
Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1471

ISSN: 0974-5823 Vol. 7 No. 5 May, 2022

International Journal of Mechanical Engineering

Comparison between software reliability models

with novel reliability model using Cauchy

distribution
Mayuri H. Molawade 1 Dr. Shashank.D. Joshi 2 Dr. Rohini Jadhav 3

1Department of computer Engineering Bharati Vidyapeeth (Deemed to be University) College of Engineering,

India, Pune Research Scholar

2Department of computer Engineering Bharati Vidyapeeth (Deemed to be University) College of Engineering,

India, Pune Professor

3Department of information technology Bharati Vidyapeeth (Deemed to be University) College of

Engineering, India, Pune Associate Professor

Abstract— In this paper the performance of software reliability is evaluated in this work by applying the Cauchy

distributions to the finite-fault NHPP reliability model. To validate dependability performance, the Cauchy

distribution models were compared to the Software basic model. This was accomplished using failures during

software according to time, the maximum likelihood estimation method (MLE) is used to calculate parameters

and using two congruent parts nonlinear equations was defined. The parameters were estimated using the Least

Median of Squares (LMS) method, and nonlinear equations were solved using Newton's method. As a result,

the Cauchy distributions model was effective in analyzing the intensity function since the failure occurrence

rate decreases dramatically as the failure time increases, and the median square error (MSE) is also reduced.

Keywords— Finite-fault , Maximum likelihood estimation, least median of squares, Median square error,

Cauchy distributions.

I. INTRODUCTION

When there is development of any software we need to consider low cost but have maintained reliability also.

Management problems started to dominate as the scale and sophistication of software grew. One of the defining

characteristics of the software development process is dependability. Software reliability is known as the

probability of expected operation over a specified time interval. Software Reliability [1], along with

functionality, accessibility, consistency, serviceability, capability, install ability, maintainability, and

documentation, is an essential aspect of software quality. The acceptance or failure of a software product is

determined by its reliability. Developers have raised the demand to improve software reliability for business

continuity due to high development costs and increasing economic competition [2]. Furthermore, practitioners

are attempting to quantify, monitor, and forecast software reliability. Reliability is the most notable feature of

high-quality software, and predicting reliability is the most observable mechanism related to customer

satisfaction. Furthermore, reliability prediction is capable of providing practitioners with perfect results every

time [3]. It also assesses the functionality of software to ensure that it meets operational requirements. In other

words, it will aid in the acceptance of the software product and ensures the software's ability to repair itself if it

fails. Since software applications are complex information products, certain errors are inevitable during the

software development phase [4]. The development phase should include several steps to detect errors and faults

as soon as possible. Furthermore, the management process includes several measures such as finding errors,

categorising errors based on seriousness, and resolving issues [5]. Along with the error criticality and severity

management processes, developers may use reliability prediction approaches to measure and minimise faults in

order to increase the software's reliability. The primary causes of software failure are the complexities of

software design, inadequate quality control, the marketplace, capability profitable targets, and engineering

design estimation. The number of lines in a software programme for a variety of features increases software

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1472

complexity. Lack of knowledge is also a major cause of programme failure. Producing error-free and 100%

quality software is difficult due to the inherent complexity of the code and design of the software [6]. A software

reliability growth model is intended to build suggestions by forecasting failure in advance and learning from

previous failures in order to create quality software that is also reliable [7]. If the evaluated growth is reduced

as a result of planned progress, the designers would have enough time to refine new projects, including new

proposals or resources to address the identified difficulties. Measuring and predicting software reliability and

its estimation necessitates the use of an appropriate reliability model that determines the difference of reliability

including time with its proper application to the software industry [8]. The novel method has been developed

to predict the failure function in software based on the reliability attribute factors. The main contribution of this

work is to evaluate the performance of software reliability and to improve the software dependability models

based on Non homogenous Poisson process (NHPP).

II. SOFTWARE RELIABILITY MODELS

The fundamental field of the fourth industrial revolution, software technology, is quickly converging and being

implemented in a variety of industries. As a result, the demand for high-quality software that can process

enormous amounts of big data information without failure is growing. To address this issue, software developers

are devoting significant resources to research and development in order to improve program reliability. As a

result, software dependability models based on the non-homogeneous Poisson process (NHPP) have been

intensively researched to improve software quality

The dependability of technology is an essential aspect of software success. The possibility of a computer

program's failure-free operation in a specified environment for a specified time span is referred to as software

reliability prediction. As a result, software reliability research is considered useful in the software development

and testing industry. One of the most difficult tasks in software creation and maintenance is predicting software

quality. A machine learning prediction model is built using software metrics and defective data from previous

projects to detect high-risk modules for future projects, allowing testing efforts to be directed toward those

particular 'risky' modules. A Novel Evaluation Model for Software Reliability Prediction based on Cauchy

distributions. As a consequence, the Cauchy distributions model was efficient in the analysis of the intensity

function since the failure occurrence rate falls greatly as the failure time passed and the mean square error (MSE)

is also minimal. When the software reliability is evaluated after setting the mission time in the future, the Cauchy

distributions model exhibited a greater reliability trend than the other models, which indicates a drop in

reliability with mission time. As a result, the Cauchy distributions model outperforms the other exiting models

and thus, the improved model is used by software developers to improve program reliability.

