International Journal of Mechanical Engineering

DEVELOPMENT AND OPTIMIZATION OF EXPERIMENTAL DATA BASED MODELS FOR TANDUMDRIVE HUMAN POWERED FLYWHEEL MOTOR(HPFM)

Hemant Baitule^{1*}, Dr. Jai Bahadur Balwanshi², Dr. P. B. Maheshwary³, Dr. C. N. Sakhale⁴ and Dr. J. P. Modak⁵
 ^{1,2}Department of Mechanical Engineering, Dr. A. P. J. Abdul Kalam University, Indore, India.
 ³Dean, Engineering and Science, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, India,
 ⁴Department of Mechanical Engineering ,Priyadarshini College of Engineering ,Nagpur, India,
 ⁵Advisor (Technical), J. D. College of Engineering and Management, Nagpur, India,

Abstract

This paper presents the development of the experimental data based mathematical models for tandum drive human powered flywheel motor. There were various dependent and independent variables involved in tandum drive human powered flywheel motor. Therefore, apart from formulation and development of the model, the optimization was done to find the best sets of the independent variable to achieve the responses as an output. The tandum drive HPFM was designed, fabricated and based on the theory of experimentation, the experiment was performed and total 40 sets of readings were recorded. In this work, the responses of single response variables flywheel angular velocity were experimentally studied and the experimental data based models for this response variables are optimized to getthe best set of independent variables human energy, Effectiveness of mechanism and mass moment of inertia of fly wheel involved in the tandum drive HPFM.

Keywords HPFM, Optimization, Experimentation, Pi Terms, Dependant Variables, Independent Variables, Human Power, Pedal Power, Flywheel Motor, Mathematical Modelling, Buckingham's π theorem,.

1. Introduction

The Tandum human powered flywheel motor (HPFM) is bicycle driven energy unit comprising of speed raising gear pair and a flywheel whereasmechanicalpower transmission system consists of a clutch and torque amplification gear pair. The schematic arrangement of the machine is shown in figure 1 whereas figure 2 shows the actually designed and fabricated experimental setup tandum drive HPFM. In order to meet the research objectives clearly and quickly with the relevant sort of data and adequate sample size, proper experiment planning is essential. The performance of tandum drive HPFM is influenced by a number of factors. The goal of this study is to present the adopted experimental design in detail and to generate design data in the form of evolving experimental data based models for various dependent/ responsive variables of the Human Powered Flywheel Motor.

1.1. Experimental Setup

Figure 1: HPFM Tandum Drive

S = Seat, P1, P2 = Pedals, BCS = Big Chain Sprocket, SCS = Small Chain Sprocket, CH = Bicycle Chain Drive, GI = Speed increasing gear pair, FW = Flywheel, TFC/SJC = Torsionally Flexible Clutch / Spiral Jaw Clutch, P = Process Unit, G = Torque Amplification Gear pair

This novel machine system comprises of three subsystem viz

(1) Energy unit

Copyrights @Kalahari Journals

(2) Transmission

(3) Process machine.

The Schematics of the system is shown in Fig 1.

Energy unit: This comprises a bicycle like pedaling system, speed increasing gear pair G' and flywheel FW. Transmission comprises TFC (the torsionally flexible Clutch) and the torque amplification gear pair G and (3) the process unit.

Working:

Step 1: A young boy (20-25 years), slim stature, middle height peddles the bicycle like system for 1 minute and speeds up the flywheel FW to the speed of 500-1000 rpm. The FW is 0.8m Rim diameter X 10cm rim width X 2cm rim thickness, The energy stored in the flywheel is 3500-4000kgf-m.

Step 2: Upon FW reaching the rated speed TFC is engaged and the energy stored in the FW is made available to the process unit P. The energy stored in the FW is exhausted in 5 to 15 seconds depending on the process unit.

Operation Principle of Setup

Figure 2: Experimental Setup-HPFM Tandum Drive

In the entire work done so far only one peddler is tried. As the system is introducing a new employment guarantee scheme with energy application or new process unit, it is worthwhile trying more than one peddler either two (i.e. tandum drive)schematically as shown in Fig.1 or three or even four. This innovation of the Energy unit may store more than 3000-4000 kgf-m energy in the flywheel[1,2,3,4,6,12,16 to 25,26 to 40]. This enhancement of stored energy in the flywheel during the same peddling time i.e.60 seconds or 1 minute may prove to be worth for energizing other process units manufacturing other rural/village/interior based products/processes which are otherwise being energized by other conventional prime movers either electric Motor /Engine/Air motors etc. in the h.p.range 8 to 24 hp.

- To enhance the power range of so far developed HPFM energized process Machines [1-40]*
- To establish an expression for ωT .
- To establish an expression for maximum stored energy in the flywheel.
- To establish an expression for maximum efficiency of the system

2. Methodology of Theory of Experimentation

The method of Design of Experiment (DoE) is applied in this work. Design of Experiment (DoE) has its advantages such as it can increase the result achieved, reduce variability, and make the result closer to the target, shorten the amount of time and reduce the cost.. The approach of Design of Experimentation [10] is applied for formulating generalized experimental data based model which includes identification of variables, reduction of independent variables by dimensional analysis, test planning (comprising of determination of test envelope, test points, test sequence and experimental plan), physical design of experimental set up, execution of experimentation, purification of experimental data, model formulation, reliability of models, model optimization. The various dependent and independent variables involved tandum drive HPFM are shown in table 1

Mathematical Model

2.1 Dimensional Analysis

Dimensional analysis is a useful mathematics tool for reducing variables by creating non-dimensional sets of variables known as pi (π) terms. The number of independent terms in an experiment is reduced when the dimensional equation for a phenomenon is deduced. The intended model is the exact mathematical form of this dimensional problem. As a result, this dimensional analysis method allows for more systematic experimental planning and the presenting of results in a more informative and simple manner.

