# International Journal of Mechanical Engineering

# Rainbow Dominator Coloring for special Graphs

A. Uma Maheswari Associate Professor PG & Research Department of Mathematics Quaid – E – Millath Government College For Women Chennai – 600 002. A.S.Purnalakshimi Research Scholar PG & Research Department of Mathematics Quaid – E – Millath Government College For Women Chennai – 600 002. Bala Samuvel J Research Scholar PG & Research Department of Mathematics Quaid – E – Millath Government College For Women Chennai – 600 002

Abstract — Rainbow vertex coloring introduced a decade ago followed by Rainbow dominator Coloring in recent years has been at tracting the researchers in graph theory. We undertake a study on rainbow vertex coloring and in particular rainbow dominator coloring for specific connected graphs namely Bull graph, Star graph, Complete graph, Helm graph and sunlet graph, Jelly fish, Jewel graph, Extended jewel graph, Triangular book, Triangular book with bookmark. We have proved that these graphs admit rainbow dominator coloring and Rainbow Dominator chromatic number  $\chi_{rd}(G)$  for these graphs were also determined. Few illustrations were also shown.

Keywords — Coloring, Rainbow dominator coloring, Fan Graph, Complete Graph, Star Graph

## Introduction

Graph coloring problem is assigning of colors to vertices subject to certain conditions. Graph coloring is a special case of graph labeling which finds its applications in Scheduling, Data mining, Image processing etc. Graph theory consists of 3 coloring problems, one being vertex coloring and another Edge coloring. Face coloring which is Geographical map coloring can be transformed into vertex coloring [1]. It finds its application in research areas of computer science like data mining, image capturing, image segmentation clustering etc. The smallest number of colors required to color the graphs is called the Chromatic number. Many parameters were introduced and analyzed in 1987.

Rainbow edge coloring was introduced by Chatrand, John and Mckeon in the year 2008 [2] .Peterson graph, fan graph and corona graph were studied and results are found in Literature .Another concept of Rainbow vertex coloring was introduced by Krivelevich and Yuster in 2010[3] . Kulkarni Sunita Jagannatharao, S. K. Rajendra and R. Murali published their results on Rainbow dominator coloring in 2021[4].In this paper we propose to find Rainbow dominator chromatic number of some graphs like complete graph, Helm graph, Jelly fish, Jewel graph, Extended jewel graph, Triangular book, Triangular book with bookmark and bull graph.

All the graphs considered in this paper are connected, finite and undirected graphs.

## I. PRELIMINARIES

The definitions required for this paper are recalled below.

## **Definition 1: Proper Coloring** [5]

A proper coloring of a graph G is an allotment of colors to the vertices of the graph such that no two adjacent vertices have the same color and the chromatic number  $\chi(G)$  of the graph is the least number of colors needed in a proper coloring of G.

## **Definition 2: Dominator Coloring**[6]

A dominator coloring [[6]-[8], [9]] of a graph is a proper coloring such that each vertex dominates every vertex in at least one color class consisting of vertices with the same color. The chromatic number of a graph is the minimum number of colors needed in a dominator coloring of G

## 3: Rainbow Dominator Coloring[4]

A rainbow dominator coloring of a graph G is a proper rainbow coloring of the graph G in which every vertex of G dominates every vertex of some color class. The minimum number of color classes in the graph G is called the rainbow dominator chromatic number and is denoted by  $\chi_{rd}$  (G).

## **Definition 4: Rainbow Connection Number**[2]

In a connected edge colored Graph G, if any two vertices are connected by a rainbow path which is a path whose edges have distinct colors. The minimum number of colors required to make the graph rainbow connected is called Rainbow connection number .

## **Definition 5: Bull Graph** [10]

A bull graph is the planar undirected graph with 5 vertices and 5 edges constructed by inducting two pendent vertices to any two vertices of  $C_3$ .

## Definition 6: Star Graph [11]

A star  $K_{1,n}$  is a tree with n vertices of degree 1 and root vertex having degree n.

# **Definition 7: Complete Graph** [5]

A graph in which, for each pair of vertices there exists unique edge that connects them. The Complete Graph is denoted by  $K_n$ .