 BLOCK DIAGRAM:

Figure 1: Block diagram

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1473

As a result, the Cauchy distributions model outperforms the other exiting models and thus, the improved model

used to software developers to improve program reliability.

The pseudo code of software reliability model follows below,

A. Method Discussion using algorithm

Algorithm 1: Software Reliability Algorithm

1) Collect Failure information.

2) Choose an appropriate model.

3) Perform a fitted model.

a) By inserting the estimated values of the parameters in the chosen model, the fitted model is created. We

now have a fitted model based on the available failure data and the model form we selected.

4) Parameters should be estimated.

5) Derive Performance measure estimation.

6) Software Reliability

Steps involved in the algorithm is given below,

STEP 1:For the most part, such data should be in the form of failure counts or times between failures. The first

stage in creating a model is to thoroughly examine the data to get insight into the nature of the process being

modeled.

STEP 2:Select a suitable model based on your knowledge of the testing procedure and assumptions.

STEP 3:By inserting the estimated values of the parameters in the chosen model, the fitted model is created.

STEP 4: Depending on the type of valuable data, different procedures are usually followed.

STEP 5: Finally, software reliability is obtained. This can be used for software development planning,

scheduling, and assumptions.

The techniques of the software reliability architecture (Figure1) are explained in depth in the following section,

which goes through each of the strategies used in the proposed system to overcome the constraints in a

competent manner.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1474

Figure 2: Flow chart for Software Reliability Modelling

This process is being carried out by the following Models which is been explained in the next section.

III. NHPP MODEL:

Models of software reliability that assume software failures behave like a Non-Homogeneous Poisson process

(NHPP).The stochastic process's parameter failure intensity of software at time t is denoted by Y(t), which is

time-dependent.

Let,

 F(t) be the total number of faults discovered at time t.

n(t) be the expected number of faults.

Then, 𝑛(𝑡) = 𝐸(𝐹(𝑇) and 𝑌(𝑡) be the failure intensity function is related as follows,

𝑛(𝑡) = ∫
𝑡

0
𝑌(𝑆)𝑑𝑠---------- (1)

 𝑑𝑛(𝑡)

𝑑𝑡
= 𝑌(𝑡)---------- (2)

F(t) was previously known to have a Poisson probability density function (PDF) with parameter n(t), i.e.

𝑝(𝐹(𝑡) = 𝑞) =
[𝑛(𝑡)]𝑞

𝑞!
𝑒−𝑛(𝑡)

𝑞 = 0,1, … . . ∞ --------- (3)

The probability of failure can be used to explain these time-domain models of the NHPP method. The failure

intensity function (failure occurrence rates per fault) Y(t) will be written differently in this model, as will the

mean value of the function n(t).

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1475

To add to this, the Record Value Statistics (RVS) model can be utilized with the NHPP model, and the mean

value function was:

𝑛(𝑡) = −𝑙𝑛 (1 − 𝐻(𝑡))--------- (4)

𝐻(𝑡) → 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓(𝑡) → 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Equation (4) becomes,

𝑌(𝑡) = 𝑛′(𝑡) =
𝑓(𝑡)

(1−𝐻(𝑡))
= 𝑘(𝑡) -------------- (5)

𝑘(𝑡) → 𝐻𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Given finite failure NHPP models, let 𝜃 be the predicted number of faults that would be discovered. The mean

value function of the finite failure NHPP models is then calculated as follows,

𝑛(𝑡) = 𝜃𝐻(𝑡) -------------- (6)

Equation (6) can be rewritten as follows,

𝑌(𝑡) = [𝜃 − 𝑛(𝑡)]
𝐻′(𝑡)

1−𝐻(𝑡)
[𝜃 − (𝑛(𝑡)]𝑘(𝑡) ------- (7)

 𝑘(𝑡) → 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝜃 − (𝑛(𝑡)) → 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

The sequence of times between successive software failures is denoted by

{ 𝑡𝑚,m = 1, 2,... }The time between (m– 1)st and nth failure is denoted by 𝑡𝑚. Assume that 𝑥𝑚represents failure

time m, and thus

𝑥𝑚=∑𝑚
𝑗=1 𝑡𝑗

------------ (8)

NHPP Model for Software Reliability with Monotonic Intensity Functions is explained below.

As a result, software dependability models based on the non-homogeneous Poisson process (NHPP) have been

intensively researched to improve software quality.

