
Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1217

ISSN: 0974-5823 Vol. 7 No. 5 May, 2022

International Journal of Mechanical Engineering

VARIENT APPROACH OF QUEUING

THEORY IN SERVER DELAY PARALLEL

AND DISTRIBUTED NETWORKS
1*. Ravinuthala Madhavi 2*.Yuvaraju Macha 3*. Chandra Mouli

1*, 2*: Department of Mathematics, Matrusri Engineering College,

Saidabad, Hyderabad, Telangana, India

3*: Department of Mathematics, Meerut College, Meerut, U.P, India

 ABSTRACT:

 Queuing theory is the mathematical study of waiting lines and it is very useful in telecommunications, traffic

control, determining the sequence of computer operations, predicting computer performance, health services,

airport traffic, airline ticket sales, mining industry, manufacturing systems. According to the dictionary, a queue

is a file or line of persons. The etymology is from the Latin coda, which means tail. As a verb, “to queue” means

to form a line while waiting for something. According with Saaty, a queue, or a waiting line, involves arriving

items that wait to be served at the facility that provides the service they seek. The execution queue of a parallel

system is managed by the scheduler who allocates tasks to available processors as well as implements the queue

order and priorities. A grid network is considered like a single canter and the service demands are scheduled on

the individual computers from the grid. The most common resource used in grid networks is computing cycles

provided by the processors of the machines on the grid.

Keywords: Queuing theory, queuing system, queuing network, spatially distributed queues, parallel systems

efficiency, scheduling, parallel and processing.

1. The queuing System

A queuing system is a generic model that comprises three elements: a user source, a queue and a service facility

that contains one or more (possibly an infinite number of) identical servers in parallel. Each user of the queuing

system passes through the queue where he may remain for a period of time (positive, possibly zero) and then is

processed by a single server because of the parallel arrangement of the servers. Once a user has left the server,

after obtaining the service, the user is considered to have left the queuing system as well.

A queuing system is formed from three generic elements (Figure 1):

a. The arrival process of users in the system;

b. The order in which users obtain access to the service facility, once they join the queue;

c. The service process.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1218

A queuing network is a set of interconnected queuing systems. The user sources for some of the queuing systems

in the network may be other queuing systems in the same network (Figure 2). To describe a queuing network,

further information must be provided on how the queuing systems are interconnected, how they interact and

how users are assigned to the queuing systems.

 Busy period service delays must occur in case of the services that respond to unpredictable demands whose

time and location of occurrence are governed by probabilistic laws. The cost of providing sufficient capacity to

avoid all delays under all circumstances would be impossible. The role of the analysis is to design service

systems that achieve an acceptable balance between system operating costs and the delays suffered by the users

of that system.

The system capacity is another important parameter in the description of a queuing system. It indicates the

maximum number of users that can be in the service facility and in the queue at any time. On the other hand,

the queue capacity indicates the maximum number of users that can be in the queue alone.

It is obvious that there are countless variations of queuing systems. This is why a code has been used to describe

the best. The code has the form A/B/m, where A and B are letter symbols that indicate the probability

distribution of arrival and service times and m is he number of identical parallel servers from the queuing system

{m∈(1,∞)}.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1219

2. WAITING QUEUES APPLIED IN PARALLEL PROCESSING

To obtain a faster execution time, a parallel program is usually divided into independent tasks that will be

executed concurrently. Two tasks are independent each other if the same result is obtained if the tasks are

executed sequentially in any order or in parallel. Any computer, sequential or parallel, implements waiting

queues to properly manage the access to the system shared resources like processor, memory, peripheral devices

and so on. Usually, there is a queuing system for each shared resource from the system. The resource represents

the server and the tasks that try to access the resource concurrently form the users of the waiting system. If the

shared resource is the processor, the waiting queue is known as execution queue. Execution queues make the

transition from the sequential programming to the parallel one. Basically, an execution queue is a list containing

ready to be executed processes. If this list is located in the system shared memory, the access to the list has to

be done in a critical section in order to avoid the possibility of an execution of a process on two different

processors in the same time. The mutual exclusion is used to access the shared resources and it is implemented

using the classical mechanisms from uniprocesor systems like barriers, semaphores, monitors, etc. If a processor

enters the critical section, it has exclusive access to the list of the ready to be executed processes. Based on the

queue discipline and priorities, the processor will pick up a process from the list. Then, it will leave the critical

section and will execute the selected process.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1220

A parallel computer is a set of processors that are able to work cooperatively to solve a computational problem.

