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Abstract - Arbitrary-Lagrangian-Eulerian (ALE) grid methods have shortcomings when it comes to finding 

solutions to problems undergoing very large deformations. As a result, fixed grid methods have been used to 

counter these drawbacks. However, the accuracy and precision of fixed grid methods is not as good as when 

compared with the ALE grid methods. To take advantage of the benefits of both the fixed grid methods and 

the ALE methods, a combination of the two is paramount. The combinations results into a method that is 

capable of dealing with complex and large deformations and at the same time, producing results that are 

accurate and with high precision. The algorithm is then used to simulate 2-D laminar flows past stationary and 

moving thin structures positioned perpendicular to the freestream direction. The results showed good 

agreement with those obtained from the ALE algorithm for elastic thin boundaries. It is concluded that the 

algorithm is capable of predicting the characteristics of laminar flow past an elastic structure with acceptable 

accuracy with only ~25% of the computational time for simulations. 

Index Terms – FS-Interfaces, ALE, Fixed grid, Numerical Simulation 

 

INTRODUCTION 

The description of laws detailing coupling of dynamics of fluids and structural mechanics is referred to as 

Fluid-Structure Interactions (FSI) [1], [2]. The phenomenon of FSI entails interaction of fluid flow and a given 

structure [3]. The movement of the given structure is facilitated by the action of force originating from fluid. 

The forces induce motions to the structure [4]. The motions are either translational, deformational, rotational 

or a combination of any of the stated motions [5], [6].  The responses depicted by the structure are as a result 

of the impact of the fluid. Such impacts include fluid forces, as earlier stated and dynamic forces. Thus, the 

phenomena of fluid-structure interactions have found numerous applications in aeronautical engineering, 

biomechanics, wind turbines among other applications [7], [8]. 

Fluid-structure interaction problems are complex making it difficult to obtain an analytical solution to the 

problems. Moreover, carrying out experiments to examine and find a solution to given fluid-structure 
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interaction problem is not always probable due to limited facilities and the high costs involved [9]–[11]. This 

has resulted in numerical simulations that are aimed at investigating the fundamental physics theories 

applicable to fluid-structure interaction [5], [12]. 

This study focuses on a combination of Arbitrary Eulerian Lagrangian benefits and fixed grid approach by use 

of overlapping grid formulation. In the case, there is an overlapping of the Arbitrary Eulerian Lagrangian on 

the fixed fluid grid, which is in the background. 

A relatively recent development in the computational analysis is a coupling between fluid flow and structural 

dynamics.  These FSIs can be observed in many physical phenomena, including vibrations of the bridge due to 

gusts, aerodynamic flow patterns in response to flapping, deformation of blood vessels and the heart in 

response to blood flow and tissue vibrations of the airways in response to breathing during snoring. From the 

previous studies, two approaches are common in solving FSI   (i) Structural mesh that fits the fluid mesh or 

(ii) structural mesh that does not fit the fluid mesh[10], [13], [14]. 

In the first (and most common) method, the fluid domain and boundary often change as the interface structure 

continues to deform [15]. Therefore, the ALE formula is necessary for fluid physics. More importantly, it is 

necessary to solve the complete meshing or mesh deformation for the entire fluid domain, which involves a lot 

of calculation work. Or, in the last method where structural grids are not suitable for fluid grids, a fixed fluid 

grid with Euler’s formula for fluid physics is used [12] 

This has the advantage of eliminating the need to repeatedly update the fluid domain grid. Several schemes 

suitable for this method have been developed, including the extended finite element method (XFEM) using 

Lagrangian multipliers to enhance fluid-structure coupling [13], virtual domain/mortar element method [14], 

Immersed boundary method (IBM) Use the smooth Dirac-delta function to insert variables between the fluid 

domain and the structure domain [15], [16] and the submerged finite element method (IFEM). Unlike IBM, 

the latter uses the method of replicating nuclear particles to insert the interface velocity And physical strength 

[2]. 

 

1.1 Fixed Grid Methods 

Fixed grid methods have proven to be efficient in providing solutions to problems that involve large 

deformation [17]–[19]. The fixed grid method entails a description of the fluid domain using the Eulerian fluid 

formulation. This does not include deforming fluid meshes and moving fluid meshes. In this regard, fixed grid 

methods expedite a structure to have a complex and large deformations [11], [20], [21]. In fixed grid methods, 

there is an independent movement of the structure in the fluid domain. This is an advantage since it allows 

determination of complex and unlimited deformations on the structure [2]. The description of the FS-interface 

in the fixed grid approaches is either explicit or implicit. Consequently, the fluid is broken into two sub  

domains, a fictions fluid sub – domain and the physical fluid sub – domain [22]. A suitable mesh resolution 

surrounding a structural surface is paramount in finding solutions to complex FSI problems [17]. This required 

precision in finding solutions to fluid-structure interactions problems hinders the use of the fixed grid 

methods, hence the need to develop an effective alternative method. For instance, in the Distributed Lagrange 

Multiplier method and the Immersed boundary method, (abbreviated as DLM and IBM respectively), there is 

no production of sharp and accurate representations of the pressure jumps in the FS-interface [23]. Also, the 

fluid and the structure have a mesh – size dependency. This dependency hinders achievement of an accurate 

kinematic match between the fluid and the structure [24]. 

