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 Abstract - A numerical solution of the survival probability of a renewal time-dependent insurance risk model 

with Erlang(2) claim sizes is calculated using Legendre orthogonal polynomials using a machine-learning 

algorithm called Extreme Learning Machine(ELM). The hidden layer in the ELM algorithm is replaced with 

Legendre orthogonal polynomials for solving a system of linear equations and the parameters of the artificial 

neural network are calculated using the ELM algorithm. We compared the superiority of a dependent 

Erlang(2)insurance risk model against a dependent exponential insurance risk model and also tested the validity 

and reliability of our suggested Legendre polynomial neural network extreme learning machine (Lnn-ELM) 

technique by finding a numerical solution to the Erlang(2) model and compared it with its exact numerical 

solution using a multi-layer perceptron artificial neural network(MLPANN).  The findings generated by our 

suggested Lnn-ELM model reveal very high accuracy when compared to the existing method. 

Keywords: Survival probability, Dependent Erlang (2) risk model, Artificial Neural Networks in insurance, 

Legendre Neural Network 

 

1.  Introduction 

Ruin (risk) theory is a popular topic in finance and mathematics since it is the most significant element of 

actuarial mathematics [4] [12] [16]. For constructing mathematical models in describing risks involved in 

business, ruin theory uses probability theory along with the stochastic process. Estimating risk by finding ruin 

or survival probabilities plays a significant role in formulating strategies and avoiding bankruptcy for the 

insurance business. When the probability of survival is less or ruin probability is more, that is an indicator that 

the insurance firm is on the edge of bankruptcy and the company is forced to take steps such as reinsurance 

mechanism or increasing premiums, or raising extra capital from other ways. Although the probability of 

survival does not alone precisely reflect the probability that an insurance firm would go out of business in the 

coming future, the insurance company can formulate different policy combinations by looking at the survival 

probability. 

A great extent of research has been going on in this field to find the ruin probabilities by developing different 

insurance risk models [1]- [3], [5]- [8]. All the models developed by researchers all over the world face the 

question” How much insurance firms may suffer insolvency”. By calculating ruin probability, this question can 

be answered by making it not only an important indicator for ensuring the insurance firm’s regular functioning 

but also a quantitative criterion for the insurance company's survival by controlling the risks associated with it 

[4]. However, finding the exact value of ruin probability is difficult due to the randomness in actuarial 

calculations. 

So many insurance risk models are developed on numerous assumptions, such as the standard Poisson Risk 

models (Classical Cramer-Lundberg risk model) [18], Erlangian dependent and independent risk models [6]-

[8], Sparre-Andersen models [1] [3], etc... Usually, in all these models, the ruin probability satisfies an integro-

differential equation obtained and in the majority cases, the absence of an exact solution of these integro-

differential can be identified. From the time beginning itself, the Monte-Carlo algorithm [26], was used to 

simulate the numerical-value of survival probability or its upper bound. In our paper, we tried to develop an 
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accurate numerical solution to survival probability using the machine learning method called Legendre neural 

network extreme learning machine (Lnn-ELM) technique. 

The Lundberg-Cramer inequality (Classical Risk Model) and the integro-differential equation are satisfied by 

the survival probability. In general, these models only estimate an upper bound or lower bound of probability 

of ruin or probability of survival for different distributions. However, a numerical solution of the probability of 

survival is frequently required in actuarial research and the designing of insurance portfolios. While considering 

different integro-differential equations involved in these models, their numerical solutions can be solved in a 

variety of ways. Here we tried to get the solution numerically for the survival probability for the dependent 

renewal risk model [15] with Erlang(2) claim distribution and exponential inter-arrival times using a machine 

learning tool from artificial intelligence called Lnn-ELM [13]. 

 Zhou et al[30] proposed an enhanced artificial neural network (ANN) method by using a trigonometric function 

as an activation function or basis function in the ELM architecture to find the numerical value of the ruin 

probability in the classical insurance model with an exponential claim size distribution. The aim of this research 

paper is to use an artificial neural network with Legendre orthogonal polynomials to provide an accurate 

numerical solution for the survival probability for renewal risk models with dependence when claim size 

distribution is Erlang(2). A comparison of the exact solution is done with a popular dependent renewal risk 

model with exponential claim size distribution.  

Also, a multilayer perceptron artificial neural network (MLPANN) [24] is developed using the MATLAB 

platform with machine learning concepts for comparison with the Lnn-ELM model. MLP is a part of a 

feedforward AI network, working with a backpropagation algorithm. MLP has one input layer, one output layer, 

and one or more hidden layers, with many neurons stacked on top of each other. In order to minimize the cost 

functions, backpropagation is a learning mechanism that allows a multi-layer perceptron to iteratively adjust 

weights in a network. [21] - [25] 

The following sections of the paper, Section 2 methodology used discusses the method used for model 

development, Section 3 illustrates Results and Discussions that describes the validation of numerical examples 

along with a comparison of the Erlang(2) model with Exponential model and ANN model, with conclusion and 

future work in section 4. 