Based on this definition, a parallel computer could be a supercomputer with hundreds or thousands of processors

or could be a network of workstations. According to Tanenbaum, a distributed system is a set of independent

and interconnected computers that appear to the user as a single one. The computers can communicate and

collaborate each other using software and hardware interconnecting components. The computers have to be

independent and the software has to hide individual computers to the users. Multiprocessors (MIMD computers

using shared memory architecture), multicomputer connected through static or dynamic interconnection

networks (MIMD computers using message passing architecture) and workstations connected through local area

network are examples of such distributed systems. A distributed operating system is an operating system used

on a distributed system. It is the extension for multiprocessor architectures of multitasking and

multiprogramming operating systems. A distributed operating system is a special kind of software used on a

distributed system. It manages the system3shared resources used by multiple processes, the process scheduling

activity (how processes are allocated on available processors), the communication and synchronization between

running processes and so on. Multiprocessors are known as tightly coupled systems and multicomputer as

loosely coupled systems. The software for parallel computers could be also tightly coupled or loosely coupled.

Combining loosely and tightly coupled hardware and software we can identify four distributed operating

systems categories but the loosely coupled software and tightly coupled hardware case is not met in practice

(Table 3).

A multiprocessing operating system is a multitasking operating system running on a multiple processor system.

There is a single list of ready to run processes. When a new process is ready to run it is added to the list located

in the shared memory area. Any process can access the list. When a processor is free, it extracts a process from

the list and executes it. The operating system has to implement mutual exclusion mechanisms (semaphores,

monitors, locks or events using various protocols) in order to protect the concurrent accesses to the ready to run

processes list. Using these mechanisms, a processor has exclusive access to the processes list and it can extract

the first list entry. Then, the list is released and the process is executed. Because the running time of a parallel

program on such a system is finite, we can presume that the program will be divided into a finite number of

processes. The queuing model associated to a parallel system running a multiprocessing operating system will

be an infinite capacity one. The service facility is formed from m servers running in parallel, where m is the

number of the processors from the system. On the opposite side there are network operating systems and real

distributed operating systems. A copy of the operating system is running in every processing node so the

distributed system has as many waiting queues as the number of the processors. In every processing node there

is a copy of the operating system that manages the processor execution queue. Assuming that the execution time

of a parallel program is finite, we can presume that the program will be divided into a finite number of processes

too. This is why we can associate to each processing node a queuing model with a single server and arrivals

from a finite population. The queuing systems at the nodes level are interconnected together into a queuing

network because the processors have to communicate and synchronize each other. The processes may have

specific dependencies that may prevent them from executing in parallel in all cases. For example, a process may

require the output produced by certain task and it cannot be executed until that prerequisite task has completed

executing. The waiting systems presented above could become queuing models with arrivals from an infinite

population if the parallel program needs a very long time to complete its execution and the number of the

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1221

generated processes will increase substantially. The effective type of the queuing systems used to describe the

execution of a parallel program depends by the probability distribution of the service facility servers. The most

common model used is the M/M/m one because usually the service distribution is a Poisson one. An M/G/m

model has to be implemented if processes can use unlimited time to complete their execution. For a data3parallel

program, the same instructions will be executed on different data sets and the final result will be obtained by

combining the partial ones. This is why we can assume that the services are distributed exponentially negative

so an M/M/m model could be successfully used. The queuing theory is a very useful tool to predict the

performances of computer systems in general and of the parallel ones in particular. The average quantities of

interest (expected waiting time in the queue and in the system, expected total number of users in the queue and

in the system) offer us a clear picture about the system performances and the ways to improve them. The queuing

theory will help us to find out how to tune the system parameters in order to increase the system efficiency.

Usually, the system scheduler manages the queuing system. Its main responsibility is to scheduled tasks to the

system processors but it also implements the queue discipline and the priority classes. The total turnaround time

of a process is formed by the queue wait time and the elapsed execution time. The queuing theory teaches us

that it is important to not only reduce the job elapsed time by using faster processors but also the queue time

through effective scheduling and management resources.