A. POWER-LAW PROCESS

The Power Law Process (PLP) is a well-known large NHPP model that is used to depict the dependability of

repairable frameworks by taking into account the analysis of observed failure data. This model was drawn from

the equipment unshakable quality zone. A substantial amount of information about the PLP model is available

when the traditional perception is taken into account.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1476

ALGORITHM 2: POWER LAW MODEL

1) Power law modelling with general masked data.

2) Maximum Likelihood estimation.

3) Performance measure Evaluation(MSE).

4) To find Reliability:

i.e. Estimating and predicting number of failures.

Figure 3: Flow chart for Power-law process

Steps involved in the algorithm is given below,

The Power law-based repair rate for a Non Homogenous Poisson process.

Step 1: Power law intensity function.

Power law intensity function is known as follows,

𝑌𝑝−𝑤(𝑡) = 𝛾𝛽𝑡𝛽−1-------- (9)

Hence,

𝛾(> 0), Scale parameter and 𝛽(> 0), 𝑆ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Step 2: Mean value function calculation.

Using the intensity function Equation (9), the mean value function is calculated as follows:

𝑛𝑝−𝑤(𝜃) = ∫
𝑡

0
𝑌𝑃−𝑊(𝑠)𝑑𝑠 = 𝛾𝑡𝛽--------- (10)

𝜃 = (𝛾, 𝛽) is the parameter space

Step 3: Evaluating Maximum Likelihood function

The likelihood function is followed in equation (6)

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1477

𝑊𝑁𝐻𝑃𝑃(𝑥) = (𝜋𝑗=1
𝑚 𝛾𝛽𝑥𝑗

𝛽−1
) 𝑒𝑥𝑝 [−𝛾𝑥𝑚

𝛽
] --- (11)

Where, 𝑥 = 𝑥1, 𝑥2, … … 𝑥𝑚

The parameter estimation method was used with the maximum likelihood estimation method. The expression

for the log-likelihood function in Equation (9) is as follows.

𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝑥) = 𝑚𝑙𝑛𝛾 + 𝑛𝑙𝑛𝛽 − (𝛽 − 1) ∑𝑚
𝑗=1 𝑙𝑛𝑥𝑗 − 𝛾𝑥𝑚

𝛽
-------- (12)

The following equation for the maximum likelihood estimate of each parameter is satisfied by 𝛾MLE and 𝛽MLE

using the formulas (12).

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝛾
=

𝑚

𝛾
− 𝑥𝑚

𝛽
-------- (13)

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃

𝜕𝛽
=

𝑚

𝛽
− ∑𝑚

𝑗=1 𝑙𝑛𝑥𝑗 − 𝛾𝑥𝑚
𝛽

𝑙𝑛𝑥𝑚 = 0--- (14)

Step 4: Calculating Reliability

The following likelihood function is used to calculate the reliability.

𝑓𝑋1, 𝑋2, … . 𝑋𝑚(𝑥1, 𝑥2, … 𝑥𝑚) = 𝑒−𝑛(𝑥𝑚)𝜋𝑗=1
𝑚 𝑌(𝑥𝑗) (15)

𝑅(𝑥𝑚) = 𝑒𝑥𝑝 [−𝛽(𝛿 + 𝑥𝑚)𝛽 + 𝛾𝑥𝑚
𝛽

] ------ (16)

Where 𝛿 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

In Power law process, By calculation MSE (Mean square error) in different iteration the number of failure rate

decreases. The next section explains the results obtain from the Gompertz model and discusses it in detail.

B. Gompertz Intensity function:

The Gompertz distribution is a continuous probability distribution in probability and statistics. Demographers

and economists frequently use the Gompertz distribution to describe the distribution of adult lifespans. The

Gompertz distribution was also used to analyze survival in related domains such as biology and gerontology.

Steps involved in the Gompertz function is given below,

Step 1:The probability density function (pdf) and cumulative distribution function (cdf) for the Gompertz

distribution employing several fields of industrial distribution.

𝑓(𝛾. 𝛽) = 𝛾𝛽𝑒𝛽𝑡𝑒𝛾𝑒𝑥𝑝 (−𝛾𝑒𝛽𝑡)-------- (17)

 𝐹(𝛾, 𝛽) = 1 − 𝑒𝑥𝑝 (−𝛾(𝑒𝛽𝑡 − 1) ----- (18)

Step 2:To calculate Hazard function using NHPP model.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1478

In a state of perpetual failure. The NHPP has the same hazard function and intensity. Equations (17) and (18)

are used to calculate the hazard function:

 𝐾(𝑡) =
𝐹′(𝑡)

1−𝐹(𝑡)
= 𝛾𝛽𝑒𝛽𝑡 = 𝑌𝐼−𝑃(𝑡)--------- (19)

Hence,

𝛾(> 0), Scale parameter and 𝛽(> 0), 𝑆ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Using the intensity function Equation (18), the mean value function is calculated as follows:

𝑛𝐼−𝑄(𝜃) = ∫
𝑡

0
𝑌𝐼−𝑄(𝑠)𝑑𝑠 = 𝛾(𝑒𝛽𝑡 − 1)-------- (20)

Step3: Estimate MLE Parameters

The parameter estimation approach was employed with the maximum likelihood estimation method.