2.2 Variables Identification

The term "variables" is used in a broad sense to refer to any physical quantity that change. It is an independent variable if physical quantities may be modified independently of other physical quantities. The term "dependent" or "responsive variable" refers to a physical quantity those changes in reaction to the modification of one or more independent factors. An extraneous variable is a

Copyrights @Kalahari Journals

Vol.7 No.5 (May, 2022)

physical quantity that impacts our test and changes in a random and uncontrolled manner. The different dependent or response variables, independent variables, and extraneous variables affecting the phenomena are determined based on the functioning condition of the tandum drive HPFM. In addition, data purification is carried out to reduce the effect of extraneous variables on the phenomena in order to avoid their unfavourable impact.

Table 1 sho	ws Tandum Dr	ive HPFM Variou	s Dependent	and Independent	Variables
-------------	--------------	-----------------	-------------	-----------------	-----------

Variables	Unit	MLT
ω Angular velocity of the flywheel in rad/sec reached after time interval T seconds	rad /s	T-1
G = Gear Ratio		$M^0L^0T^0$
I Mass moment of inertia of the flywheel	Kg-m2	ML ²
R Input energy by the rider,	Kgf-m	ML ² T ⁻²
T peddling time, in seconds	Seconds	Т
EM effectiveness of the mechanism, M		$M^0L^0T^0$
Acceleration due to gravity ,g	m/s2	LT ⁻²

2.3 Buckingham's Π - Theorem is used to reduce Pi terms.

The pi (Π) terms for all dependent/response and independent factors impacting the phenomenon of tandem drive human powered flywheel motor are formed using Buckingham's Π - Theorem approach.

Eq.(1)

Eq.(3)

The dimensional equation would be obtained as under.

 $\omega = f[I, R, T, g, G, EM]$ R=R1+R2,

R1: Energy Input by One Rider.

R2: Energy Input by Other Rider.

Hence Eq.1 can be rewrite as

$$\omega T = f\left[\left(\frac{I}{R^2T}\right), (EM), (G)\right]$$
Eq.(2)
In general it can be stated as under

In general it can be stated as under

$$\pi(0) = f\lfloor (\pi 1), (\pi 2), (\pi 3) \rfloor$$

In equation (3),

$$\pi 1 = \left[\frac{I}{R^2 T}\right], \pi 2 = [EM], \pi 3 = [G] \text{ and } \pi 0 = [\omega T]$$

where ω Angular velocity of the flywheel in rad/sec reached after time interval T seconds The exponential form of dimensional from eq 1.

$$\omega T = k \left[\left(\frac{I}{R^2 T} \right)^a, \left(EM \right)^b, \left(G \right)^c \right]$$
 Eq.(4)

Where K stands for a curve-fitting constant, and a, b, c stand for constant exponent. The effects for these factors are found by means of multiple regression analysis and a suitable computer platform

3. Experimentation

The classical plan of experimentation is used to carry out the experimentation. In the classical plan of experimentation all the independent pi terms except one are maintained constant at their planned fixed level values and the said independent pi terms under consideration is to be varied over its widest possible range as decided by test envelope. The experimentation is carried out to cover the entire test envelope and all the test points within the test envelope. During experimentation, the gear ratio varies from 1.14, 1.5, 2.0,4.0 and Effective ness of mechanism varies from 1 to 1.13. Thus the different types of gear ratio and effectiveness of mechanism are used during experimentation for monitoring the actualfeasibility of the machine. During experimentation speed of flywheel is measured using Non-Contact of tachometer.

The total 36 sets of the readings were taken. Table 3 and Table 4 shows the experimental plan and responses recorded. Table 2 shows the Human energy calculation for each peddler. Table 4 shows the experimental observation for tandum drive human powered flywheel motor. Table 5 shows the values of independent and dependent variablevalues in term of pi term.

S.N.	Name of peddler	AGE in Yrs	Wt.in Kg(w1)	Pulse P1 before climbing	Pulse P2 after climbing	Rise in pulse P2- P1=P	Time t1(sec)g	h1= Height Climbed(m)	Work Done for time t1 and pulse rise rate P WD=W1Xh1
1	Bhavesh Dhole	21	50	81	115	35	15	4	200
2	Roshan Hatwar	21	61	77	120	43	13	4	244
3	Ritik Lende	21	87	88	110	22	13.4	3.6	313.2
4	Ravikant Chopkar	21	65	80	120	40	16	4	260
5	Lokesh	21	64	83	120	37	14	4	256
6	Jagdish	21	50	78	106	28	18	4.26	213