3. APPLICATIONS OF QUEUING THEORY IN GRID PROCESSING

A grid is a collection of machines that contribute any combination of resources as a whole. Basically, grid

computing represents a new evolutionary level of distributed computing. It tries to create the illusion of a virtual

single powerful computer instead of a large collection of individual systems connected together. These systems

are sharing various resources like computing cycles, data storage capacity using unifying file systems over

multiple machines, communications, software and licenses, special equipments and capacities. The use of the

grid is often born from a need for increased resources of some type. Grids can be built in all sizes, ranging from

just a few machines in a department to groups of machines organized in hierarchy spanning the world. The

simplest grid consists of just few machines, all of the same hardware architecture and same operating system,

connected on a local network. Some people would call this a cluster implementation rather than a grid. The next

step is to include heterogeneous machines but within the same organization. Such a grid is also referred to as an

intragrid. Security becomes more important as more organizations are involved. Sensitive data in one

department may need to be protected from access by jobs running for other departments. Dedicated grid

machines may be added to increase the service quality. Over time, a grid may grow to cross organization

boundaries and may be used for common interest projects. This is known as an intergrid. The easiest way to use

a grid is to remotely run an application on a different computer than the one on it is usually executed. If the

computer that usually runs the job is busy, it can execute the application on another idle machine from the grid

network. The remote machine must meet hardware, software and resource requirements of the application.

Desktop machines from most organizations are underutilized because they are busy less than 5% of time. Grid

computing is able to increase the resource usage efficiency because it could be obtained a better balance of

resource utilization. If an application is grid enabled it could be moved to an idle computer from the grid

whenever the host computer is busy. If an application is written to use algorithms that can be divided into

independent parts than each part could be executed on a different machine in the grid. This is why the grid

computing offers a high potential for massive parallel CPU capacity. This huge computing power obtained by

the use of the grid is driving a new evolution in various industries like financial modelling, oil exploration,

bio3medical field and so on. Scalability is the measure of how efficiently the grid processors are used. A perfect

scalable application will finish n times faster when it uses n times the number of processors. It is very hard to

achieve the perfect scalability. The limits of scalability are called barriers. An example of such a barrier is the

situation when an application can be split only into a limited number of independent parts. Not completely

independent parts and communications between jobs are another barrier examples because they limit the

scalability.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1222

Dependencies prevent jobs to be executed in parallel in all cases. Jobs may spawn additional sub jobs. The result

is a hierarchy of jobs and sub jobs. The results of all jobs must be collected in order to obtain the final result of

the application. The grid network is considered like a single center and the service demands are scheduled on

the individual computers from the grid. There is a single queue of jobs for all processors from the network. The

total service rate of n processors from the grid can be significantly les then n times the rate of a single processor

because of competition for software locks such of those controlling access to the shared queue of jobs and

interference in accessing shared resources. On the other hand, the effective service rate of the grid network is

not constant but depends on the number of jobs queued at centre. Consider a four processor system. Ideally, if

four or more jobs desire service at the centre, all four processors can be kept busy, and the effective service rate

of the centre is its maximum rate. However, if less than four jobs are queued at the centre, some of the machines

will be idle, and so the effective service rate will be reduced correspondingly. Figure 4 graphs effective service

rate as a function of the queue length for a four processor system. Service rates increase with queue length until

all four systems are busy, after which increasing the number of jobs contending for the processors does not

result in any increase in effective service rate. The dashed line illustrates the ideal growth in service rate and the

other one represents the effect of contention. Grid computing could be used also to run an application that needs

to be executed many times on the computers from the grid network. In such a way the results could be obtained

faster using the grid. There are many factors to consider writing a grid enabled application. Application

designers can use tools to write parallel grid applications. There are no tools for transforming applications to

use the parallel capabilities of a grid. Some already existing applications could not be transformed to run in

parallel on a grid. By scheduling jobs on underutilized machines the grid offers a resource balancing effect for

grid enabled applications. The scheduler can migrate jobs to less busy parts of the grid to balance resource loads

and absorb unexpected peaks of organization activity. The scheduler could schedule jobs to reduce the

communications traffic or to minimize the distance of the communications. The most common resource used in

grid networks is computing cycles provided by the processors of the machines on the grid. Scalability is used

to measure how efficiently the multiple processors on a grid are used. The second most common resource is

data storage and it could be memory attached to a processor very fast but volatile or a permanent storage media

like a hard disk. A large file can be stored on multiple machines using a unifying file system that provides a

single uniform name space for grid storage. The users don’t need to know the exact location of referenced data.

The jobs that are using data have to be scheduled closer to the data, preferably on the node where the data

resides. The grid file system has to implement synchronization mechanism in order to avoid contention when

many users concurrently update shared data.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1223

Another important resource of a grid is data communication capacity that is very important for sending jobs and

their required data to points within the grid. Some jobs require a large amount of data to be processed that could

not reside on the machine running the job. In such a case the bandwidth could be a critical resource that can

limit utilization of the grid. If we have software that is very expensive to be installed on every machine from

organization, a grid could send the jobs that require this software to the machines on which it is installed. This

approach saves significant expenses when the licensing fees are considerable.