𝑊𝑁𝐻𝑃𝑃(𝑥) = (𝜋𝑗=1
𝑚 𝛾𝛽𝑒𝛽𝑥𝑗)𝑒𝑥𝑝 [−𝛾(𝑒𝛽𝑥𝑚 − 1]-------- (21)

𝛾MLE and 𝛽MLE meet the following equation for the maximum likelihood estimate of each parameter using

the equations (21).

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃

𝜕𝛽
=

𝑚

𝛽
− ∑𝑚

𝑗=1 𝑥𝑗 − 𝛾𝑥𝑚𝑒𝛽𝑥𝑚 = 0------- (22)

Step4:To calculate Reliability

Hence, reliability is calculated as follows

𝑅(𝑥𝑚) = 𝑒𝑥𝑝 [−{𝑛(𝛿 + 𝑥𝑚) − 𝑛(𝑥𝑚)}]-------- (23)

where ,𝛿 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

By calculating the performance measures compared to the Power law, Gompertz NHPP model has small value.

The next section explains the results obtain from the Musa okumoto model and discusses it in detail.

C. Musa-Okumoto Function:

 The Musa-Okumoto model, commonly known as the logarithmic Poisson execution time model, implies

that all errors are equally likely to occur and are independent of one another. In this model, the predicted number

of faults is a logarithmic function of time, and the failure intensity reduces exponentially as the expected number

of faults increases. Finally, the software will fail an infinite number of times over an indefinite period of time.

The Musa okumoto model assumes that the failure intensity function decreases exponentially with the number

of failures observed.

𝑋(𝜇) = 𝑋0 𝑒
−𝜃𝜇(𝑡) -------(1)

Differentiate the above equation (1)

𝑑𝜇(𝑡)

𝑑𝑡
= 𝑋0 𝑒

−𝜃𝜇(𝑡)------(2)

𝑋0 =
𝑑𝜇(𝑡)

𝑑𝑡
𝑒𝜃𝜇(𝑡)------(3)

Hence, 𝑑𝑒
𝜃𝜇(𝑡)

𝑑𝑡
= 𝜃

𝑑𝜇(𝑡)

𝑑𝑡
𝑒𝜃𝜇(𝑡)-------(4)

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1479

Substitute equation equation (3) in equation (4)

𝑑𝑒
𝜃𝜇(𝑡)

𝑑𝑡
= 𝜃𝑋0-----------(5)

By Integrating above equation (5)

𝑒𝜃𝜇(𝑡) = 𝜃𝑡𝑋0 + 𝐴 ----------(6)

Where 𝜇(0) = 0, 𝐴 = 1 in equation(6)

′𝜇(𝑡)′𝑏𝑒 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝜇(𝑡) =
𝑙𝑛 (𝜃𝑡𝑋0+1)

𝜃
- --------(7)

The exponentially declining failure intensity indicates that the per-fault hazard rate takes the shape of a bathtub

curve, as indicated by the Musa-Okumoto logarithmic model derivation by the fault exposure ratio.

D. Rayleigh model:

The Weibull lifespan distribution is a well-known model for life tests and reliability assessments. The

cumulative distribution function and the probability density function with the shape parameter(𝛾) are the

following:

𝑓(𝑡) =
𝑡𝛾−1

𝛽2 ---------(1)

𝐹(𝑡) = (1 − 𝑒
−𝑡𝛾

2𝛽2)--------(2)

In equation (1) and (2) sub,
1

2𝛽2 = 𝑐

𝐹(𝑡) = (1 − 𝑒−𝑐𝑡𝛾
)--------(3)

Estimate MLE function same as above models. Finally derive the parameters of 𝜃 𝑎𝑛𝑑 𝑐.

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝜃
=

𝑚

𝜃
− 1 + 𝑒−𝑐𝑥𝑚

2
= 0 ----------(4)

𝜕𝑙𝑛𝑊𝑁𝐻𝑃𝑃(𝜃|𝑥)

𝜕𝑐
=

𝑚

𝑐
− ∑𝑚

𝑗=1 𝑥𝑗
2

− 𝛾𝜃𝑥𝑚𝑒−𝑐𝑥
𝑚2=0 -----------(5)

 The equation (4) and (5) for the maximum likelihood estimate of each parameter is satisfied by 𝜃MLE and

𝑐MLE can be calculated numerically. Next section explains about the estimated model.

