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Abstract— In this paper the performance of software reliability is evaluated in this work by applying the Cauchy 

distributions to the finite-fault NHPP reliability model. To validate dependability performance, the Cauchy 

distribution models were compared to the Software basic model. This was accomplished using failures during 

software according to time, the maximum likelihood estimation method (MLE) is used to calculate parameters 

and using two congruent parts nonlinear equations was defined. The parameters were estimated using the Least 

Median of Squares (LMS) method, and nonlinear equations were solved using Newton's method. As a result, 

the Cauchy distributions model was effective in analyzing the intensity function since the failure occurrence 

rate decreases dramatically as the failure time increases, and the median square error (MSE) is also reduced. 

Keywords— Finite-fault , Maximum likelihood estimation,  least median of squares, Median square error, 

Cauchy distributions. 

 

I. INTRODUCTION  

When there is development of any software we need to consider low cost but have maintained reliability also. 

Management problems started to dominate as the scale and sophistication of software grew. One of the defining 

characteristics of the software development process is dependability. Software reliability is known as the 

probability of expected operation over a specified time interval. Software Reliability [1], along with 

functionality, accessibility, consistency, serviceability, capability, install ability, maintainability, and 

documentation, is an essential aspect of software quality. The acceptance or failure of a software product is 

determined by its reliability. Developers have raised the demand to improve software reliability for business 

continuity due to high development costs and increasing economic competition [2]. Furthermore, practitioners 

are attempting to quantify, monitor, and forecast software reliability. Reliability is the most notable feature of 

high-quality software, and predicting reliability is the most observable mechanism related to customer 

satisfaction. Furthermore, reliability prediction is capable of providing practitioners with perfect results every 

time [3]. It also assesses the functionality of software to ensure that it meets operational requirements. In other 

words, it will aid in the acceptance of the software product and ensures the software's ability to repair itself if it 

fails. Since software applications are complex information products, certain errors are inevitable during the 

software development phase [4]. The development phase should include several steps to detect errors and faults 

as soon as possible. Furthermore, the management process includes several measures such as finding errors, 

categorising errors based on seriousness, and resolving issues [5]. Along with the error criticality and severity 

management processes, developers may use reliability prediction approaches to measure and minimise faults in 

order to increase the software's reliability. The primary causes of software failure are the complexities of 

software design, inadequate quality control, the marketplace, capability profitable targets, and engineering 

design estimation. The number of lines in a software programme for a variety of features increases software 
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complexity. Lack of knowledge is also a major cause of programme failure. Producing error-free and 100% 

quality software is difficult due to the inherent complexity of the code and design of the software [6]. A software 

reliability growth model is intended to build suggestions by forecasting failure in advance and learning from 

previous failures in order to create quality software that is also reliable [7]. If the evaluated growth is reduced 

as a result of planned progress, the designers would have enough time to refine new projects, including new 

proposals or resources to address the identified difficulties. Measuring and predicting software reliability and 

its estimation necessitates the use of an appropriate reliability model that determines the difference of reliability 

including time with its proper application to the software industry [8]. The  novel method has been developed 

to predict the failure function in software based on the reliability attribute factors. The main contribution of this 

work is to evaluate the performance of software reliability and to improve the software dependability models 

based on Non homogenous Poisson process (NHPP). 

 

II. SOFTWARE RELIABILITY MODELS 

The fundamental field of the fourth industrial revolution, software technology, is quickly converging and being 

implemented in a variety of industries. As a result, the demand for high-quality software that can process 

enormous amounts of big data information without failure is growing. To address this issue, software developers 

are devoting significant resources to research and development in order to improve program reliability. As a 

result, software dependability models based on the non-homogeneous Poisson process (NHPP) have been 

intensively researched to improve software quality 

The dependability of technology is an essential aspect of software success. The possibility of a computer 

program's failure-free operation in a specified environment for a specified time span is referred to as software 

reliability prediction. As a result, software reliability research is considered useful in the software development 

and testing industry. One of the most difficult tasks in software creation and maintenance is predicting software 

quality. A machine learning prediction model is built using software metrics and defective data from previous 

projects to detect high-risk modules for future projects, allowing testing efforts to be directed toward those 

particular 'risky' modules. A Novel Evaluation Model for Software Reliability Prediction based on Cauchy 

distributions. As a consequence, the Cauchy distributions model was efficient in the analysis of the intensity 

function since the failure occurrence rate falls greatly as the failure time passed and the mean square error (MSE) 

is also minimal. When the software reliability is evaluated after setting the mission time in the future, the Cauchy 

distributions model exhibited a greater reliability trend than the other models, which indicates a drop in 

reliability with mission time. As a result, the Cauchy distributions model outperforms the other exiting models 

and thus, the improved model is used by software developers to improve program reliability. 