Table 2 : Human energy calculation

			Ped	dler 1			Peddler 2						EM				
S.N	Name	Pulse P1 before Pedallin g	Pulse P2 after Pedal ling	Rise in pulse P2- P1=P _{OP}	Time t _{op} Sec)	$R = Input energy by the rider, Kgf-m = WDX (t_1/t_{op}) X(P_{op}/ P)$	Name	Pulse P1 before Pedallin g	Pulse P2 after Pedalli ng	Rise in pulse P2- P1=P _{OP}	Time t _{op} Sec)	R = Input energy by the rider, Kgf-m =WDX(t ₁ /t _o _p)X(P _{op} /P)	Peddl er 1	Peddler2	Gear ratio	I = flywheel's mas moment of inertia in Kg-m2	Speed of Flywheel N
1	Jagdis h	72	167	95	300	33.725	Bhavesh	73	161	88	300	25.14286	1	1	1.14	10.412380 37	399
2	Lokesh	81	136	55	300	17.758 55856	Roshan	71	116	45	300	11.06512	1	1	1.14	10.412380 37	405
3	Ritik Lende	80	129	49	300	18.514 93694	Ravikan t Chopkar	75	136	61	300	21.14667	1	1	1.14	10.412380 37	401
4	Jagdis h	73	166	93	300	33.015	Bhavesh	75	151	76	300	21.71429	1	1	1.5	10.412380 37	455
5	Lokesh	84	133	49	300	15.821 26126	Roshan	71	104	33	300	8.114419	1	1	1.5	10.412380 37	445
6	Ritik Lende	86	130	44	300	16.625 65766	Ravikan t Chopkar	80	121	41	300	14.21333	1	1	1.5	10.412380 37	465
7	Jagdis h	71	165	94	300	33.37	Bhavesh	74	160	86	300	24.57143	1	1	2	10.412380 37	480
8	Lokesh	82	131	49	300	15.821 26126	Roshan	72	113	41	300	10.08155	1	1	2	10.412380 37	495
9	Ritik Lende	83	124	41	300	15.492 09009	Ravikan t Chopkar	78	131	53	300	18.37333	1	1	2	10.412380 37	505
10	Jagdis	15	101	00	300	30.33	Dilavesii	11	157	80	300	22.03714	1	1	4	10.412380	590

Table 3 : Experimental results of tandum drive HPFM

Copyrights @Kalahari Journals

Vol.7 No.5 (May, 2022)

International Journal of Mechanical Engineering

	h															37	1
11	Lokesh	86	141	55	300	17.758 55856	Roshan	70	109	39	300	9.589767	1	1	4	10.412380 37	523
12	Ritik Lende	88	130	42	300	15.869 94595	Ravikan t Chopkar	81	125	44	300	15.25333	1	1	4	10.412380 37	515
13	Jagdis h	73	133	60	300	21.3	Bhavesh	71	143	72	300	20.57143	1	1.3	1.14	10.412380 37	399
14	Lokesh	84	139	55	300	17.758 55856	Roshan	72	106	34	300	8.36031	1	1.3	1.14	10.412380 37	415
15	Ritik Lende	80	125	45	300	17.003 51351	Ravikan t Chopkar	74	118	44	300	15.25333	1	1.3	1.14	10.412380 37	411
16	Jagdis h	74	143	69	300	24.495	Bhavesh	75	155	80	300	22.85714	1	1.3	1.5	10.412380 37	455
17	Lokesh	85	148	63	300	20.341 62162	Roshan	71	113	42	300	10.32744	1	1.3	1.5	10.412380 37	465
18	Ritik Lende	88	130	42	300	15.869 94595	Ravikan t Chopkar	79	128	49	300	16.98667	1	1.3	1.5	10.412380 37	471
19	Jagdis h	72	128	56	300	19.88	Bhavesh	72	141	69	300	19.71429	1	1.3	2	10.412380 37	488
20	Lokesh	82	132	50	300	16.144 14414	Roshan	71	102	31	300	7.622636	1	1.3	2	10.412380 37	495
21	Ritik Lende	81	120	39	300	14.736 37838	Ravikan t Chopkar	75	115	40	300	13.86667	1	1.3	2	10.412380 37	475
22	Jagdis h	75	141	66	300	23.43	Bhavesh	77	157	80	300	22.85714	1	1.3	4	10.412380 37	514
23	Lokesh	86	146	60	300	19.372 97297	Roshan	70	109	39	300	9.589767	1	1.3	4	10.412380 37	530
24	Ritik Lende	88	130	42	300	15.869 94595	Ravikan t Chopkar	81	125	44	300	15.25333	1	1.3	4	10.412380 37	520
25	Jagdis	71	133	62	300	22.01	Bhavesh	73	136	63	300	18	1.3	1.3	1.14	10.412380	411
Co	Copyrights @Kalahari Journals Vol.7 No.5 (May, 2022) International Journal of Mechanical Engineering 1151																

	h															37	
26	Lokesh	80	137	57	300	18.404 32432	Roshan	72	107	35	300	8.606202	1.3	1.3	1.14	10.412380 37	416
27	Ritik Lende	82	117	35	300	13.224 95495	Ravikan t Chopkar	76	123	47	300	16.29333	1.3	1.3	1.14	10.412380 37	420
28	Jagdis h	73	138	65	300	23.075	Bhavesh	74	147	73	300	20.85714	1.3	1.3	1.5	10.412380 37	465
29	Lokesh	82	143	61	300	19.695 85586	Roshan	71	105	34	300	8.36031	1.3	1.3	1.5	10.412380 37	485
30	Ritik Lende	89	125	36	300	13.602 81081	Ravikan t Chopkar	78	119	41	300	14.21333	1.3	1.3	1.5	10.412380 37	490
31	Jagdis h	72	131	59	300	20.945	Bhavesh	74	135	61	300	17.42857	1.3	1.3	2	10.412380 37	480
32	Lokesh	81	135	54	300	17.435 67568	Roshan	73	105	32	300	7.868527	1.3	1.3	2	10.412380 37	491
33	Ritik Lende	83	115	32	300	12.091 38739	Ravikan t Chopkar	78	121	43	300	14.90667	1.3	1.3	2	10.412380 37	476
34	Jagdis h	74	135	61	300	21.655	Bhavesh	75	145	70	300	20	1.3	1.3	4	10.412380 37	555
35	Lokesh	84	141	57	300	18.404 32432	Roshan	72	101	29	300	7.130853	1.3	1.3	4	10.412380 37	560
36	Ritik Lende	89	125	36	300	13.602 81081	Ravikan t Chopkar	79	118	39	300	13.52	1.3	1.3	4	10.412380 37	563