E. GO model:

A software reliability model's main goal is to predict software failure behavior when it's in use. This expected

behavior changes quickly, and it may be observed throughout the program's testing time. Between failures, the

execution times are exponentially spread. The expected value function of the cumulative number of failures

follows a Non-Homogeneous Poisson process (NHPP). During the time that the software is being observed, the

quantities of accessible resources remain constant. The number of problems discovered in each of the intervals

is unrelated to the other. The expected number of error occurrences for each time 𝑥 to 𝑥 + ∆𝑥 is proportional to

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1480

the expected number of undetected mistakes at time t, according to the mean value function. It’s also expected

to be a non-decreasing, limited function of time, with

𝑙𝑖𝑚 𝑥 → ∞ 𝜇(𝑥) = 𝑀 < ∞

If a fault causes a failure, it must be fixed immediately; otherwise, the failure will not be counted again.

𝜇(𝑥) = 𝑚(1 − 𝑒−𝑛𝑡))

In above equation,

 𝑚 → Expected number of defects

 𝑛 → 𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(i.e., Failure rate gets decreases)

 𝜇(𝑥) → 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

Steps involved in this model are given below,

Step 1: Number of defects that should be expected

Step2: Factor of roundness

Step3: Data obtained throughout the testing period

These parameters can be calculated using any statistical inference approach. once the failure data in terms of

execution time is known. The parameters accuracy improves as the number of failures in the sample increases.

F. Finite fault NHPP reliability with Cauchy distribution:

Augustin Cauchy and Hendrik Lorentz are the names given to the Cauchy-Lorentz distribution.

The following diagram depicts the fault detection and rectification process:

Figure 4:flowchart of software reliability growth model

Steps to be involved in Cauchy distribution:

Step1: To calculate CDF and PDF

It is a continuous probability distribution with the following probability distribution function PDF:

Testing

the

software

Explain the

procedure and

outcome of

cauchy

distribution

mathematical

Choose

the test

data set

and

develop

Calculate

and

stimulate

the data,

then draw

the fitted

Receive

the

outcome

of the

Conduct a

comprehens

ive analysis

of SRGM

in order to

make

decisions

on

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1481

𝑓(𝑧, 𝑧0, 𝛼) =
1

𝜋
(

𝛼

(𝑧−𝑧0)
2+𝛼2

)--------(1)

𝑧0 → 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝛼 → 𝑆𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

If 𝑧0 = 0, 𝛼 = 1 (Standard cauchy distribution)

The Cauchy distribution is implemented using standard library tan and atan functions, which should result in

very low error rates. Tangent lines are the foundation of Newton's method. The Newton-Raphson method (also

known as Newton's method) is a method for quickly calculating the root of a real-valued function f y) =0. It is

based on the premise that a straight line tangent to a continuous and differentiable function can approximate it.

The function of cumulative distribution is,

𝐹(𝑧; 𝑧0,𝛼) =
1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑧−𝑧0

𝛼
) +

1

2
---------(2)

Step2: Inverse CDF

The Cauchy distribution's inverse cumulative distribution function is.

𝐹−1(𝑞; 𝑧0, 𝛼) = 𝑧0 + 𝛼𝑡𝑎𝑛 [𝜋 − (𝑞 −
1

2
)]--------(3)

 𝑧1,𝑧2,……𝑧𝑛 i.e.,Each random variable has a Cauchy distribution.

Where, 𝑧0: 𝑚𝑒𝑑𝑖𝑎𝑛

The characteristic function is:

∅𝑧(𝑢, 𝑧0, 𝛼) = 𝐸(𝑒𝑖𝑧𝑢) = 𝑒𝑥𝑝 (𝑖𝑧0 − 𝛼|𝑢|) ---------(4)

The mean is not defined because,

∫
∞

−∞
𝑧𝑓(𝑧) ---------(5)

∫
∞

−∞
𝑧𝑓(𝑧) − ∫

0

−∞
|𝑧|𝑓(𝑧) ---------(6)

 Both the positive and negative elements of the equation (6) are infinite in the case of a cauchy distribution.

Hence, equation (6) is undefined.

Step 3: Hazard function

The hazard function of Cauchy is,

𝐾(𝑧) =
1

(1+𝑍2)(0.5𝜋−𝑎𝑟𝑐𝑡𝑎𝑛𝑧)
 --------(7)

Most general-purpose statistical software products provide skewness and kurtosis coefficients are shown in

performance measures. The next section explains the estimated and predicted model and discusses it in detail.

The first raw moment about zero and the second raw moment about the mean represents the mean and variance,

respectively. Skewness and kurtosis, the third and fourth moments about the mean, are also utilized as numerical

representations of shape in risk analysis.