# Definition 8: Helm Graph [10]

The Helm Graph  $H_n$  is the graph obtained from a wheel graph  $W_{1,n}$  by attaching a pendant edge at each vertex of the n – cycle.

# **Definition 8: Sunlet Graph** [12]

The Sunlet Graph  $Sl_n$  is the graph obtained from a Cycle graph  $Sl_n$  by attaching a pendant edge at each vertex of the n – cycle

#### II. MAIN RESULTS

#### Theorem 1

The rainbow dominator coloring for a Bull graph G,  $\chi_{rd}(G) = 3$ 

#### Proof

Let graph G(V, E) be the bull graph with 5 vertices. The vertices of the graph be  $v_1, v_2, v_3, v_4, v_5$  Rainbow dominator coloring of G is given by coloring the vertices  $v_1, v_4, v_5$  with  $C_1$ , vertices  $v_2$  and  $v_5$  colored with  $C_2$  and  $C_3$  respectively. So, vertices  $v_1, v_5$  dominate  $v_2$  and vertices  $v_1$  with  $C_2, v_4$  dominate  $v_3$  with  $C_3$ . The vertex  $v_3$  dominates  $v_2$  and  $v_2$  dominates  $v_3$  with colors  $c_2$  and  $c_3$  respectively.

Thus, any vertex of G dominates some color class. And for each pair of vertices, we can find rainbow path. The Rainbow dominator coloring for a Bull graph G is  $\chi_{rd}(G) = 3$ .

## Example 1:



Fig. 1 the bull graph

| Dominating set                                | Dominated color<br>class | Chromatic<br>number |
|-----------------------------------------------|--------------------------|---------------------|
| <i>v</i> <sub>1</sub> , <i>v</i> <sub>5</sub> | $C_2$                    |                     |
| v <sub>3</sub>                                | C <sub>2</sub>           | 3                   |
| <i>v</i> <sub>2</sub>                         | C <sub>3</sub>           |                     |

For  $n \ge 3$ , the rainbow dominator coloring of the star graph,  $\chi_{rd}(K_{1,n}) = 2$ .

**Proof:** The vertices of the star graph be  $v_1$  the root vertex, pendent vertices are  $v_{i+1}$ ,  $1 \le i \le n$ . Assign the color  $C_1$  to the root vertex and color  $C_2$  to the pendent vertices  $v_{i+1}$ ,  $1 \le i \le n$ . The root vertex dominates the color class  $\{v_2, v_3, v_4, ..., v_{n+1}\}$ , each pendent vertex dominates color class  $\{v_1\}$ . And for each pair of vertices, we can find rainbow path. This guarantees that the rainbow dominator coloring is proper. The rainbow dominator coloring for the star graph  $\chi_{rd}(K_{1,n}) = 2$ ,  $n \ge 3$ .

#### Example 2



Fig. 2 the star graph  $K_{1,6}$ 

| Dominating set | Dominated color class | Chromatic number |
|----------------|-----------------------|------------------|
| Root vertex    |                       |                  |
| $v_1$          | $C_2$                 | 2                |

#### **Theorem 3**

For any  $m \ge 3, n \ge 3$ , the rainbow dominator coloring for a bistar Star  $K_{1,m,n}, \chi_{rd}(K_{1,m,n}) = 3$ .

**Proof:** Bistar star graph is the join of two-star graphs  $K_{1,m}$  and  $K_{1,m}$  at the pendent vertices of  $P_2$ . The vertices of the graph are  $v_0, u_0$  the apex vertices of  $K_{1,m}$  and  $K_{1,m}$ , pendent vertices of  $K_{1,m}$  are  $v_i, 1 \le i \le m$ , pendent vertices of  $K_{1,m}$  are  $u_j, 1 \le j \le m$ . The following procedure will give proper coloring. Assign color  $C_1$  to  $v_0$  and color  $C_2$  to  $u_0$  and color  $C_3$  to all the other pendent vertices. The root vertices dominate itself, each pendent vertex of  $k_{1,m}$  dominate color class  $C_1$  and pendent vertex of  $k_{1,m}$  dominate color class  $C_2$ . This procedure will assure that the dominator coloring is proper. Every pair of vertices has rainbow path between them. Therefore, the rainbow dominator color for Bi Star  $K_{1,m,m}, \chi_{rd}(K_{1,m,m}) = 3$ .