2222

Table 4 : Experimental results of dependent and independent pi terms

S.N	R	Т	EM	G	ω=Angular Velocity	Π1=I/R2T	П2=ЕМ	П3=G	П01=ωТ
1	58.86786	300	1	1.14	41.762	1E-05	1	1.14	20881
2	28.82367	300	1	1.14	42.39	4.18E-05	1	1.14	21195
3	39.6616	300	1	1.14	41.97133	2.21E-05	1	1.14	20985.67
4	54.72929	300	1	1.5	47.62333	1.16E-05	1	1.5	23811.67
5	23.93568	300	1	1.5	46.57667	6.06E-05	1	1.5	23288.33
6	30.83899	300	1	1.5	48.67	3.65E-05	1	1.5	24335
7	57.94143	300	1	2	50.24	1.03E-05	1	2	25120
8	25.90281	300	1	2	51.81	5.17E-05	1	2	25905
9	33.86542	300	1	2	52.85667	3.03E-05	1	2	26428.33
10	53.38714	300	1	4	61.75333	1.22E-05	1	4	30876.67
11	27.34833	300	1	4	54.74067	4.64E-05	1	4	27370.33
12	31.12328	300	1	4	53.90333	3.58E-05	1	4	26951.67
13	41.87143	300	1.15	1.14	41.762	1.98E-05	1.15	1.14	20881
14	26.11887	300	1.15	1.14	43.43667	5.09E-05	1.15	1.14	21718.33
15	32.25685	300	1.15	1.14	43.018	3.34E-05	1.15	1.14	21509
16	47.35214	300	1.15	1.5	47.62333	1.55E-05	1.15	1.5	23811.67
17	30.66906	300	1.15	1.5	48.67	3.69E-05	1.15	1.5	24335
18	32.85661	300	1.15	1.5	49.298	3.22E-05	1.15	1.5	24649
19	39.59429	300	1.15	2	51.07733	2.21E-05	1.15	2	25538.67
20	23.76678	300	1.15	2	51.81	6.14E-05	1.15	2	25905
21	28.60305	300	1.15	2	49.71667	4.24E-05	1.15	2	24858.33
22	46.28714	300	1.15	4	53.79867	1.62E-05	1.15	4	26899.33
23	28.96274	300	1.15	4	55.47333	4.14E-05	1.15	4	27736.67
24	31.12328	300	1.15	4	54.42667	3.58E-05	1.15	4	27213.33
25	40.01	300	1.3	1.14	43.018	2.17E-05	1.3	1.14	21509
26	27.01053	300	1.3	1.14	43.54133	4.76E-05	1.3	1.14	21770.67
27	29.51829	300	1.3	1.14	43.96	3.98E-05	1.3	1.14	21980
28	43.93214	300	1.3	1.5	48.67	1.8E-05	1.3	1.5	24335
29	28.05617	300	1.3	1.5	50.76333	4.41E-05	1.3	1.5	25381.67
30	27.81614	300	1.3	1.5	51.28667	4.49E-05	1.3	1.5	25643.33
31	38.37357	300	1.3	2	50.24	2.36E-05	1.3	2	25120
32	25.3042	300	1.3	2	51.39133	5.42E-05	1.3	2	25695.67
33	26.99805	300	1.3	2	49.82133	4.76E-05	1.3	2	24910.67
34	41.655	300	1.3	4	58.09	2E-05	1.3	4	29045
35	25.53518	300	1.3	4	58.61333	5.32E-05	1.3	4	29306.67
36	27.12281	300	1.3	4	58.92733	4.72E-05	1.3	4	29463.67

Τa	able 5: Test Envelop	р
$\pi 1 = \mathbf{I}/\mathbf{R}^2 \mathbf{T}$	$\pi 2 = \mathbf{EM}$	$\pi 3 = G$

1

1.14

1.00E-05

to	to	to
6.14E-05	1.3	4

$\pi 1 = \mathbf{I}/\mathbf{R}^2 \mathbf{T}$	$\pi 2 = \mathbf{EM}$	$\pi 3 = \mathbf{G}$
1.00E-05	1	1.14
1.03E-05	1.15	1.5
1.16E-05	1.3	2
1.22E-05		4
1.55E-05		
1.62E-05		
1.80E-05		
1.98E-05		
2.00E-05		
2.17E-05		
2.21E-05		
2.36E-05		
3.03E-05		
3.22E-05		
3.34E-05		
3.58E-05		
3.65E-05		
3.69E-05		
3.98E-05		
4.14E-05		
4.18E-05		
4.24E-05		
4.41E-05		
4.49E-05		
4.64E-05		
4.72E-05		
4.76E-05		
4.76E-05		
5.09E-05		
5.17E-05		
5.32E-05		
5.42E-05		
6.06E-05		
6.14E-05		

Table 6: Test Range

4. Development of the Model

During experimentation, the data generated belongs to the dependent variables. The data of various independent variables are gathered during experimentation. In case of tandum drive HPFM, there were seven independent variables form and one dependent variable. All these variables are represented by pi terms corresponding to each variable. The mathematical model is nothing but formulating correlation between these independent pi terms and a dependent pi term. The mathematical model is called as generalized experimental data based model as it is formulated on the data generated through experimentation. Equation 3 is the developed mathematical modelsangular velocity of fly wheel in rad/sec for pedalling time T sec. The Exponential form of mathematical model is