Step 4: Variance

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1482

The variance is a metric that indicates how far the probability distribution deviates from the mean: 𝑉(𝑍) ≥ 0

The properties of variance are as follows: b is a constant, and Z, Zi are random variables.

𝑉(𝑏𝑍) = 𝑏2𝑉(𝑍) ---------(8)

𝑉(∑𝑧
𝐽=1 𝑍𝑗)=∑𝑧

𝑗=1 𝑉(𝑍𝑗)---------(9)

Where ‘Z’ is uncorrelated. Next process skewness is expressed below.

Step 5: Skewness and Kurtosis:

The following formulae are used to calculate the skewness statistic:

𝑆 = ∑𝑧
𝑗=1

(𝑧𝑗−𝜇)3𝑟𝑗

𝜎3 (Discrete variable)

𝑆 = ∫
𝑚𝑎𝑥

𝑚𝑖𝑛

(𝑧−𝜇)3𝑓(𝑧)𝑑𝑧

𝜎3 (Continuous variable)

When a distribution has a negative skewness (also known as left skewed), the tail to the left is longer than the

tail to the right. Positively skewed (right skewed) distributions have a longer tail to the right, whereas zero

skewed distributions are normally symmetric.

The following formulae are used to calculate the Kurtosis statistic:

 𝐾 = ∑𝑧
𝑗=1

(𝑧𝑗−𝜇)4𝑟𝑗

𝜎4 (Discrete variable)

𝐾 = ∫
𝑚𝑎𝑥

𝑚𝑖𝑛

(𝑧−𝜇)4𝑓(𝑧)𝑑𝑧

𝜎4 (Continuous variable)

Using above equations, kurtosis statistic measures the distribution's peakedness (see right panel above) the

higher the kurtosis, the more peaked the distribution. Based on Cauchy distributions, this research provides a

Novel Evaluation Model for Software Reliability Prediction. This paper investigates the performance of

software reliability by using Cauchy distributions to the finite-fault NHPP reliability model. The parameters

were estimated using the Least Median of Squares (LMS) method, and nonlinear equations were solved using

Newton's method.

IV. RESULTS

Here in this section we will discuss about result and comparison between proposed model and previous models

using some of parameters

Conditional Reliability:

Conditional reliability is defined as the likelihood that a component or system will run without failure for a

mission period. K(t) is the conditional failure probability:

K(t)=P(t≤Z≤t+∆t|z>t)

K(t)=(P(t≤Z≤t+∆t)∩P(Z>t))/(P(Z>t))

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1483

The failure time is Z. The survival or reliability function at time t, i.e. P(Z>t) = E(t), is the denominator by

definition (t)

Figure 5:Plot for the model of Conditional Reliability

The above plot shows between the failure time and conditional reliability.where for different failure times,

conditional probability gets decreases.

The mean square error result has been shown in the below plot, MSE (which evaluates the difference between

the actual value and the predicted value) was used to compare software models.Figure11: Shows compared to

Power-law, Musa-okumoto, and Gompertz model,the Proposed method failure times are reduced.

The acquired results show that the proposed model has a better fit and is more applicable to a variety of specific

applications. We conclude that the suggested SRGM technique outperforms other SRGMs and provides a good

predictive capability for failure data.

Figure(12) shows compared to other Software reliability growth model, the proposed model, predictive relative

error gets decrease with better testing progress (%).

Figure 6:Rating of tesing progress(%) Vs Predictive relative errors

The MSF (mean of square fitting faults) is a metric that indicates how close a fitted line is to data points. Take

the vertical distance between each data point and the corresponding value on the curve fit (the error) and square

the value.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1484

Testing

Time GO

WE-

TEFM GGO

Propose

d

2 20 15 18 12

4 21 18 20 15

6 25 24 24 20

8 28 26 27 22

10 30 28 29 25

12 34 33 33 30

14 40 36 38 32

16 45 42 43 35

18 50 48 49 45

20 60 55 57 50

Table 1: Comparison metrics of Mean Square Fitting Faults with various Estimated and Predicted models.

The purpose of collecting fault and failure data is to be able to determine when the software is getting close to

becoming fault-free. Table 2: Shows about the number of failure with different models.

Models MSF

Logistic 118.29

Weibull 122.09

Rayleigh 268.42

Exponential 140.66

Proposed 101.52

Table 2: Number of failure

Using Table 2, the graph is plotted between Testing time with Number of failure.

Figure 7:Testing time Vs Number of failure

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1485

The acquired results shows that the proposed model has less number of failures compared to other models.

V. CONCLUSION

The software reliability growth model can be used to calculate the best software release time and the cost of

testing. To reduce the cost of testing and raise the profit of releasing software, a more accurate model is required.