 

2.   Methodology 

The workflow chart relating to model development and validation is given below in Fig. 1. 

 

Fig. 1.  Work flow chart 
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2.1  Motivation 

Yang and Tseng [28] proposed the method of approximating functions using Legendre polynomial Neural 

Network (Lnn). The Legendre orthogonal polynomial with a single layer neural network method for calculating 

the survival probabilities has the following advantages: 

a) Weights for the output layer only assigned in Lnn. 

b)  Simple computation and implementation. 

c) A system of linear equations, the output-weights of the mathematical problems can be calculated using 

inverse matrix in the generalized form, resulting in the speeding up of iteration. 

d) The Legendre neural network approach has a higher calculation accuracy than Multi-Layer Perception. 

e) Initializing a Legendre Expansion in the input pattern eliminates the hidden layer. 

f) No optimization procedure is needed. 

 

2.2  Extreme Learning Machine Algorithm 

 

For different samples , the artificial neural network with  hidden layer 

neurons can be represented in the mathematical form[13],                                                       

(1) 

where , the weight matrix in the output which is connected the hidden-layer node and the output node, 

be the weight in the input , which bonds the  hidden layer node with an input node, and  represents the 

bias. The error is zero when we use hidden neurons. Hence, we have                  

               (2) 

Rewriting (2) as a matrix form;                       (3)                                                      

Here the output matrix  of the hidden-layer , given by 

 

As previously stated, the input-weights  with hidden- biases   can be generated randomly. .So the output 

weight is same as the solution of a system of linear equations (3) 
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The minimum least square solution of the linear system of (3) given by    ,                                             (4) 

In (4),  is the inverse matrix in the generalized form called Moore-Penrose inverse matrix of  

2.3 Legendre polynomial neural network extreme learning machine (Lnn-ELM) algorithm for the survival 

probability. 

Here, we describe a single-layer Lnn-ELM algorithm along with its architecture, and a numerical method is 

proposed by using Legendre orthogonal polynomials in solving the survival probabilities of the dependent risk 

model with Erlang (2) claim sizes. 

 

Fig. 2   Network Architecture 

The Legendre neural network algorithm [11][17] is comprised of an input node, a functional expansion block 

based on Legendre polynomials, and an output node, as shown in Figure 2. Here the hidden layer is removed 

by adding Legendre polynomials to the input pattern. Legendre polynomials, [22] consist of a collection of 

orthogonal polynomials produced by solving the Legendre Differential Equation. 

The first and second Legendre polynomials are, 

      

The following well-known recursive formula could be used to construct higher-order Legendre polynomials. 

If be the nth order Legendre polynomial, then 

    is the argument                                                                  (5) 

 

Remark 1. The following are some of the benefits of using Legendre polynomials as activation functions in our 

proposed algorithm: 

a) Orthogonal property of Legendre polynomials 

where  is the Kronecker delta. By considering a interval [a, b], the function as 

such is represented as Legendre linear polynomials. 

b) Bias functions in Legendre can differentiate and it satisfies , where  matrix is given by 
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       (6) 

      and                                                               

      

 

2.4  Model 1 - Survival probability in the dependent renewal risk model with Exponential claim size 

distribution 

This is the popular dependent insurance risk model [20] in which the duration between two claim occurrences 

influences the next claim size distribution, and claim sizes follow exponential distribution. In a dependent 

exponential insurance risk model,                                           

                                                           

where is the surplus, is the claim sizes ,  is positive initial-capital and is the premium income. 

is the claim number which is a Poisson process with parameter . is a sequence of non-

negative, independent  i.i.d  random variables with representing the claim. is a sequence 

of nonnegative i.i.d  random variables, where denotes the time between and claims and 

is a sequence of iid exponential random variables. If , then  and if , then 

, where , and are exponential distributions with parameters , and respectively. The pdf 

of an exponential distribution is  for . Also are independent of and ,   

The expected positive net-profit condition is,                                            

The probability of ruin is given by . 

The survival probability is   . 