 

 BLOCK DIAGRAM:      

 

 

 

Figure 1: Block diagram 
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As a result, the Cauchy distributions model outperforms the other exiting models and thus, the improved model 

used to software developers to improve program reliability. 

The pseudo code of software reliability model follows below, 

 

A. Method Discussion using algorithm 

 

Algorithm 1: Software Reliability Algorithm 

1) Collect Failure information. 

2) Choose an appropriate model. 

3) Perform a fitted model. 

a) By inserting the estimated values of the parameters in the chosen model, the fitted model is created. We 

now have a fitted model based on the available failure data and the model form we selected. 

4) Parameters should be estimated. 

5) Derive Performance measure estimation. 

6) Software Reliability 

 

Steps involved in the algorithm is given below, 

 

STEP 1:For the most part, such data should be in the form of failure counts or times between failures. The first 

stage in creating a model is to thoroughly examine the data to get insight into the nature of the process being 

modeled. 

 

STEP 2:Select a suitable model based on your knowledge of the testing procedure and assumptions. 

 

STEP 3:By inserting the estimated values of the parameters in the chosen model, the fitted model is created. 

STEP 4: Depending on the type of valuable data, different procedures are usually followed. 

 

STEP 5: Finally, software reliability is obtained. This can be used for software development planning, 

scheduling, and assumptions. 

 

The techniques of the software reliability architecture (Figure1) are explained in depth in the following section, 

which goes through each of the strategies used in the proposed system to overcome the constraints in a 

competent manner. 
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Figure 2: Flow chart for Software Reliability Modelling 

 

This process is being carried out by the following Models which is been explained in the next section. 

 

III.  NHPP MODEL: 

Models of software reliability that assume software failures behave like a Non-Homogeneous Poisson process 

(NHPP).The stochastic process's parameter failure intensity of software at time t is denoted by Y(t), which is 

time-dependent. 

Let, 

                F(t) be the total number of faults discovered at time t. 

n(t) be the expected number of faults. 

Then,   𝑛(𝑡) = 𝐸(𝐹(𝑇) and 𝑌(𝑡) be the failure intensity function is related as follows, 

 

𝑛(𝑡) = ∫
𝑡

0
𝑌(𝑆)𝑑𝑠---------- (1)                                     

 𝑑𝑛(𝑡)

𝑑𝑡
= 𝑌(𝑡)---------- (2) 

F(t) was previously known to have a Poisson probability density function (PDF) with parameter n(t), i.e. 

𝑝(𝐹(𝑡) = 𝑞) =
[𝑛(𝑡)]𝑞

𝑞!
𝑒−𝑛(𝑡) 

𝑞 = 0,1, … . . ∞   --------- (3) 

 

The probability of failure can be used to explain these time-domain models of the NHPP method. The failure 

intensity function (failure occurrence rates per fault) Y(t) will be written differently in this model, as will the 

mean value of the function n(t). 
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To add to this, the Record Value Statistics (RVS) model can be utilized with the NHPP model, and the mean 

value function was: 

 

𝑛(𝑡) = −𝑙𝑛 (1 − 𝐻(𝑡))--------- (4) 

 

𝐻(𝑡) →  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑓(𝑡) → 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Equation (4) becomes, 

 

𝑌(𝑡) = 𝑛′(𝑡) =
𝑓(𝑡)

(1−𝐻(𝑡))
= 𝑘(𝑡)     -------------- (5) 

𝑘(𝑡) → 𝐻𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

 

Given finite failure NHPP models, let 𝜃 be the predicted number of faults that would be discovered. The mean 

value function of the finite failure NHPP models is then calculated as follows, 

𝑛(𝑡) = 𝜃𝐻(𝑡) -------------- (6) 

