. Li, G. Liao and R. Li, “ List scheduling with duplication for heterogeneous computing

systems”, Journal of Parallel and Distributed Computing, Vol. 70, 2012, pp 323-329.

[15] G.Q. Liu, K.L. Poh and M. Xie, “Iterative list scheduling for heterogeneous computing”, Journal of

Parallel and Distributed Computing, Vol. 65, 2005, pp 654-665.

[16] S.R. Vijayalakshmi and G. Padmavathi, “Multiprocessor Scheduling For Tasks With Priority Using GA”,

International Journal Of Computer Science And Information Security, Vol. 6, No. 3,2009, pp 1-8.

[17] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund, Dynamic Mapping of a Class of

Independent Tasks onto Heterogeneous Computing Systems”, Journal of Parallel and Distributed

Computing, Vol.59, 1999, pp 107-131.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1613

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson and M.

D. Theys, “A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems”, Journal of Parallel and Distributed Computing, Vol. 61,

2001, pp 810-837.

[19] M. S. Garshasbi and M. Effatparvar, “Tasks Scheduling on Parallel Heterogeneous Multi-Processor

Systems using Genetic Algorithm”, International Journal of Computer Applications, Vol. 6, No.9, 2013,

pp 23-27.

[20] TORSCHE Scheduling Toolbox for Matlab User’s Guide (Release 0.4.0), Department of Control

Engineering, Czech Technical University in Prague, 2007, pp 1-153.

[21] Gunter Schmidt, “Scheduling with limited machine availability”, Invited Review, Elsevier, European

Journal of Operational Research, Vol. 121,2000, pp 1-15.

[22] Y. Maa, C. Chu and C. Zuo, “A survey of scheduling with deterministic machine availability

constraints”, Elsevier, Computers & Industrial Engineering, Vol. 58, 2010, pp 199-211.

[23] Arabinda Pradhan, Sukant Kishoro Bisoy and Amardeep das, "A survey on PSO based meta-heuristic

scheduling mechanism in cloud computing environment", Journal of King Saud University - Computer

and Information Sciences, vol 33, issue 1, January 2021

[24] Essam H.Housseina, Ahmed G.Gadb, Yaser M.Wazerya and Ponnuthurai Nagaratnam Suganthanc, “Task

Scheduling in Cloud Computing based on Meta-heuristics: Review, Taxonomy, Open Challenges, and

Future Trends”, Swarm and Evolutionary Computation, Volume 62, April 2021.

[25] Reza NoorianTalouki, Mirsaeid Hosseini Shirvani, Homayun Motameni, “A heuristic-based task

scheduling algorithm for scientific workflows in heterogeneous cloud computing platforms”, Journal of

King Saud University - Computer and Information Sciences, 2021, 1-12.

[26] Wei Hu; Yu Gan; Xiangyu Lv; Yonghao Wang; Yuan Wen, “A Improved List Heuristic Scheduling

Algorithm for Heterogeneous Computing Systems “, 2020 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), 11-14 Oct. 2020.

[27] Sawsan Alshattnawi, Raneen Khraisat and Hala Majdalawi, “Meta-heuristic Algorithms for Task and

Workflow Scheduling in Cloud Computing Environment: An Overview". Acta Scientific Computer

Sciences, vol 3,Issue.3 2021, 02-10.

[28] Alhaidari F, Balharith T, Eyman AY (2019) Comparative analysis for task scheduling algorithms on

cloud computing. In: 2019 International Conference on Computer and Information Sciences , (ICCIS).

IEEE, 2019, pp. 1-6

[29] Kaur A, Kaur B, Singh D, “Meta-heuristic based framework for workflow load balancing in cloud

environment”, Int J Inf Technol vol 11 Issue 1, 2019, 119–125

https://www.sciencedirect.com/science/article/pii/S1319157821000033#!
https://www.sciencedirect.com/science/article/pii/S1319157821000033#!
https://www.sciencedirect.com/science/article/pii/S1319157821000033#!
https://www.sciencedirect.com/journal/journal-of-king-saud-university-computer-and-information-sciences
https://www.sciencedirect.com/journal/journal-of-king-saud-university-computer-and-information-sciences
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X#!
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X#!
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X#!
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X#!
https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation
https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation/vol/62/suppl/C
https://ieeexplore.ieee.org/author/37288604400
https://ieeexplore.ieee.org/author/37088584106
https://ieeexplore.ieee.org/author/37086413100
https://ieeexplore.ieee.org/author/37086077203
https://ieeexplore.ieee.org/author/37087083832
https://ieeexplore.ieee.org/xpl/conhome/9282733/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9282733/proceeding