The probability of survival for the risk model with Exponential claim size distribution [2] satisfies the following 

integro-differential equation, 

 

                   

           

The survival probability is given by             where 
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    ,    ,    ,         

 is the positive root and ,  the two negative roots [2]  

  

2.5 Model 2 - Survival probability of the dependent renewal risk model with Erlang (2) claim size 

distribution 

For a dependent Erlang(2) risk model [15], the surplus of an insurance company with premium income 

per unit time and claim sizes is 

                                             (7) 

Where, is the initial capital, is a Poisson process with parameter , and is a 

sequence of non-negative, independent  i.i.d  random variables with representing the claim. 

is a sequence of non-negative i.i.d  random variables, where denotes the time between 

and claims. If , then  and if , then , where respectively 

and are two Erlang distributions with parameters and  and  the pdf is given as  for , 

being integer. Also are independent of and , where   

Here follows a Poisson process with parameter , it is understood that for  , are 

distributed as exponential with parameter , a renewal process with exponentially-distributed inter-arrival 

times can be considered as a Poisson process.  We assume that also distributed exponential distribution 

with parameter , as having a threshold at value . The expected positive net-profit condition is,                                                                              

                                            (8) 

By considering the condition that, the first claim inter-occurrence time distributed as exponentially with rate

, the probability of survival is denoted by   with an initial capital . Then ultimate ruin probability is 

denoted by , where is given as                                                             

(9) 

The explicit value of probability of ruin  has the form ,  and probability of survival is                                

     (10)                     

The ultimate survival probability  is given by                                  

(11) 

The survival probability for Erlang(2) claim size distribution model [15] satisfies the following integro-

differential equation, 
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                                                                          (12) 

Let denotes the Laplace Transform of and is defined as . By applying 

Laplace transform properties, we get,  

  (13) 

The boundary condition of and the final-value theorem for Laplace transform yield that, 

       

and hence the boundary conditions at and  represent the limiting case of the Laplace transform as such, 

    (14) 

By applying the L’Hospitals’ rule, we can individually differentiate the numerator and denominator to apply 

limiting the function, indeed we obtain, 

      (15) 

                     (16)  

Where, being the positive root of 

                                                          (17)     

     Using and  and by using limiting conditions of survival probability we have the Laplace transform 

as, 
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where is the positive root. Let the denominator of be represented by where, 

 

Now let .Here can be expressed as a polynomial of degree with leading 

coefficient  . Let the roots of are and which is same as the roots of the denominator 

of . Therefore, we can express in theform,          

         

 and from equation , the Laplace transform can be expressed in the form, 

                                           

 where which is a constant depends on the positive root of the and parameters 

of the model. Specifically  where which can be obtained by 

factoring in such a way that                                . 

Obviously are constants obtained by limiting the values of  to and in  

. That implies, 

     , 

,                             (20)                                                                             

 

The exact expression of the survival probability for Erlang distributed claim sizes is given by 

                                

 where are given in the equation .                                  

2.6 Lnn-ELM algorithm for survival probability in the dependent renewal risk model (model 2) with 

Erlang(2) claim sizes 

Let us assume that the solution of (12) is 

                                                        (22) 

Putting (22) in (12) we have 
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                      (23)   The [0,b] can be divided into, 

     

 

                                           

                    ,          

                   (24) 

After arranging similar terms, 

 

                    

                       

                           (25)                                                                                                                                                                                                                        

System of equations in (25) written in the matrix form 

                                                                         (26)                         

where                     
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Hence [18] has a least square solution in the minimum-norm as , is the generalized Inverse Moore-

Penrose matrix of and lowest-norm among all the least square solutions. 

2.7  MLPANN model development 

A Multilayer Perceptron Artificial Neural Network (MLPANN) model was developed for Model 2 using 

MATLAB machine learning application. It is a division of feed forward network [23][24]. In this model we 

used single input single output MLP network, as  as input and as output. We have taken  values of 

for training MLP model with corresponding values. Different values are used for testing. The below 

figure, Fig. 2 shows the MLP model. The algorithm used is Levenberg Marquardt. Fig. 3 shows R plot, Fig.4 

represents mean square error plot.  

 

Fig. 3.  MLP model 

 

Fig. 4.  R value for training and validatio   

 

                 

Fig. 5.  Mean square error 
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3. Results and Discussions 

In this session validation of the Model 2 is done using numerical applications. Acomparison of the Model 2 

with Model 1 is also done with exact solutions. After that comparison between model 2, Lnn-ELM model and 

MLP models are carried out. 

3.1 Numerical applications 

Some numerical tests to find the solution of survival probabilities of Model 2 - Dependent Erlang(2) risk model 

is done here to demonstrate the supremacy of the developed Legendre orthogonal polynomial ANN approach. 

The traditional ELM algorithm uses randomly chosen parameters and , where as in our Lnn-ELM 

algorithm we chose  and  The number of basis functions is governed by the validation set's 

execution duration and minimum mean squared error .    

Example: In the model 2 [15], when the claim size distribution is Erlang(2, ) with mean .         