Equation (6) can be rewritten as follows, 

 

𝑌(𝑡) = [𝜃 − 𝑛(𝑡)]
𝐻′(𝑡)

1−𝐻(𝑡)
[𝜃 − (𝑛(𝑡)]𝑘(𝑡)    ------- (7) 

 

              𝑘(𝑡) → 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝜃 − (𝑛(𝑡)) → 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠  

 

The sequence of times between successive software failures is denoted by 

{ 𝑡𝑚,m = 1, 2,... }The time between (m– 1)st and nth failure is denoted by 𝑡𝑚. Assume that 𝑥𝑚represents failure 

time m, and thus 

 

𝑥𝑚=∑𝑚
𝑗=1 𝑡𝑗

------------ (8) 

 

NHPP Model for Software Reliability with Monotonic Intensity Functions is explained below. 

 

As a result, software dependability models based on the non-homogeneous Poisson process (NHPP) have been 

intensively researched to improve software quality.  

 

A. POWER-LAW PROCESS 

 

The Power Law Process (PLP) is a well-known large NHPP model that is used to depict the dependability of 

repairable frameworks by taking into account the analysis of observed failure data. This model was drawn from 

the equipment unshakable quality zone. A substantial amount of information about the PLP model is available 

when the traditional perception is taken into account. 
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ALGORITHM 2: POWER LAW MODEL 

1) Power law modelling with general masked data. 

2) Maximum Likelihood estimation. 

3) Performance measure Evaluation(MSE). 

4) To find Reliability: 

i.e. Estimating and predicting number of failures. 

 

 

Figure 3: Flow chart for Power-law process 

 

Steps involved in the algorithm is given below, 

The Power law-based repair rate for a Non Homogenous Poisson process. 

Step 1: Power law intensity function. 

Power law intensity function is known as follows, 

 

𝑌𝑝−𝑤(𝑡) = 𝛾𝛽𝑡𝛽−1-------- (9) 

 

Hence, 

𝛾(> 0), Scale parameter and  𝛽(> 0), 𝑆ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Step 2: Mean value function calculation. 

Using the intensity function Equation (9), the mean value function is calculated as follows: 

 

𝑛𝑝−𝑤(𝜃) = ∫
𝑡

0
𝑌𝑃−𝑊(𝑠)𝑑𝑠 = 𝛾𝑡𝛽--------- (10) 

𝜃 = (𝛾, 𝛽) is the parameter space 

 

Step 3: Evaluating Maximum Likelihood function 

The likelihood function is followed in equation (6) 
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𝑊𝑁𝐻𝑃𝑃(𝑥) = (𝜋𝑗=1
𝑚 𝛾𝛽𝑥𝑗

𝛽−1
) 𝑒𝑥𝑝 [−𝛾𝑥𝑚

𝛽
] --- (11) 

Where, 𝑥 = 𝑥1, 𝑥2, … … 𝑥𝑚 

 

The parameter estimation method was used with the maximum likelihood estimation method. The expression 

for the log-likelihood function in Equation (9) is as follows. 

 

𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝑥) = 𝑚𝑙𝑛𝛾 + 𝑛𝑙𝑛𝛽 − (𝛽 − 1) ∑𝑚
𝑗=1 𝑙𝑛𝑥𝑗 − 𝛾𝑥𝑚

𝛽
-------- (12) 

 

The following equation for the maximum likelihood estimate of each parameter is satisfied by 𝛾MLE and 𝛽MLE 

using the formulas (12). 

 

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝛾
=

𝑚

𝛾
− 𝑥𝑚

𝛽
-------- (13) 

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃

𝜕𝛽
=

𝑚

𝛽
− ∑𝑚

𝑗=1 𝑙𝑛𝑥𝑗 − 𝛾𝑥𝑚
𝛽

𝑙𝑛𝑥𝑚 = 0--- (14) 

 

Step 4: Calculating Reliability 

The following likelihood function is used to calculate the reliability. 