Copyrights @Kalahari Journals



| Dominating set          | Dominated color classes    | Chromatic number |
|-------------------------|----------------------------|------------------|
| $v_0$                   | $U_0$                      |                  |
| <i>u</i> <sub>0</sub>   | $v_0$                      | 3                |
| <i>K</i> (1, <i>m</i> ) | color class C <sub>1</sub> |                  |

For any  $n \ge 3$ , the rainbow dominator coloring of the Helm graph  $\chi_{rd}(H_n) = n + 1$ .

#### **Proof:**

We prove this theorem by method of induction.

First, we prove the theorem for n = 3

Let  $v_1$  be the central vertex and the vertices on the cycle are  $v_2$ ,  $v_3$ ,  $v_4$  and  $u_1$ ,  $u_2$ ,  $u_3$  be the pendent vertices adjacent to  $v_2$ ,  $v_3$ ,  $v_4$  respectively. Let us color the central vertex  $v_1$  and pendent vertices  $u_1$ ,  $u_2$ ,  $u_3$  with color  $C_1$  and  $v_2$ ,  $v_3$ ,  $v_4$  with color  $C_2$ ,  $C_3$  and  $C_4$  respectively. And color classes  $\{v_2\}$ ,  $\{v_3\}$ ,  $\{v_4\}$  dominates itself by definition of dominator coloring and vertex  $v_1$ , dominates the color classes  $\{v_2\}$ ,  $\{v_3\}$ ,  $\{v_4\}$ . Each pendent vertex dominates the adjacent vertex. This will ensure proper dominator coloring for the helm graph, when n is 3. And for every pair of vertices we can find rainbow path between them. the rainbow dominator coloring of the Helm graph  $\chi_{rd}(H_3) = 4$ .

We prove that the rainbow dominator coloring for the helm graph  $H_{k+1}$ ,  $\chi_{rd}(H_{k+1}) = k + 2$ 

Let  $v_1$  be the central vertex and the vertices on the rim be  $v_2, v_3, v_4, ..., v_{k+1}$  and  $u_1, u_2, u_3, u_4, ..., u_k$  be the pendent vertices adjacent to  $v_2, v_3, v_4, ..., v_{k+1}$ . Let us color the central vertex  $v_1$  and pendent vertices  $u_1, u_2, u_3, u_4, ..., u_k$  with color  $C_1$ , and  $v_2, v_3, v_4, ..., v_{k+2}$  with color  $C_2, C_3, C_4, ..., C_{k+2}$  respectively. The vertex  $v_1$ , dominates the color classes  $\{v_2\}, \{v_3\}, \{v_4\}, ..., \{v_{k+2}\}$ . Each pendent vertex dominates the adjacent vertex with the color class  $\{v_i\}, 2 \le i \le k+2$ . The above procedure provides a proper dominator coloring. And for every pair of vertices, we can find rainbow path between them. The rainbow dominator coloring of the Helm graph  $\chi_{rd}(H_k) = k + 1$ .

## **Example 4**



Fig. 4 the helm graph  $H_6$ Copyrights @Kalahari Journals

Vol.7 No.5 (May, 2022)

| Dominating set | Dominated vertices                           | Chromatic number |
|----------------|----------------------------------------------|------------------|
| $v_1$          | $v_2$ , $v_{3,}v_4$ , $v_{5,}v_6$ , $v_{7,}$ |                  |
| u <sub>i</sub> | $v_{i+1}$                                    | K+1              |

For any  $n \ge 3$ , the rainbow dominator coloring of the Sunlet graph  $\chi_{rd}(Sl_n) = n + 1$ 