CONCLUSION:

With the above graph we can see that the rate of service processing is not act as ideal for some instant it looks

like it but the at beginning graph increases than have slightly down. Applications may be broken down into any

number of individual jobs, as illustrated in figure 1. In turn, jobs can be further broken down in sub jobs.

Independent jobs will be executed in parallel on different computers from the grid network. Some jobs could

not be executed in parallel because they have specific dependencies that may prevent them from executing in

parallel in all cases. Finally, the results of all jobs are collected and assembled to produce the ultimate answer

for the application More advanced grid systems include a job scheduler that automatically finds the most

appropriate machine for awaiting to be executed task Optimal scheduling is still a difficult mathematics

problem. A few programmers may install a grid in their spare time. The planning become essential as the grid

grows and the users will be more dependent on it. Security is much more important factor in planning and

maintaining a grid than in conventional distributed computing. Any grid system has some management

components used to keep track of the resources available to the grid. The scheduler uses this information in

order to decide where grid jobs should be assigned. In the simplest case, the scheduler may assign jobs in a

round3robin fashion. Some schedulers implement a priority system using several jobs queues, each with a

different priority. When a grid machine become available, the job will be taken from the highest priority queue.

Policies of various kinds are also implemented using schedulers. Not every application is suitable for running

in parallel on a grid. Some applications simply cannot be parallelized. For others, it can take a large amount of

work to modify them to run concurrently.

Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

1224

REFERENCES

1. Agarwal, S. Me Caul, B. (1974) “The development and evaluation of a Cont. based composite

scheduling rule” Naval Res Log Quart. 16 549-55.

2. Albright, S.C. (1977). “Structure of optimal Policies in complex queueing system” Oper. Res 25.

3. Aigner, D. J. (1974) “Parameter estiamtion from cross-sectional observation on a elementry queueing

system.” Opns. Res. Vol. 22. No 2. pp 422-28.

4. Anderson, M. Q. (1980). “Optimal admission Pricing Policies for M/Ek/l queue” Naval Res. Long.

Quart 27, 57-64.

5. Anker, C.J. Jr. & Grafarian, A. V (1963a)“Queueing with reneging and Multiple hetrogenous servers

N. R. L. Q. Vol. 10, pp. 125-49.

6. Avi-Itzhak & Naor P. (1963).“Some Queuing Problems with the service station subject to breakdown,”

Oper. Res. II 303-320.

7. ADIRI. I and V. Yechialt (1974). “Optimal priority purchasing and price decision in non-monopoly and

monopoly queue” Oper. Res. 22 1051-1066.

8. Attahiru, S.A. (1979). “A numerical Method for evaluating delay to a customer in a time in homogenous

single server queue with batch arrivals”. Jour. Opns. Res. Soc. Vol. 30. No. 7, 665-667

9. Asare, B.K. and Foster, F.G. (1983). “Conditional Response time in the M/G/1 Processor sharing time

system”. J. appl. Probl. 20 910-915.

10. Balachandran,K.R. (1972).“Purchasing Priorities in Queue”. Mgmt. Sci. 18 316-326.

11. B.T. Doshi (1986).“Queueing System with vacaions” Questa 1, 29-66. 12.

12. B. T. Doshi (1990) “Single server queue with vacations. In Stochastic analysis of Computer and

Communication Systems”. Noth Holand. Amsterdam. 217-265.

13. Belu and Sharma (1982).“Analysis of a queue with binomial input and batch service” Accepted for

publication in IJPAM.

14. Bohm, W. and Mohantly, S. G. (1993).“Transient Solution of M/Mil queue under (M.N) Policy” J

Statist. Plann. Inference 34.

15. Boxma, O.J., J.W. Cohen and N. Huffels (1980). “Approximation of the mean waiting time in an M/G/S

queueing System”. Opns Res. 27, 1115-1127

16. Berg. M. and M.J.M. Posner (1985).

 “On the regulation of Queues” Opns. Res. 4, 221-224.

17. Balas, E. (1965). “An additive algorithms for solving linear programmes with zero-one variables”.

Opns. Res. 13. 517-546. 18.

18. Balachandran K. R. (1973). “Control Policies for a single server System.” Mgmt. Sci. 19. 1013-1018.

19. Bell, C.E. (1973). “Optimal operation of an M/G/l Priority queue with removable servers, Opns. Res.

21. 1281. 20.