 

1.2 Arbitrary Eulerian Lagrangian (ALE) 

Arbitrary Eulerian Lagrangian (ALE) is an approach that is commonly used to aid in the analysis of the 

domain motion of the fluid under study [25]. Classically, there is the deformation of the domain onto which 

the mesh computational domain is discretized. The description of the ALE approach in this paper is based on 

an assumption that the domain onto which the fluid flows has a boundary that has a definition function. The 

definition function can be described basing on a body’s shape and discretely computed basing on set points 

[26], [27].  A fluid field in the ALE formulation gives way for finding solutions to the flow field occurring in 

a grid capable of deforming [8], [28]. 
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The deformable grid undergoes a deformation similar to the structure. This occurs at the interface existing 

between the solid and the fluid. At the interface, the fluid grid in the dome has arbitrary and extended 

deformations [29]. This suppresses discretization errors, and it averts distortion of elements. 

The ALE methods are advantageous since the various ALE based methods allow theoretical determination of 

the position of the solid in the fluid domain. This is important because it helps to build a fine mesh close to the 

surface of the structure so that the flow characteristics around the surface of the structure can be analyzed. The 

accuracy and precision of the ALE methods are determined by the changes occurring on the size and shape of 

the subdomains [30]. Small changes results into high accuracy and precision. Large change renders it 

impossible to maintain mesh distortion leading to deformed mesh that is unusable [28], [31]. The process of 

eliminating this problem is expensive thus discouraging its use. Also to remedy this, fixed methods can be 

used. However, fixed methods have their disadvantages as earlier connoted. 

 

1.3 Combined Fixed – ALE. 

To eliminate the limits of the fixed grid approach and utilize the advantages of the Arbitrary Eulerian 

Lagrangian (ALE), a combination of the two (ALE and Fixed grid approach) is essential. The combinations 

entail finding a solution to the N-S equations by utilizing the Eulerian formulation [32]. The solution to the 

structural domain is found using the Lagrangian formulation [33]. A boundary layer is then attached to the 

mesh structure that is then embedded to the background fluid domain. The developed fixed – ALE method can 

be compute to solve complex FSI problems that are either two or three-dimensional. The combination of the 

Fixed and ALE methods utilizes the advantages of the two methods in providing the solutions. The definition 

of the structure in this combination is in Lagrangian formulation. Fluid elements surround the structure. The 

fluid elements are based on the ALE formulation. The deformation of the fluid patch occurs together with the 

structure of the boundary layer provided in the simulation [26]. In this method, there is the use of overlapping 

meshes, though, overlapping solutions are not introduced. 

The Euler equations describe compressible inviscid hydrodynamics and can be used to model gas flows, shock 

reflections and collisions, blast waves, wind tunnel experiments, flow around airfoils, turbulence and many 

other physical phenomena. Analytical solutions only exist in the simplest cases of geometry, boundary 

conditions and initial conditions; while physical experiments are often costly, difficult to interpret, affected by 

additional physics, and time consuming to set up. Computational modelling is often cheaper, faster to set up, 

allows numerous parameter and geometry studies, and can be used to model situations where a real 

experiment would be impossible or dangerous. When the Euler equations are discretised on a mesh the 

solution accuracy will depend on the mesh resolution. Increasing the resolution in areas of the mesh where the 

solution varies rapidly or over small length scales will increase the solution accuracy. The resolution 

throughout the domain could be increased, but in realistic models the physical variations or phenomena may 

be occurring over length scales that are several magnitudes smaller than the domain geometry. Increasing the 

resolution throughout would require a prohibitively large number of elements and nodes, making the 

calculation time immense. However, many problems are characterized by features of interest, such as impacts, 

shear layers, or boundary layers, while the remaining solutions change slowly or stay the same. The practical 

and efficient approach is to increase the resolution locally around only the features of interest, rather than 

throughout the entire domain. 

Obtaining the resolution required, focusing it in the areas of interest, and keeping the number of nodes and 

elements to a minimum can be considered to be an optimization problem. There are two main approaches to 

this optimisation problem: r-refinement where the number of nodes is fixed but they may move to provide 

higher resolution in specific areas of the domain, or h-refinement where the number of nodes and elements is 

increased by the subdivision of elements. 