 

𝑓𝑋1, 𝑋2, … . 𝑋𝑚(𝑥1, 𝑥2, … 𝑥𝑚) = 𝑒−𝑛(𝑥𝑚)𝜋𝑗=1
𝑚 𝑌(𝑥𝑗) (15) 

𝑅(𝑥𝑚) = 𝑒𝑥𝑝 [−𝛽(𝛿 + 𝑥𝑚)𝛽 + 𝛾𝑥𝑚
𝛽

]    ------ (16) 

 

Where 𝛿 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

In Power law process, By calculation MSE (Mean square error) in different iteration the number of failure rate 

decreases. The next section explains the results obtain from the Gompertz model and discusses it in detail. 

 

B. Gompertz Intensity function: 

 

The Gompertz distribution is a continuous probability distribution in probability and statistics. Demographers 

and economists frequently use the Gompertz distribution to describe the distribution of adult lifespans. The 

Gompertz distribution was also used to analyze survival in related domains such as biology and gerontology. 

Steps involved in the Gompertz function is given below, 

Step 1:The probability density function (pdf) and cumulative distribution function (cdf) for the Gompertz 

distribution employing several fields of industrial distribution. 

 

𝑓(𝛾. 𝛽) = 𝛾𝛽𝑒𝛽𝑡𝑒𝛾𝑒𝑥𝑝 (−𝛾𝑒𝛽𝑡)-------- (17) 

                𝐹(𝛾, 𝛽) = 1 − 𝑒𝑥𝑝 (−𝛾(𝑒𝛽𝑡 − 1) ----- (18) 

 

Step 2:To calculate Hazard function using NHPP  model. 
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In a state of perpetual failure. The NHPP has the same hazard function and intensity. Equations (17) and (18) 

are used to calculate the hazard function: 

                  𝐾(𝑡) =
𝐹′(𝑡)

1−𝐹(𝑡)
= 𝛾𝛽𝑒𝛽𝑡 = 𝑌𝐼−𝑃(𝑡)--------- (19) 

Hence,                    

𝛾(> 0), Scale parameter and  𝛽(> 0), 𝑆ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Using the intensity function Equation (18), the mean value function is calculated as follows: 

𝑛𝐼−𝑄(𝜃) = ∫
𝑡

0
𝑌𝐼−𝑄(𝑠)𝑑𝑠 = 𝛾(𝑒𝛽𝑡 − 1)-------- (20) 

 

Step3: Estimate MLE Parameters 

The parameter estimation approach was employed with the maximum likelihood estimation method. 

𝑊𝑁𝐻𝑃𝑃(𝑥) = (𝜋𝑗=1
𝑚 𝛾𝛽𝑒𝛽𝑥𝑗)𝑒𝑥𝑝 [−𝛾(𝑒𝛽𝑥𝑚 − 1]-------- (21) 

 

𝛾MLE and 𝛽MLE meet the following equation for the maximum likelihood estimate of each parameter using 

the equations (21). 

 

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃

𝜕𝛽
=

𝑚

𝛽
− ∑𝑚

𝑗=1 𝑥𝑗 − 𝛾𝑥𝑚𝑒𝛽𝑥𝑚 = 0------- (22) 

 

Step4:To calculate Reliability 

Hence, reliability is calculated as follows 

𝑅(𝑥𝑚) = 𝑒𝑥𝑝 [−{𝑛(𝛿 + 𝑥𝑚) − 𝑛(𝑥𝑚)}]-------- (23) 

where ,𝛿 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  

By calculating the performance measures compared to the Power law, Gompertz NHPP model has small value. 

The next section explains the results obtain from the Musa okumoto model and discusses it in detail. 

 

C. Musa-Okumoto Function: 

            The Musa-Okumoto model, commonly known as the logarithmic Poisson execution time model, implies 

that all errors are equally likely to occur and are independent of one another. In this model, the predicted number 

of faults is a logarithmic function of time, and the failure intensity reduces exponentially as the expected number 

of faults increases. Finally, the software will fail an infinite number of times over an indefinite period of time. 

The Musa okumoto model assumes that the failure intensity function decreases exponentially with the number 

of failures observed. 