Model of dependent pi term π_{01} as under-

$$\omega T = K_1 \times (\pi_1)^{a1} \times (\pi_2)^{b1} \times (\pi_3)^{c1}$$
$$\pi 0 I = K_1 \times (\pi_1)^{a1} \times (\pi_2)^{b1} \times (\pi_3)^{c1}$$

Taking log on the both sides of equation for π_{01} , getting eight unknown terms in the equations,

$$\therefore \operatorname{Log} \pi_{01} = \log K_1 \times \log(\pi_1)^{a1} \times \log(\pi_2)^{b1} \times \log(\pi_3)^{c1}$$

Let, Z1= log $\pi 01$, K1 = log k1, A = log $\pi 1$, B = log $\pi 2$, C = log $\pi 3$

Putting the values in equations 4, the same can be written as

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

4

1154

$$Z_1 = K_1 + a_1 A + b_1 E(5)$$

Equation 5 is a regression equation of Z on A, B, and C in an n dimensional co-ordinate system. This signifies a regression hyper plane [Spiegel 1980]. To determine the regression hyper plane, determines a_1 , b_1 and c_1 in equation 5 so that $\Sigma Z_{+} = nK_{+} + q_{+}\Sigma A + b_{+}\Sigma B + c_{+}\Sigma C$

$$\Sigma Z_{1} = K R_{1} + a_{1} \Sigma A + b_{1} \Sigma B + c_{1} \Sigma C$$

$$\Sigma Z_{1} \times A = K_{1} \Sigma A + a_{1} \Sigma A \times A + b_{1} \Sigma B \times A + c_{1} \Sigma C \times A$$

$$\Sigma Z_{1} \times B = K_{1} \Sigma B + a_{1} \Sigma A \times B + b_{1} \Sigma B \times B + c_{1} \Sigma C \times B$$

$$\Sigma Z_{1} \times C = K_{1} \Sigma C + a_{1} \Sigma A \times C + b_{1} \Sigma B \times C + c_{1} \Sigma C \times C$$

In the above set of equations, the values of the multipliers K1, a1, b1 and c1 are replaced to calculate the values of the unknowns (viz. K1, a1, b1 and c1). The values of the terms on L H S and the multipliers of K1, a1, b1 and c1 in the set of equations are calculated and tabulated in the Table 3 to 6. After replacing the values in the equations 5 one will obtain a set of 8 equations, which can be solved simultaneously to get the values of K1, a1, b1 and c1. The above equations can be verified in the matrix form and further values of K1, a1, b1 and c1 can be obtained by using matrix analysis.

$$X_1 = inv(V(6))$$

The matrix method of solving these equations using 'MATLAB' is given below.

 $W = 3 \times 3$ matrix of the multipliers of K_1 , a_1 , b_1 and c_1

 $P_1 = 3 \times 1$ matrix of the terms on L H S and

 $X_1 = 3 \times 1$ matrix of solutions of values of K_1 , a_1 , b_1 and c_1

Then, The matrix obtained is given by,

Matrix

$$Z_{1}x \begin{bmatrix} 1\\ A\\ B\\ C \end{bmatrix} = \begin{bmatrix} n & A & B & C\\ A & A^{2} & B & A & C \\ B & A & B & B^{2} & C & B\\ C & A & C & B & C & C^{2} \end{bmatrix} x \begin{bmatrix} K_{1}\\ a_{1}\\ b_{1}\\ c_{1} \end{bmatrix} \dots (7)$$

 158.1765	36	-162.529	2.095694	10.22477	Κ	
-714.08	-162.52869	735.6103	-9.36069	-46.0735	a1	
9.215054	2.09569431	-9.36069	0.200008	0.595222	b1	
45.22983	10.2247749	-46.0735	0.595222	4.386074	c1	

$[P_1] = [W_1][X_1]$

 $P_1 = W_1 \times X_1$

Using Matlab,

ab, y, after solving X₁ matrix with K₁ and indices K₁, a₁, b₁, c₁, d₁, e₁, f₁, g₁ and h₁ are as follows

K	4.3581
a1	0.0061
b1	0.082
c1	0.205

But k1 is the log value so convert into normal value so take antilog of k_1 .

Antilog (4.3581) = 22808.67201
Hence the model for dependent term pi01 is

$$(\pi_{01}) = K_1 \{ (\pi_1)^{a1} \times (\pi_2)^{b1} \times (\pi_3)^{c1} \}$$

 $\pi_{01} = 22808.67201. (\pi_1)^{0.0061} (\pi_2)^{0.082} (\pi_3)^{0.205}$
Where, $\pi_1 = I/R2T$, $\pi_2 = EM$, $\pi_3 = G$, K=22808.67201
 $\omega T = 22808.67201 \left[\left(\frac{I}{R^2 T} \right)^{0.0061}, (EM)^{0.082}, (G)^{0.205} \right]$ ------(8)

Graphical representation of Comparison between Model and Experimental data of all six dependents Pi terms for general model.