The interpolation function that defines the fluid-structure coupling usually blurs or blurs the difference 

between the FS-interface within the fluid mesh width. In addition, if the boundary layer grid aligned with the 

structure is not used, it is difficult to capture the resolution of the boundary layer near the surface of the 

structure. 

The adaptive mesh refinement (AMR) approach focuses on the refinement/thickening of certain areas of the 

mesh according to the dynamic characteristics of the flow to obtain sufficient mesh resolution in any part of 

the domain and time step of the numerical simulation Rate. The advantage of this method is automatic and 
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dynamic mesh adaptation to accurately solve the flow problem. Otherwise, the construction of a fixed (static) 

mesh requires the establishment of a maximum mesh resolution in an area that will not be available at the 

beginning of the simulation. It is necessary in another simulation time step. In addition to reducing the 

computational requirements of simulation, it is also important for the algorithm to achieve good parallel 

performance in today's supercomputers to take advantage of the increasingly available computing power. In 

this research and for the best knowledge of the authors, a numerical technique is developed based on adaptive 

mesh refinement integrated with ALE to solve FIS problem 

 

NUMERICAL METHOD 

Earlier in the paper, it is stated that the domain onto which the fluid flows is defined by a boundary function. 

Thus, to find a solution basing on these assumptions, the following algorithm can be used [26], [34]. There is 

initial updating of the boundary function in the domain onto which the fluid flows. 

I. The mesh is then deformed. The deformation of the mesh is achieved using the ALE concepts 

II. The velocity of the mesh is then calculated 

III. The elements of the finite element are then split 

IV. The resulting unknowns are then computed. The specific instructions on achieving the above 

instructions is as described below. 

Formulation of the Combined Fixed and ALE approach 

Solutions to a fluid structure problem to analyze its density and velocity basing on the following conditions; 

ρ[∂tU + (U − Um). ∇U] − ∇. σ = f (1) 

Where U and ρ velocity and density respectively are, 𝑓 is the vector representing the body forces and σ 

represents Cauch y stress tensor. 

∂t𝜌 + (U − Um). ∇ρ + ρ∇. U = 0 (2) 

In equation 2, the Um represents the velocity of the ALE system. 

Now, consider the domain illustrated below; 

Ω(t) ⊂ Ω0 ⊂ Rd (3) 

ΓFree (t) is defined using equation 4 below; 

ΓFree(t) = ∂Ω(t)(∂Ω0 ∩ ∂Ω(t)) (4) 

 

Where Γ represents the boundary Meshing Ω0 with M0(FE-mesh) and at a given time tn meshing  Ωn with Mn 

(which is FE-mesh). Below is an illustration of mesh deformation 

 

 

Figure 1: Mesh before deformation i.e. at 𝑴𝒏 [34] 
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Figure 2: Mesh after deformation i.e. after updating to 𝑴𝑨𝑳𝑬
𝒏+𝟏   [34]. 

 

In both figure 1 and figure 2, shows the body surface at  𝑡𝑛. The solid black line show the body surface when 

the time is at 𝑡𝑛+1. From the above diagram, it can be seen that while all the elements are deformed, the darker 

part remains unreformed. Since Un is the velocity determined by Ωn, then Γfree 
n+1 is defined by boundary 

function updating. The Mesh velocity can then be computed as Um
n+1.  Boundary updating entails translation 

of the domain to Ωn+1 from Ωn    [34]  . The figure below shows boundary updating 

 

 

Figure 3: Boundary updating using ALE method. 

 

The blue line shows the new updated position and the previous position is shown by the dotted blue line. The 

thick black line represents 𝑀𝑛 elements while the thin black line represents 𝑀0 elements. The red line shows 

the transition whereby by there is splitting from 𝑀0 to 𝑀𝑛 [34]. 

Using the position of the boundary points (xn+1 and xn), the mesh velocity of the points is determined from 

the position as shown in the equation 5 and equation 6 below; 

um = (xn+1 − xn)/ ∂(t) (5) 

Determination of Um on the other nodes is achieved by solving the condition below; 

∆Um = 0 (6) 

Using the previously defined domain and the mesh, it is now possible to find the solutions to the following 

equations. 