## Proof

Let  $v_1$  be the central vertex and the vertices on the rim be  $v_2, v_3, v_4, ..., v_n$  and  $u_1, u_2, u_3, u_4, ..., u_n$  be the pendent vertices adjacent to  $v_1, v_3, v_4, ..., v_n$ . Let us color the pendent vertices  $u_1, u_2, u_3, u_4, ..., u_n$  with color  $C_1$  nd  $v_1, v_2, v_3, v_4, ..., v_n$  with color  $C_2, C_3, C_4, ..., C_{n+1}$  respectively. The vertex  $\{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, ..., \{v_n\}$  dominates the themselves. Each pendent vertex dominates the adjacent vertex with the color class  $\{v_i\}, 1 \le i \le n+1$ . The above procedure provides a proper dominator coloring. And for every pair of vertices, we can find rainbow path between them. The rainbow dominator coloring of the Sunlet graph  $\chi_{rd}(Sl_n) = n+1$ .

## EXAMPLE 5

| Dominating set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dominated vertices                              | Chromatic<br>number |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| $v_i$ i = 1 to n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | itself                                          | n                   |
| $u_4$<br>$C_1$<br>$U_4$<br>$C_5$<br>$U_4$<br>$C_5$<br>$U_4$<br>$U_1$<br>$U_1$<br>$U_1$<br>$U_1$<br>$U_1$<br>$U_1$<br>$U_1$<br>$U_2$<br>$U_1$<br>$U_2$<br>$U_3$<br>$U_4$<br>$U_4$<br>$U_4$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$<br>$U_5$ | $C_1$ $u_3$ $U_3$ $C_4$ $U_2$ $C_3$ $U_2$ $U_2$ |                     |
| Fig. 5 the sunle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et graph Sl <sub>4</sub>                        |                     |

| Dominating set   | Dominated color classes | Chromatic number |
|------------------|-------------------------|------------------|
| $v_i$ i = 1 to n | itself                  |                  |
| Pendant vertex   | Adjacent vertices       | n+1              |

#### Theorem 6

For any  $n \ge 3$ , the rainbow dominator coloring of the Compete graph  $\chi_{rd}(K_n) = n$ 

# Proof

Let the vertices on the Complete graph be  $v_1, v_2, v_3, v_4, ..., v_n$ . Let us color the pendent vertices  $v_1, v_2, v_3, v_4, ..., v_n$  with color  $C_1, C_2, C_3, C_4, ..., C_n$  respectively. The vertex  $\{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, ..., \{v_n\}$  dominates themselves. The above procedure provides a proper dominator coloring. And for every pair of vertices, we can find rainbow path between them. The rainbow dominator coloring of the complete graph  $\chi_{rd}(Sl_n) = n + 1$ .



For any  $m, n \ge 3$ , the rainbow dominator coloring of the Jelly fish graph V(J(m, n)) is 4

## Proof

Let V  $(J(m,n) = \{$  Vi :  $1 \le I \le 4$ ,  $u_i$ :  $1 \le I \le m$ ,  $w_i$ :  $1 \le I \le n$  be the vertex set and  $EJ_n(v_1 v_2, v_1 v_4, v_2 v_3, v_3 v_4, v_2 u)$ :  $1 \le I \le m$ ,  $v_4 w_1$ : edge set of jelly fish graph .It is obtained by a 4 cycle  $v_1, v_2, v_3, v_4$ , by joining  $v_1$  and  $v_3$  with an edge and appending i+n pendant edges to  $v_2$  and n pendant edges to  $v_4$ . The vertices are named as  $v_1, v_2, v_3, v_4$ . The pendant vertices are  $u_1, u_2, u_3, u_4, w_1, w_2, w_3, w_4$ . Assign the color  $c_1, c_2, c_3, c_4$  to the vertices  $v_1, v_2, v_3, v_4$  respectively. The *m* pendent vertices  $u_1, u_2, u_3, ..., u_m$  affixed with  $v_1$ , colored with  $c_2$ , similarly *n* pendent vertices  $w_1, w_2, w_3, ..., w_n$  affixed with  $v_3$ , colored with  $c_2$ . Thus, every vertex will dominate at least one color class. And for every pair of vertices there exists a rainbow path. The rainbow dominator chromatic number for the Jelly fish graph is 4