The usage of a software cost model can assist in precisely predicting the best software release schedule. Unlike

previous models, the proposed model considers the total number of defects identified by users during the

software operation period or after its release, rather than assuming that residual faults that are not detected will

be discovered by the user. The cost of actual fault debugging is less than the cost of eradicating all residual

faults during the operating phase, as can be observed. As we can gather information number of failure is less

than previous models. Hence we can say here we achieve improvement to predict software reliability.

REFERENCES

[1] Sahu, Kavita, Fahad A. Alzahrani, R. K. Srivastava, and Rajeev Kumar. "Evaluating the Impact of

Prediction Techniques: Software Reliability Perspective." CMC-COMPUTERS MATERIALS &

CONTINUA 67, no. 2 (2021): 1471-1488.

[2] K.Sahu and R. K. Srivastava. Soft Computing Approach for Prediction of Software Reliability. ICIC

Express Letters,12(12),1213-1222, 2018.

[3] P. Nistala, K. V. Nori and R. Reddy, Software Quality Models: A Systematic Mapping Study, IEEE/ACM

International Conference on Software and System Processes (ICSSP), pp. 125-134, 2019.

[4] D. K. Singh and A. K. Bharti, A Comparative Studies Of Software Quality Model For The Software

Product Evaluation, International Journal of Research in Engineering & Technology, Vol. 6, Issue 8, pp.

1-18,2018.

[5] M. P. Cristescu, J. A. Vasilev, M. V. Stoyanova, and A.M. R. Stancu, Capability And

Maturity.Characteristics Used In Software Reliability Engineering Modeling, Land Forces Academy

Review,Vol. XXIV, no 4(96), pp. 332-341, 2019.

[6] M. Gheisari et al., An Optimization Model for Software Quality Prediction With Case Study Analysis

Using MATLAB, IEEE Access, Vol. 7, pp.85123-85138, 2019.

[7] D. Tomar, and P. Tomar, New Component-Based Reliability Model (CBRM) to Predict the Reliability of

Component-Based Software, International Journal of Reliability and Safety Publication, Inder Science,

Vol. 13, no.1, pp. 83-95, 2019, Print ISSN: 1479-389X Online ISSN: 1479-3903.

[8] Anjum, Misbah & Kapur, P.K. & Agarwal, Vernika & Khatri, Sunil Kumar. (2020). A Framework for

Prioritizing Software Vulnerabilities Using Fuzzy Best-Worst Method. 311-316.

10.1109/ICRITO48877.2020.9197854.

[9] H. Pham, “Distribution Function and its Application in Software Reliability,” International Journal of

Performability Engineering, Vol. 15, No. 5, pp. 1306-1313. 2019.

[10] Xuemei ZhangHoangPham,”An analysis of factors affecting software reliability”.

Journal of Systems and Software;

[11] Herbert Hecht,Myron Hecht,” Software reliability in the system context”. IEEE Transactions on Software

Engineering ; (Volume: SE-12, Issue: 1, Jan. 1986)

[12] Daniel R jeske,Hoang pham,”On the Maximum Likelihood Estimates for the Goel– Okumoto Software

Reliability Model”, The American Statistician ;Volume 55,2001-Issue 3.

[13] Lianfen Qian,”Dynamic Two phase truncated Rayleigh model for release date prediction of

software”.Journal software Engineering &Applications;2010,3,603-609.

https://www.sciencedirect.com/science/article/abs/pii/S0164121299000758#!
https://www.sciencedirect.com/science/article/abs/pii/S0164121299000758#!

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1486

[14] XiangLi,” Mean-variance-skewness model for portfolio selection with fuzzy returns”.

European Journal of Operational Research;Volume 202, Issue 1, 1 April 2010.

[15] A.Yadav&R.A.Khan,” Critical Review on Software Reliability Models”. International Journal of Recent

Trends in Engineering, Vol 2, No. 3, November 2009.

[16] An empirical analysis of the effectiveness of software metrics and fault prediction model for identifying

faulty classes", Computer Standards & Interfaces, vol. 53, pp. 1-32, August2017.

[17] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk and A. D. Lucia, "Improving software modularization

via automated analysis of latent topics and dependencies", ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 23, no. 1, pp. 4, 2014.

[18] T. H. Chen, S. W. Thomas, M. Nagappan and A. E. Hassan, "Explaining software defects using topic

models", Mining Software Repositories (MSR) 2012 9th IEEE Working Conference on, pp. 189- 198,

2012, June.

[19] T. H. Chen, S. W. Thomas, M. Nagappan and A. E. Hassan, "Explaining software defects using topic

models", Mining Software Repositories (MSR) 2012 9th IEEE Working Conference on, pp. 189- 198,

2012, June.

[20] Daniel Rodriguez, Israel Herraiz, Rachel Harrison, Javier Dolado and José C. Riquelme, "Preliminary

comparison of techniques for dealing with imbalance in software defect prediction", Proceedings of the

18th International Conference on Evaluation and Assessment in Software Engineering, May 13-14, 2014.