Figure 3: Comparison between Field Data and Mathematical Model For angular speed

4.1 Reliability of model:

Table 7:Reliability

ERROR	FREQ.	%Error (fi)	Frequency (xi)	fi*xi
0	5	0	5	0
1	4	1	4	4
2	6	2	6	12
3	6	3	6	18
4	7	4	7	28
5	2	5	2	10
6	4	6	4	24
7	1	7	1	7
8	1	8	1	8
		36	36	111
				3.08333333
		Mean Error	Σfi*xi/xi	3.08333333
		Reliability	(100-Mean Error)	96.916666667

Reliability of model is established using relation Reliability =100-% mean error and Mean error = $\Sigma(xi, fi)/\Sigma(xi)$, where xi is % error and fi is frequency of occurrence [8]. Therefore the reliability of General model IID1 is equal to 96.91 %. 4.2 R- Coefficient:

fi	Yi	(Yi-fi)	(Yi-fi)^2	(Yi-Y)	(Yi-Y)^2
PMC(Model)	PMC(Expem)				
21840.85	20881	-959.8529901	921317.8	-4018.04	16144645
22031.96	21195	-836.9617005	700504.9	-3704.04	13719912
21946.33	20985.67	-960.6677534	922882.5	-3913.37	15314491
23125.39	23811.67	686.2779117	470977.4	-1087.37	1182381
23359.9	23288.33	-71.56591034	5121.68	-1610.71	2594376
23287.79	24335	1047.208633	1096646	-564.04	318141.1
24513.16	25120	606.8401993	368255	220.96	48823.32
24755.11	25905	1149.885904	1322238	1005.96	1011956

Table 7. R. Coefficient

Copyrights @Kalahari Journals

Vol.7 No.5 (May, 2022)

24674.29	26428.33	1754.039331	3076654	1529.293	2338738
28284.22	30876.67	2592.447994	6720787	5977.627	35732021
28515.98	27370.33	-1145.650419	1312515	2471.293	6107291
28471.04	26951.67	-1519.369463	2308484	2052.627	4213276
22184.62	20881	-1303.617034	1699417	-4018.04	16144645
22312.72	21718.33	-594.3853396	353293.9	-3180.71	10116895
22255.34	21509	-746.3354963	557016.7	-3390.04	11492371
23433.3	23811.67	378.3693423	143163.4	-1087.37	1182381
23557.8	24335	777.1962123	604034	-564.04	318141.1
23538.01	24649	1110.989703	1234298	-250.04	62520
24911.16	25538.67	627.5112712	393770.4	639.6267	409122.3
25066.76	25905	838.2430928	702651.5	1005.96	1011956
25010.18	24858.33	-151.8432363	23056.37	-40.7067	1657.033
28660.09	26899.33	-1760.7547	3100257	2000.293	4001173
28824.49	27736.67	-1087.827378	1183368	2837.627	8052125
28799.2	27213.33	-1585.871408	2514988	2314.293	5355954
22421.21	21509	-912.2080499	832123.5	-3390.04	11492371
22528.94	21770.67	-758.2735115	574978.7	-3128.37	9786720
22504.55	21980	-524.5510057	275153.8	-2919.04	8520795
23691.73	24335	643.2722499	413799.2	-564.04	318141.1
23821.7	25381.67	1559.967657	2433499	482.6267	232928.5
23824.2	25643.33	1819.137189	3309260	744.2933	553972.6
25172.48	25120	-52.47547482	2753.675	220.96	48823.32
25300.68	25695.67	394.988106	156015.6	796.6267	634614
25280.69	24910.67	-370.0198546	136914.7	11.62667	135.1794
28986.94	29045	58.06280715	3371.29	4145.96	17188984
29160.51	29306.67	146.1526991	21360.61	4407.627	19427173
29139.06	29463.67	324.6034713	105367.4	4564.627	20835817
			□(Yi-fi)^2		□(Yi- Y)^2
895192.4	896365.3	1172.963048	40000295	-0.10667	2.46E+08
	Y				
24866.45	24899.04	32.58230689	1111119	-0.00296	6830985

x=□(Yi- fi)^2/□(Yi- Y)^2		0.162659		
	R^2=1-x			
	R^2	0.837341	R	0.915064

yi= Observed value of dependant variable for ith Experimental sets (Experimental data)

fi=Observed value of dependant variable for ith pridicted value sets (Model data)

Y= Meanof Yi Y=24899.03704R^2 = C0-efficient of Determination

4.3 Optimization of Model:

K1	log k	22808.67201	4.3581
	Solution		Max
Z	4.46517543		29186.05728
X1	-4.211511915		6.14452E-05
X2	0.113943352		1.3
X3	0.602059991		4
	Constrain	С	Log C
X1<=C1MAX	-4.211511915	6.14452E-05	-4.21151
X1>=C1MIN	-4.211511915	1.00155E-05	-4.99933
X2<=C2 MAX	0.113943352	1.3	0.113943
X2>=C2MIN	0.113943352	1	0
X3<=C3 MAX	0.602059991	4	0.60206
X3>=C3 MIN	0.602059991	1.14	0.056905

Maxima Minima:

	$\pi 1 = \mathbf{I}/\mathbf{R}^2 \mathbf{T}$	$\pi 2 = \mathbf{EM}$	$\pi 3 = \mathbf{G}$	П01=юТ
MAXIMA	6.14452E-05	1.3	4	29186.0573
MINIMA	1.00155E-05	1	1.14	21840.853

4.4 Sensitivity Analysis:

	Sensitivity of Pi				
	Pi 1	Pi 2	Pi 3	Pi01	
Avg.	3.44E-05	1.15	2.16	25376	
10%	3.79E-05	1.15	2.16	25390	
-10%	3.1E-05	1.15	2.16	25359	
	%		0.1224		
Avg.	3.44E-05	1.15	2.16	25376	
10%	1.96E+12	1.265	2.16	25575	
-10%	1.96E+12	1.035	2.16	25157	
	% Change				
Avg.	3.44E-05	1.15	2.16	25376	
10%	3.44E-05	1.15	2.376	25876	
-10%	3.44E-05	1.15	1.944	24833	
	%		4.1098		