 

𝑋(𝜇) = 𝑋0 𝑒
−𝜃𝜇(𝑡)  -------(1) 

 

Differentiate the above equation (1) 

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑋0 𝑒

−𝜃𝜇(𝑡)------(2) 

𝑋0  =
𝑑𝜇(𝑡)

𝑑𝑡
𝑒𝜃𝜇(𝑡)------(3) 

 

Hence,                    𝑑𝑒
𝜃𝜇(𝑡)

𝑑𝑡
= 𝜃

𝑑𝜇(𝑡)

𝑑𝑡
𝑒𝜃𝜇(𝑡)-------(4) 
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Substitute equation equation (3) in equation (4) 

𝑑𝑒
𝜃𝜇(𝑡)

𝑑𝑡
= 𝜃𝑋0-----------(5) 

By Integrating above equation (5) 

 

𝑒𝜃𝜇(𝑡) = 𝜃𝑡𝑋0 + 𝐴   ----------(6) 

 

Where     𝜇(0) = 0, 𝐴 = 1 in equation(6) 

 

′𝜇(𝑡)′𝑏𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

 

𝜇(𝑡) =
𝑙𝑛 (𝜃𝑡𝑋0+1)

𝜃
-   --------(7) 

 

The exponentially declining failure intensity indicates that the per-fault hazard rate takes the shape of a bathtub 

curve, as indicated by the Musa-Okumoto logarithmic model derivation by the fault exposure ratio. 

 

D. Rayleigh model: 

The Weibull lifespan distribution is a well-known model for life tests and reliability assessments. The 

cumulative distribution function and the probability density function with the shape parameter(𝛾) are the 

following: 

𝑓(𝑡) =
𝑡𝛾−1

𝛽2   ---------(1) 

𝐹(𝑡) = (1 − 𝑒
−𝑡𝛾

2𝛽2)--------(2) 

 

In equation (1) and (2)  sub,       
1

2𝛽2 = 𝑐 

 

𝐹(𝑡) = (1 − 𝑒−𝑐𝑡𝛾
)--------(3) 

 

Estimate MLE function same as above models. Finally derive the parameters of 𝜃 𝑎𝑛𝑑 𝑐. 

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝜃
=

𝑚

𝜃
− 1 + 𝑒−𝑐𝑥𝑚

2
= 0 ----------(4) 

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝑐
=

𝑚

𝑐
− ∑𝑚

𝑗=1 𝑥𝑗
2

− 𝛾𝜃𝑥𝑚𝑒−𝑐𝑥
𝑚2=0        -----------(5) 

  The equation (4) and (5) for the maximum likelihood estimate of each parameter is satisfied by 𝜃MLE and 

𝑐MLE can be calculated numerically. Next section explains about the estimated model. 

 

E. GO model: 

A software reliability model's main goal is to predict software failure behavior when it's in use. This expected 

behavior changes quickly, and it may be observed throughout the program's testing time. Between failures, the 

execution times are exponentially spread. The expected value function of the cumulative number of failures 

follows a Non-Homogeneous Poisson process (NHPP). During the time that the software is being observed, the 

quantities of accessible resources remain constant. The number of problems discovered in each of the intervals 

is unrelated to the other. The expected number of error occurrences for each time 𝑥 to 𝑥 + ∆𝑥 is proportional to 
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the expected number of undetected mistakes at time t, according to the mean value function. It’s also expected 

to be a non-decreasing, limited function of time, with  

𝑙𝑖𝑚 𝑥 → ∞ 𝜇(𝑥) = 𝑀 < ∞ 

If a fault causes a failure, it must be fixed immediately; otherwise, the failure will not be counted again. 

𝜇(𝑥) = 𝑚(1 − 𝑒−𝑛𝑡)) 

In above equation,  

                         𝑚 → Expected number of defects 

                          𝑛 → 𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(i.e., Failure rate gets decreases) 

      𝜇(𝑥) → 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 

Steps involved in this model are given below, 

Step 1: Number of defects that should be expected 

Step2: Factor of roundness 

Step3: Data obtained throughout the testing period 

These parameters can be calculated using any statistical inference approach. once the failure data in terms of 

execution time is known. The parameters accuracy improves as the number of failures in the sample increases. 

 

F. Finite fault NHPP reliability with Cauchy distribution: 

 

Augustin Cauchy and Hendrik Lorentz are the names given to the Cauchy-Lorentz distribution.  