#### **Example 7**



Fig. 7 Jelly fish graph JF(4,3)

| Dominating set | Dominated color classes                  | Chromatic number |
|----------------|------------------------------------------|------------------|
| $v_i$          | Vertices with Color class c <sub>i</sub> |                  |
| u <sub>i</sub> | Vertices with Color class c <sub>2</sub> |                  |
| Wi             | Vertices with Color class c <sub>2</sub> | 4                |

#### **Theorem 8**

For  $m, n \ge 3$ , the rainbow dominator coloring of the Jewel graph  $\chi_{rd}(V(J_n)) = 3$ 

#### **Proof:**

Let Jn be the Jewel graph with vertex set V (Jn) =  $\{u,x,v,y,vi: 1 \le i \le n\}$  and the edge set  $E(Jn) = \{ux, vx, uy, vy, xy, uvi, vvi: 1 \le i \le n\}$ . We color the vertices as follows

X as  $c_1$ , u and v as  $c_3$ , y as  $c_2$ ,  $v_1$ as  $c_1$ ,  $v_2$  as  $c_2$  and  $v_3$  as  $c_1$ .

Y dominates color class  $c_3$ . x dominates color class  $C_3$  and  $u_1, u_2, u_3$  dominates color class  $c_3$ 

Thus, every vertex will dominate atleast one color class. And for every pair of vertices there exists a rainbow path. The rainbow dominator chromatic number for the Jewel graph  $V(J_n)$  is  $3 \chi_{rd}(V(J_n)) = 3$ .

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.5 (May, 2022)

# Example 8



| Dominating set                                 | Dominated color classes | Chromatic number |
|------------------------------------------------|-------------------------|------------------|
| х                                              | $C_3$                   |                  |
| у                                              | C <sub>3</sub>          | 4                |
| u <sub>1</sub> ,u <sub>2</sub> ,u <sub>3</sub> | C <sub>3</sub>          |                  |

#### **Theorem 9**

For any  $n \ge 3$ , the rainbow dominator coloring of the Triangular book graph  $\chi_{rd}(B(3, n) = 3)$ 

# Proof

Let the Triangular Book B(3,n) is a graph with vertex set  $V(B(3,n)) = \{v_1, v_2, v_3, v_i : 4 \le i \le n+2\}$  and the edge set  $E(B(3,n)) = \{v_1v_2, v_2v_3, v_1v_3, v_1v_i, v_2v_i : 4 \le i \le n+2\}$ . The triangular book graph B(3,n) is colored as follows. Assign the color  $c_1$  to the vertex  $v_1$ , color  $c_2$  to the vertex  $v_2$ . The vertices  $v_3, v_4, ..., v_{n+2}$  joined with  $v_1$  and  $v_2$  colored with  $c_3$ .

The vertex  $v_1$  as  $c_1$ ,  $v_2$  as  $c_2$  and  $v_3$ ,  $v_4$ ,  $v_5$ ,  $v_6$  as  $c_3$ .  $v_1$  dominates  $v_2$ . The vertex  $v_2$  dominates color  $C_1$ . The vertices  $v_3$ ,  $v_4$ ,  $v_5$ ,  $v_6$  dominates color class  $c_1$ . The vertex  $v_1$  dominates color  $C_2$ . Thus, every vertex will dominate atleast one color class. And for every pair of vertices there exists a rainbow path. The rainbow dominator chromatic number for the Triangular book graph B(3, n) is  $3 \chi_{rd}(B(3, n) = 3$ .

#### **Example 9**



Fig.9 Triangular Book Graph *B*(3,3)

| Dominating set | Dominated color classess | Chromatic number |
|----------------|--------------------------|------------------|
| $V_1$          | $C_2$                    | 3                |
| V2             | $C_1$                    |                  |
| V3 ,V4,V5 ,V6  | V1                       |                  |

For any  $n \ge 3$ , the rainbow dominator coloring of the Triangular book graph with book mark  $\chi_{rd}(TB_n)$  is 3