5. Conclusions

The angular velocity with respect to pedalling time of tandum drive is established through theory of experimentation. The data in the present work are collected by performingactual experimentation due to which the finding of the present study truly represents the degree of interaction of various independent variables in tandum drive human powered flywheel motor. The trends for the behaviour of the modelis demonstrated by graphical analysis and it has been noted that the mathematical models can be successfully used for the computation of dependent terms for a given set of independent terms for tandum drive flywheel motor. The model was formulated for angular velocity of flywheel fortotal 36 sets of observations and is optimized. The optimized values of dependent pi terms of angular velocity are $\pi 1 = 6.14452$ E-05seconds, $\pi 2 = 1.3$ and $\pi 3 = 4$

References

- C. Muscles, O. Motors, The human-powered home: choosing muscles over motors, World Future. Rev. 01 (02) (2009) 92– 97
- 2. J.P. Modak, Proceedings of twelfth world congress in mechanism and machine science, Besancon, France: human powered flywheel motor : concept, design, dynamics and applications, IFToMM, 2007.
- 3. J.P. Modak, D. Sc (Engg& Tech) human powered flywheel motor: concept, design, dynamics and application, 2016.
- 4. J. Modak, S. Moghe, Design and development of a human-powered machine for the manufacture of lime-flyash-sand bricks, Hum. Power Technical J. IHPVA 13 (02) (1998) 3–7.
- 5. R. D. Askhedkar and J. P. Modak, "Calibration of a Tachogenerator-A Case Study", Proceedings of 28th congress of ISTAM, Paper ET-5, Dec. 1983.
- 6. A. V. Shekdar, et al., "An Overview of Methodology of Experimentation", Proceedings of 28th congress of ISTAM, Paper ET-6, Dec. 1983.
- 7. R. D. Askhedkar and J. P. Modak, "Modeling of a Manually Driven Brick Making Machine to Simulate Design Data Experimentally", Modeling, Simulation and Control, B AMSE Press France, V 2, No 4, pp 29-64, 1985.

Copyrights @Kalahari Journals

- 8. R. D. Askhedkar and J. P. Modak, "Hypothesis for the Extrusion of Lime-Fly-ash-Sand-Bricks Using Manually Driven Brick Making Machine", Batim International Building Research and Practice, UK, V 22, N 1, 1994, pp 47-54.
- 9. J. P. Modak and R. D. Askhedkar, "Determination of Test Envelop and Necessity of Simplification of Mathematical Analysis of Experimental Data While Studing a New Phenomenon", Advances in Modeling and Analysis, AMSE Press, France, Vol 27, No. 3, pp 59-64, 1993.
- 10. R. D. Askhedkar and J. P. Modak, "Development of Hand Moulding Process for Manufacture of Bricks Through Application of Techniques of Methods Engineering", Proceedings of 34th National Convention of IIIE, Pune, (India) Oct.1992.
- 11. H. V. Aware, V. V. Sohoni and J. P. Modak, "Manually Powered Manfacture of Keyed Bricks", Building Research and Information, UK, Vol. 25, N6, 1997, pp 354-364.
- 12. H. V. Aware, V. V. Sohoni and J. P. Modak, "Formulation of an Approximate Generalized Experimental Model for an Extrusion Unit of Manually Energized Keyed Bricks Manufacturing Machine", Proceedings International Conference.Contribution of Cognition to Modelling, CCM'98, Clude-Bernard Uni of Layon, France, July-98, Paper 4.4, pp 4.12 to 4.15.
- 13. V. V. Sohoni and J.P.Modak, "Formulation of Generalized Experimental Model for an Extruder Unit of a Manually Energized Machine for Extruding Keyed Bricks", Building Research and Information, U.K., Accepted for Publication.
- 14. J. P. Modak and A. R. Bapat, "Manually Driven Flywheel Motor Operates a Wood Turning Process", Proceedings, Annual Conference "Ergonomics and Energy" of the Ergonomics Society. UK (Heriot watt University), April 1993, pp- 352-357.
- A. G. Katpatal, G. Raman and J. P. Modak, "Design of Manually Energized Centrifugal Drum Type Algae Formation Process Unit", Proceedings International AMSE Conference "Systems Analysis, Control and Design" Lyon, France, Vol. 3, 4- 6, July 1994, pp 227-232.
- 16. J. P. Modak, "Design and Development of Manually Enerized Process Machine Having Relevance to Village / Agriculture and Other Productive Operations", Human Power, USA, Issue No. 57, 2005, pp 16-21.
- S. B. Deshpande, J.P.Modak and S. G. Tarnekar, "Computer Aided Analysis of Battery Charging Process Adopting Manually Energised Flywheel Motor as an Energy Source", Proceedings, International Conference on CAD/CAM Robotics and Autonomous Factories. Indian Institute of Technology, New Delhi, (INDIA) August 11- 14, 2003, Paper No. 289.
- 18. S. B. Deshpande, J.P.Modak and S. G. Tarnekar, "Modelling and Simulation of Battery Charging Process Adopting Human Powered Flywheel Motor as an Energy Source". Paper No. 05, 302 (2A), International Journal Advancement of Modelling and Simulation Techniques in Enterprises (AMSE), France, In Press.
- 19. K. Padghan, P. Warghade, D. Astonkar, Kinetic energy gain in human powered flywheel motor by using quick return mechanism having ratio one, Int. J. PURE Appl. Res. Eng. Technol. 03 (09) (2015) 452–460.
- 20. H. Kumar Dubey, M. P. Singh, J. P. Modak et al., A review on the advancement of human powered flywheel motor (HPFM) in India and its application for rural empowerment, Materials Today: Proceedings,
- 21. J.P. Modak, S. Ketkar, Design of experimentation for comparison for various bicycle drive mechanisms, Model. Simul. Control. B AMSE Press Fr. 09 (01) (1987) 33–46.
- 22. J.P. Modak, K.C. Chandurkar, M.P. Singh, Y.A.G, Experimental verification of various bi-cycle drive mechanism part1, in: Proceedings of AMSE Conference Modeling and Simulation Karlsurhe West Germany, 1987, pp. 139–160.
- J.P. Modak, S. Moghe, Comparison of various bi-cycle drive mechanism designed in the light of transmission angle optimization & J. Papadopolas hypothesis part-I, in: Proceedings on International Conference on Mechanical Transmission and Mechanisms, IFToMM, University of Tianjian, China, 1997, pp. 1087–1091.
- 24. J.P. Modak, S. Ketkar, Design of experimentation for comparison for various bicycle drive mechanisms, Model. Simul. Control. B AMSE Press Fr. 09 (01) (1987) 33–46.
- 25. J.P. Modak, K.C. Chandurkar, M.P. Singh, Y.A.G, Experimental verification of various bi-cycle drive mechanism part1, in: Proceedings of AMSE Conference Modeling and Simulation Karlsurhe West Germany, 1987, pp. 139–160.
- J. P.Modak, A. Bapat, Methodology of minimizing extraneous variables of a manually driven fly-wheel motor and approach for mathematical analysis of results, Model. Simul. Control. B AMSE Press Fr. 29 (03) (1990) 55–64.
- 27. J.H. Schenck, Reduction of variables dimensional analysis, in: Theories of Engineering Experimentation, Mcgraw Hill Book Co. Newyork, 1961, pp. 60–81.
- 28. Siddharth K. Undirwade , M.P. Singh , C.N. Sakhale, Formulation of Mathematical Model for Processing Time Required for Bamboo Sliver Cutting Using HPFM, Materials Today: Proceedings 4 (2017) 10174–10178.
- K.S. Zakiuddin, M.P. Singh, J. Modak, Mathematical modeling & simulation of chaff cutter energized by human powered flywheel motor, in: IFToMM World Congress 2019 on Mechanism and Machine Science, Advances in Mechanism and Machine Science, 2019, pp. 3551–3559.
- 30. K.S. Zakiuddin, J.P. Modak, Postharvest crop processing machine, Agric. Eng. Int. CIGR J. 14 (3) (2012) 99–104.
- 31. P.B. Khope, J.P. Modak, Design of experimental set-up for establishing an empirical relationship for chaff cutter energized by human-powered flywheel motor, J. Agric. Technol. 9 (4) (2013) 779–791.
- 32. [32] S.M. Moghe, K.S. Zakiuddin, 'Design and development of turmeric polishing machine energized by human power flywheel motor a past review, in: 1st International and 16th National Conference on Machines and Mechanisms, iNaCoMM 2013,2013, pp. 920–923.
- 33. S. D. Moghe And J. P. Modak .'Determination Of An Optimum Pedaling
- 34. Mechanism For Cycle-Rickshaw', International J. of Engg. Research & Indu. Appls. Vol.5, No. IV (November 2012), pp. 277-298.
- 35. H.S. Bhatkulkar, J.P. Modak, Design & development of nursery fertilizer mixer energized by human powered flywheel motor, Int. J. Res. Emerg. Sci. Technol. 01, 5, 2014, 69–73.