The following diagram depicts the fault detection and rectification process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:flowchart of software reliability growth model 

 

Steps to be involved in Cauchy distribution: 

Step1: To calculate CDF and PDF 

It is a continuous probability distribution with the following probability distribution function PDF: 
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𝑓(𝑧, 𝑧0, 𝛼) =
1

𝜋
(

𝛼

(𝑧−𝑧0)
2+𝛼2

)--------(1) 

𝑧0 → 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

𝛼 → 𝑆𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

If  𝑧0 = 0, 𝛼 = 1  (Standard cauchy distribution) 

The Cauchy distribution is implemented using standard library tan and atan functions, which should result in 

very low error rates. Tangent lines are the foundation of Newton's method. The Newton-Raphson method (also 

known as Newton's method) is a method for quickly calculating the root of a real-valued function f y) =0. It is 

based on the premise that a straight line tangent to a continuous and differentiable function can approximate it. 

The function of cumulative distribution is, 

𝐹(𝑧; 𝑧0,𝛼) =
1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑧−𝑧0

𝛼
)  +

1

2
---------(2) 

 

Step2: Inverse CDF 

The Cauchy distribution's inverse cumulative distribution function is. 

𝐹−1(𝑞; 𝑧0, 𝛼) = 𝑧0 + 𝛼𝑡𝑎𝑛 [𝜋 − (𝑞 −
1

2
)]--------(3) 

 

 𝑧1,𝑧2,……𝑧𝑛 i.e.,Each random variable has a Cauchy distribution. 

Where, 𝑧0: 𝑚𝑒𝑑𝑖𝑎𝑛 

The characteristic function is: 

∅𝑧(𝑢, 𝑧0, 𝛼) = 𝐸(𝑒𝑖𝑧𝑢) = 𝑒𝑥𝑝 (𝑖𝑧0 − 𝛼|𝑢|) ---------(4) 

 

 

The mean is not defined because, 

 

∫
∞

−∞
𝑧𝑓(𝑧)  ---------(5) 

∫
∞

−∞
𝑧𝑓(𝑧) − ∫

0

−∞
|𝑧|𝑓(𝑧)   ---------(6) 

 

 Both the positive and negative elements of the equation (6) are infinite in the case of a cauchy distribution. 

Hence, equation (6) is undefined. 

 

Step 3: Hazard function 

The hazard function of Cauchy is,  

𝐾(𝑧) =
1

(1+𝑍2)(0.5𝜋−𝑎𝑟𝑐𝑡𝑎𝑛𝑧)
  --------(7) 

Most general-purpose statistical software products provide skewness and kurtosis coefficients are shown in 

performance measures. The next section explains the estimated and predicted model and discusses it in detail. 

The first raw moment about zero and the second raw moment about the mean represents the mean and variance, 

respectively. Skewness and kurtosis, the third and fourth moments about the mean, are also utilized as numerical 

representations of shape in risk analysis. 

 

Step 4: Variance 
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The variance is a metric that indicates how far the probability distribution deviates from the mean:     𝑉(𝑍) ≥ 0 

The properties of variance are as follows: b is a constant, and Z, Zi are random variables. 

 

𝑉(𝑏𝑍) = 𝑏2𝑉(𝑍)  ---------(8) 

𝑉(∑𝑧
𝐽=1 𝑍𝑗)=∑𝑧

𝑗=1 𝑉(𝑍𝑗)---------(9) 

 

Where ‘Z’ is uncorrelated. Next process skewness is expressed below. 

 

Step 5: Skewness and Kurtosis: 

The following formulae are used to calculate the skewness statistic: 

 

𝑆 = ∑𝑧
𝑗=1

(𝑧𝑗−𝜇)3𝑟𝑗

𝜎3           (Discrete variable) 

𝑆 = ∫
𝑚𝑎𝑥

𝑚𝑖𝑛

(𝑧−𝜇)3𝑓(𝑧)𝑑𝑧

𝜎3        (Continuous variable) 

 

When a distribution has a negative skewness (also known as left skewed), the tail to the left is longer than the 

tail to the right. Positively skewed (right skewed) distributions have a longer tail to the right, whereas zero 

skewed distributions are normally symmetric. 