For ,    The survival probability can be expressed as, 

 ,  

where are constants resulting from the limiting values of  to and in of 

(16) in [15].Training is done for the Lnn-ELM method with 20 equi-distant points of the stipulated interval [0, 

10] with , , , ,M=20, , ,   so that comparison can be done 

wisely 

3.2 Comparison of Model 2- dependent Erlang (2) model with Model 1- dependent Exponential model 

Table 1 shows a comparison of the Model 2- Erlang (2) risk model with Model 1- Exponential risk model. Also 

Fig.7 shows the comparison chart for values and corresponding variances. The variance for Erlang (2) model 2 

is 0.0330 and that of the exponential model is 0.0433. The least variance of Model 2 shows its superiority over 

Model 1.    

Table 1. Comparison between Model 2 and Model 1 

u 

Survival 

Probability 

of Model 

2 

Survival 

Probability 

of 

Model 1 

0 0.3731121 0.3727340 

0.5 0.3931121 0.3972734 

1 0.4521231 0.4040040 

1.5 0.4952032 0.4520485 

2 0.5561101 0.5045698 

2.5 0.5856121 0.5561890 

3 0.6480231 0.6044159 

3.5 0.6914851 0.6483483 

4 0.7232051 0.6878524 

4.5 0.7382301 0.7231337 

5 0.7579822 0.7545300 

5.5 0.7698108 0.7824151 
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6 0.7932913 0.8071559 

6.5 0.8094290 0.8529095 

7 0.8675661 0.8748543 

7.5 0.8866781 0.8865781 

8 0.8951236 0.8981058 

8.5 0.9095021 0.9599969 

9 0.9171722 0.9606595 

9.5 0.9217543 0.9897227 

10 0.9352126 0.9942665 

Mean 0.719988 0.719608 

Variance 0.033003134 0.043323 

 

 

Fig. 7. Comparison of Erlang(2) model 2 and Exponential model 1 

3.3 Comparison of Model 2 with Lnn-ELM and MLPNN approach 

Table 2 shows comparison of the Model 2- Erlang (2) risk model with Lnn-ELM and MLPANN algorithms. 

 

Table 2. Comparison between Model 2, Lnn-ELM and MLPANN 

u Survival Probability of Model 2 Exact solution 

Survival Probability 

of Model 2 with 

Lnn-ELM 

Survival 

Probability 

of 

Model 2with 

MLPANN 

0.0 0.3731121 0.3918730 0.3730112 

0.5 0.3931121 0.4591873 0.3973011 

1.0 0.4521231 0.5949845 0.4821221 

1.5 0.4952032 0.7059856 0.6056013 

2.0 0.5561101 0.7316548 0.6848122 

2.5 0.5856121 0.7723000 0.7531231 

3.0 0.6480231 0.8107982 0.7821122 

3.5 0.6914851 0.8202900 0.8294210 

4.0 0.7232051 0.8313460 0.8346123 
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4.5 0.7382301 0.8405247 0.8469543 

5.0 0.7579822 0.8492758 0.8581271 

5.5 0.7698108 0.8341566 0.8656213 

6.0 0.7932913 0.8456772 0.8772230 

6.5 0.8094290 0.8467881 0.8881101 

7.0 0.8675661 0.8578917 0.8891730 

7.5 0.8866781 0.8689935 0.8993514 

8.0 0.8951236 0.8791336 0.9033612 

8.5 0.9095021 0.8892448 0.9104475 

9.0 0.9171722 0.8993559 0.9195851 

9.5 0.9217543 0.9038458 0.9219619 

10.0 0.9352126 0.9148940 0.9295466 

Mean 0.719988 0.78801 0.783409 

Variance 0.033003 0.020161   0.030284 

Coefficie

nt of 

Variation 

25.232 % 18.019 % 22.214 % 

 

The variance for mathematical model developed is 0.0330 and that of Lnn-ELM and MLP model are 0.020161 

and 0.030284 respectively. Here we can see Lnn-ELM model shows the least variance and hence the coefficient 

of variation also.  The comparison chart is shown in Fig. 8. 

                

 

 Fig. 8. Comparison of Erlang model 2, Lnn-ELM and MLPANN approach 

4.  Conclusion and Future Scope 

 In this paper, we considered two dependent insurance risk models – Erlang (2) risk model (Model 2) with 

Erlang (2) claim sizes and an Exponential risk model ( Model 1) with exponential claim sizes. First, we 

calculated the exact solutions and variance of both models and showed the superiority of the Erlang(2) model 

by comparing the variance with the exponential model (Table 1). Then we developed machine learning 

approaches of modern artificial intelligence - Legendre polynomial Neural Network-  Extreme Learning 

Machine (Lnn-ELM) algorithm and Multilayer Perceptron Artificial NN (MLPANN) algorithm for the Erlang 

(2) model in MATLAB, compared with the exact solution (Table 2). We showed excellent agreement of the 
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superiority and reliability of the Lnn-ELM method in finding survival probabilities as it is having very less 

variance compared to other machine learning method MLPANN and traditional method. Future study could 

concentrate on simplifying different risk model computations and expanding the Lnn-ELM model's applicability 

range. 
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