- 36. K.P. Singh, I.L. Pardeshi, M. Kumar, K. Srinivas, A.K. Srivastva, Optimisation of machine parameters of a pedal-operated paddy thresher using RSM, Biosyst. Eng. Elsevier 100 (2008) 591–600. 35. Pawan A. Chandak, AratiLende, Jayant Modak, Modeling of Human Power Flywheel Motor through Artificial Neural Network- A Novel Approach, Procedia Computer Science 125 (2018) 77–84.
- 37. Ventura Ferrer-Roca, Víctor Rivero-Palomo, Ana Ogueta-Alday, José A. Rodríguez-Marroyo& Juan García-López, Acute effects of small changes in crank length ongross efficiency and pedalling technique duringsubmaximal cycling , Journal of Sports Sciences Volume 35, 2017 Issue 14: Cycling Science .
- 38. Gin S Malhi, Lauren Irwin, Rapid cycling: Are we pedalling in the right direction?, Australian& New Zealand Journal of Psychiatry, 1-3,2019.
- 39. IndrekRannama, KarmenReinpõld, KirstiPedak, KristjanPor, The relationships between cycling economy, pedalling eff ectiveness and cyclist's musculoskeletal state, World Congress of Performance Analysis of Sport XII,2020.
- 40. Alexander Kunert, Marcel Ott, Thomas Reuter, Daniel Koska, Christian Maiwald, Phases pace methods for non-linear analysis of pedaling forces in cycling, https://doi.org/10.1371/journal.pone.0198914April18,2019.
- 41. Ventura Ferrer-Roca, Nicholas Vretos, ArgyrisChatzifolis, Daniel Alvarez, New 3d Method To Estimate The Cycling Frontal Area During Pedalling, 5th Conference of the International Society of Biomechanics in Sports, Cologne, Germany, June 14-18, 2017.
- 42. Elliptigo, http://www.elliptigo.com
- 43. Siddharth K. Undirwade, Development And Optimization Of Experimental Data Based Models For Bamboo Sliver Cutting By Using Human Powered Flywheel Motor, International Journal Of Mechanical And Production Engineering Research And Development (Ijmperd), VOL. 8, ISSUE 1, FEB 2018, 1007-1020