The following formulae are used to calculate the Kurtosis statistic: 

       𝐾 = ∑𝑧
𝑗=1

(𝑧𝑗−𝜇)4𝑟𝑗

𝜎4           (Discrete variable) 

𝐾 = ∫
𝑚𝑎𝑥

𝑚𝑖𝑛

(𝑧−𝜇)4𝑓(𝑧)𝑑𝑧

𝜎4        (Continuous variable) 

Using above equations, kurtosis statistic measures the distribution's peakedness (see right panel above) the 

higher the kurtosis, the more peaked the distribution. Based on Cauchy distributions, this research provides a 

Novel Evaluation Model for Software Reliability Prediction. This paper investigates the performance of 

software reliability by using Cauchy distributions to the finite-fault NHPP reliability model. The parameters 

were estimated using the Least Median of Squares (LMS) method, and nonlinear equations were solved using 

Newton's method.  

  

IV. RESULTS 

 

Here in this section we will discuss about result and comparison between proposed model and previous models 

using some of parameters  

 

Conditional Reliability: 

Conditional reliability is defined as the likelihood that a component or system will run without failure for a 

mission period. K(t) is the conditional failure probability: 

K(t)=P(t≤Z≤t+∆t|z>t) 

 

K(t)=(P(t≤Z≤t+∆t)∩P(Z>t))/(P(Z>t)) 
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The failure time is Z. The survival or reliability function at time t, i.e. P(Z>t) = E(t), is the denominator by 

definition (t) 

 

Figure 5:Plot for the model of Conditional Reliability 

 

The above plot shows between the failure time and conditional reliability.where for different failure times, 

conditional probability gets decreases.  

The mean square error result has been shown in the below plot, MSE (which evaluates the difference between 

the actual value and the predicted value) was used to compare software models.Figure11: Shows compared to 

Power-law, Musa-okumoto, and Gompertz model,the Proposed method failure times are reduced. 

 

The acquired results show that the proposed model has a better fit and is more applicable to a variety of specific 

applications. We conclude that the suggested SRGM technique outperforms other SRGMs and provides a good 

predictive capability for failure data. 

Figure(12) shows compared to other Software reliability growth model, the proposed model, predictive relative 

error gets decrease with better testing progress (%). 

 

Figure 6:Rating of tesing progress(%) Vs Predictive relative errors 

 

The MSF (mean of square fitting faults) is a metric that indicates how close a fitted line is to data points. Take 

the vertical distance between each data point and the corresponding value on the curve fit (the error) and square 

the value. 
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Testing 

Time GO 

WE-

TEFM GGO 

Propose

d 

2 20 15 18 12 

4 21 18 20 15 

6 25 24 24 20 

8 28 26 27 22 

10 30 28 29 25 

12 34 33 33 30 

14 40 36 38 32 

16 45 42 43 35 

18 50 48 49 45 

20 60 55 57 50 

 

Table 1: Comparison metrics of Mean Square Fitting Faults with various Estimated and Predicted models. 

 

 

The purpose of collecting fault and failure data is to be able to determine when the software is getting close to 

becoming fault-free. Table 2: Shows about the number of failure with different models. 

 

Models  MSF 

Logistic 118.29 

Weibull 122.09 

Rayleigh 268.42 

Exponential 140.66 

Proposed 101.52 

 

Table 2: Number of failure 

 

Using Table 2, the graph is plotted between Testing time with Number of failure.  

 

Figure 7:Testing time Vs Number of failure 



Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022) 

International Journal of Mechanical Engineering 

1485 

The acquired results shows that the proposed model has less number of failures compared to other models.  

 

V. CONCLUSION  

 

The software reliability growth model can be used to calculate the best software release time and the cost of 

testing. To reduce the cost of testing and raise the profit of releasing software, a more accurate model is required. 

The usage of a software cost model can assist in precisely predicting the best software release schedule. Unlike 

previous models, the proposed model considers the total number of defects identified by users during the 

software operation period or after its release, rather than assuming that residual faults that are not detected will 

be discovered by the user. The cost of actual fault debugging is less than the cost of eradicating all residual 

faults during the operating phase, as can be observed. As we can gather information number of failure is less 

than previous models. Hence we can say here we achieve improvement to predict software reliability.  
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