#### Proof

Let the Triangular Book with bookmark  $TB_n$  is a graph with vertex set  $V(TB_n) = \{v_1, v_2, v_3, v_i : 4 \le i \le n+3\}$ . The following procedure confirms the power dominator coloring. Assign the color  $c_1$  to the vertex  $v_1$ , color  $c_2$  to the vertex  $v_2$ . The vertices  $v_3, v_4, ..., v_{n+2}, v_{n+3}$  are colored with  $c_3$ . The vertex  $v_1$  as  $c_1, v_2$  as  $c_2$  and  $v_3, v_4, v_5, v_6$  as  $c_3$  and  $v_7$  as  $c_3$ .  $V_1$  and  $v_7$  dominates each other .The vertex  $v_2$  dominates  $v_1$ .The vertices  $v_3, v_4, v_5, v_6$  dominates  $v_1$ . Thus, every vertex will dominate atleast one color class. And for every pair of vertices there exists a rainbow path. The rainbow dominator chromatic number for the Triangular book graph with book mark  $\chi_{rd}$  (TB<sub>n</sub>) is 3

#### Example 10



Fig. 10 Triangular Book with bookmark  $TB_3$ 

| Dominating set | Dominated color classes | Chromatic number |
|----------------|-------------------------|------------------|
| $V_1$          | $C_2$                   |                  |
| V2             | C1                      | 3                |
| V3 ,V4,V5 ,V6  | C3                      |                  |
| V <sub>7</sub> | C <sub>3</sub>          |                  |

#### CONCLUSION

The idea of this paper is to find rainbow dominator coloring of connected and undirected finite graphs. The rainbow dominator chromatic number for graphs like Complete Graph, Helm graph, sunlet graph, Jelly fish, Jewel graph, Extended jewel graph, Triangular book, Triangular book with bookmark and bull graph. and bull graph which is denoted as  $\chi_{rd}$  are determined. The basic parameters for this Rainbow dominator coloring is the existing concepts, rainbow path and dominator coloring of every vertex. It is verified that every pair of vertices has a rainbow path and also satisfying the condition that every vertex dominates the other .The researchers can find rainbow coloring for more number of connected finite graphs.

- [1] A. B. Kempe, "On the Geographical Problem of the Four Colours," 1879. [Online]. Available: https://www.jstor.org/stable/2369235
- [2] G. Chartrand, G. L. Johns, K. A. Mckeon, and P. Zhang, "RAINBOW CONNECTION IN GRAPHS," 2008.
- [3] M. Krivelevich and R. Yuster, "The rainbow connection of a graph is (at most) reciprocal to its minimum degree."
- [4] K. Sunita Jagannatharao, S. K. Rajendra, and R. Murali, "Rainbow dominator coloring in graphs," 2021.
- [5] J. A. Bondy and U. S. R. Murty, "GRAPH THEORY WITH APPLICATIONS."
- [6] R. Gera, "On the Dominator Colorings in Bipartite Graphs," in *Fourth International Conference on Information Technology (ITNG'07)*, 2007, pp. 947–952.
- [7] K. Kavitha and N. G. David, "Dominator Coloring of Some Classes of Graphs," *International Journal of Mathematical Archive-3(11)*, vol. 3, no. 11, pp. 3954–3957, 2012.
- [8] S. Arumugam and J. A. Y. Bagga, "On dominator colorings in graphs," vol. 122, no. 4, pp. 561–571, 2012.
- [9] S. Anusha and A. Vijayalekshmi, "Dominator and total dominator chromatic number of Mongolian tent and fire cracker graphs," *Malaya Journal of Matematik*, vol. 8, no. 2, pp. 629–632, 2020, doi: 10.26637/mjm0802/0052.
- [10] A. Uma Maheswari, Bala Samuvel J., and S. Azhagarasi, "Power Dominator Coloring of Special Kind of Graphs," *Kala Sarovar*, vol. 23, no. 04(XI), pp. 58–62, 2020.
- [11] A. Uma Maheswari and Bala Samuvel J., "Power dominator chromatic number for some special graphs," *International Journal of Innovative Technology and Exploring Engineering*, vol. 8, no. 12, pp. 3957–3960, 2019, doi: 10.35940/ijitee.L3466.1081219.
- [12] K. S. Kumar, N. G. David, and K. G. Subramanian, "Power Dominator Coloring of Certain Special Kinds of Graphs," vol. 11, no. 2, pp. 83–88, 2016.