[21] C. Y. Huang and T. Y. Kuo, "Queueing-Theory-Based Models for Software Reliability Analysis and

Management", IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 4, pp. 540-550, 2017.

[22] K. Muthukumaran, N. L. Bhanu Murthy, G. Karthik Reddy and M. Aruna, "Comparative study on

effectiveness of standard bug prediction approaches", Proceedings of the 5th IBM Collaborative Academia

Research Exchange Workshop, pp. 1-4, October 17-19, 2013.

[23] Kim Herzig and Nachiappan Nagappan, "empirically detecting false test alarms using association rules",

Proceedings of the 37th International Conference on Software Engineering, May 16-24, 2015.

[24] P. Treleaven and C. Yingsaeree, "Algorithmic trading", IEEE Computer Society, vol. 44, no. 11, pp. 61-

69,2011.

[25] F. Machida, J. Xiang, K. Tadano and Y. Maeno, "Lifetime extension of software execution subject to

aging", IEEE Transactions on Reliability, vol. 66, no. 1, pp. 123-134, 2017.

[26] T. Mende and R. Koschke, "Effort-aware defect prediction models", Software Maintenance and

Reengineering (CSMR) 2010 14th European Conference on, pp. 107-116, 2010,March.

[27] Cowlessur, Sanjeev & Pattnaik, Saumendra & Pattanayak, Binod. (2020). A Review of Machine Learning

Techniques for Software Quality Prediction. 10.1007/978-981-15-1483-8_45.

[28] Camelia S¸ erbana,∗ , Mohsin Shaikhb Software reliability prediction using package level modularization

metrics, ScienceDirect Procedia Computer Science 176 (2020) 908–917 1877-0509

[29] Saini G.L., Deepak Panwar, Vijander Singh* “Software Reliability Prediction of Open Source Software

Using Soft Computing Technique”Recent Advances in Computer Science and Communications ,Volume

14 , Issue 2 , 2021 DOI : 10.2174/2213275912666190307165332

[30] Meng Yan, Yicheng Fang, David Lo, Xin Xia and Xiaohong Zhang, "File-level defect prediction:

unsupervised vs. supervised models", Proceedings of the 11th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, November 09-10, 2017.

[31] G. Nuti, YuchenGuo Mirghaemi, Martin Shepperd and Ning Li, "Bridging effort-aware prediction and

strong classification: a just-in- time software defect prediction study", Proceedings of the 40th International

Conference on Software Engineering: Companion Proceeedings, May 27-June 03, 2018.

[32] Jadhav, R. B. Software Defect Prediction Utilizing Deterministic and Probabilistic Approach for

Optimizing Performance through Defect Association Learning. International Journal of Emerging Trends

in Engineering Research, 8(6), 2600–2605. https://doi.org/10.30534/IJETER/2020/62862020

https://www.sciencedirect.com/science/article/abs/pii/S0377221709003154#!

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1487

[33] Molawade, Mayuri. (2019). Software reliability prediction using Knowledge Engineering approach.

International Journal of Advanced Trends in Computer Science and Engineering. 8. 2768-2772.

10.30534/ijatcse/2019/14862019.

[34] K. L. Peng and C. Y. Huang, "Reliability analysis of on- demand service-based software systems

considering failure dependencies", IEEE Transactions on Services Computing, vol. 10, no. 3, pp. 423-435,

2017.

[35] J. Rumbaugh, I. Jacobson and G. Booch, "Unified modeling language reference manual the", Pearson

Higher Education, 2004.

[36] DHARMENDRA LAL GUPTA1,2,* and KAVITA SAXENA2 Software bug prediction using object-

oriented metrics Sa¯dhana¯ Vol. 42, No. 5, May 2017, pp. 655–669 , Indian Academy of Sciences

[37] Cowlessur, Sanjeev & Pattnaik, Saumendra & Pattanayak, Binod. (2020). A Review of Machine Learning

Techniques for Software Quality Prediction. 10.1007/978-981-15-1483-8_45.

[38] Camelia S¸ erbana,∅ , Mohsin Shaikhb Software reliability prediction using package level modularization

metrics, ScienceDirect Procedia Computer Science 176 (2020) 908–917 1877-0509

[39] Saini G.L., Deepak Panwar, Vijander Singh* “Software Reliability Prediction of Open Source Software

Using Soft Computing Technique”Recent Advances in Computer Science and Communications ,Volume

14 , Issue 2 ,2021 DOI : 10.2174/2213275912666190307165332

[40] M. H. Molawade, S. D. Joshi and R. Jadhav, "Software reliability prediction using data abstraction and

Random forest Algorithm," 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical,

Electronics and Computer Engineering (UPCON), 2021, pp. 1-5, doi: 10.1109/UPCON52273.2021.9667