ρn+1 [
1

δt
(un+1 − un) + (un+1 − um). ∇Un+1 ] − ∇. σ = f 

(7) 

1

δt
(ρn+1 −  ρn) + (Un+1 − Um). ∇ρn+1 + ρn+1 ∇. Un+1 = 0 

(8) 

The solutions to equations 7 and Equation 8 can be determined using the backward Euler scheme. The 

solutions are based on the boundary conditions Γfree 
n+1  and Ωn+1 . This computes the velocity, Um 
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Considering the fact that 𝑃n+1 is a finite element function projection to Mn+1 from  Mvirt
n+1, then the equations 

on Mn+1 are as shown by equations 9 and equation 10 below; 

ρn+1 [
1

δt
(un+1 − Pn+1(un)) + (un+1 − Pn+1(um)). ∇Un+1 ] − ∇. σ = f 

(9) 

1

δt
(ρn+1 −  Pn+1(ρn)) + (Un+1 − Pn+1(Um)). ∇ρn+1 + ρn+1 ∇. Un+1 = 0 

(10) 

Where Pn+1 corresponds to the finite element projection from 𝑀 𝑡𝑜 𝑀𝑛+1. Equation 9 and equation 10 gives 

the flow equation basing on the combination of the fixed and ALE approach. 

 

SIMULATION RESULTS AND DISCUSSION 

This section describes the settings used for 2D laminar flow simulations beyond thin elastic structures. The 

computational domain has the following dimensions: length × height = 2.20 m × 0.41 m. The thin elastic 

structure is placed in the center of the domain with an axial distance of 1.10 m from the entrance. The height 

of the thin elastic structure is 0.30 m, and the structure consists of 200 nodes. The Poisson's ratio, Young's 

modulus, and density of the thin elastic structure are set to 0.30, 5.0 MPa, and 1.0 kg/m3, respectively. Figure 

4 shows the geometry of the solution domain, and Table 1 shows the parameters used for fluid flow. 

 

Figure 4: Domain and boundary conditions of two-dimensional thin solid 

 

Table 1: Fluid domain parameters in a 2-D channel 

Parameters Outer Mesh Refined Mesh Around the 

Object 

Number of nodes 220 × 41 40 × 240 

Re UD=º  20 20 

Increment of Time,  5 × 10−3 6.25 × 10−6 

Grid size,  0.01 0.00125 

Free stream velocity UoUo 
0.3 0.3 

 

The following screenshots shows simulation in ANSYS Simulation Software. This simulation shows the flow 

of a fluid around a cantilever. The figure 5 indicates velocities and pressure of the fluid at 100-time step. 

Figure 5 shows the pressure and velocity profiles of the laminar flow around the static thin structure. It can be 

seen that the flow velocity is usually higher than the structure, starting from the middle of the structure, as 

indicated by the yellow, orange and red regions. Interestingly, the flow will decelerate in front of the body, 

while the flow velocity behind the body is still very low, as shown in the highlighted blue region in Figure 5. 

The pressure before the thin structure is much higher, as shown in the red region, and the pressure drops 

abruptly after passing fluid through the body. Displacement time graph obtained from the data is as shown 

below; 
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Figure 5: Simulation Fluid flow around a cantilever used Purely ALE method 

 

 

Figure 6 Snapshots the deformed immersed thin structure and fixed background fluid mesh with 

refinement mesh around of the thin elastic structure and a boundary layer of mesh. 
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Figure 7: Simulation Fluid flow around a cantilever used the combined fixed and ALE method 

 

Figure 8: Graph showing Horizontal displacement vs. time step during simulation 

 

Figure 8 shows a plot in indicating how a point that has been placed on top of the cantilever has been 

displaced horizontally. On examination of this figure, it can be seen that the fluid’s action damps the 

cantilever’s movement. The movement increases from the start and after some time, it becomes almost 

constant. . The main feature of this locally refined mesh surrounding the object is its dynamic movement, 

which does not require much computation as the determination is limited and does not include the entire 

domain space 

In the above simulation, the body in the fluid experiences very large strains due to the force resulting from the 

fluid flow. As earlier stated, ALE grid methods are not efficient in such scenarios due to the large element 

stretch. However, it’s been possible to get accurate and robust results as shown due to the fact that, the 

combined method has aided in the aversion of stretching of the elements by the use of the fixed grid method 

properties. Re-meshing has been avoided, as it would have been done in the classical ALE methods. 

Generally, the use of the combined methods make it easy to mesh the background domain, and the avoidance 

of mesh distortion when dealing with large deformations.  Figure 7 show velocity in x direction after 0.453 

seconds. Figure 5 shows simulation results when using pure ALE method and figure 7 shows results when 

using Combined fixed – ALE method. It can be seen that due to the very high deformation of the mesh, of the 

purely ALE approach after a given time. This is contrary to when there is the use of combined fixed – ALE 

method. 

1.02 1.05 1.08 1.11 1.14 1.17 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

y

  Coarse mesh
  ALE (Fine mesh) 
  Combined Fixed - ALE 



Copyrights @Kalahari Journals Vol.7 No.7 (July, 2022) 

International Journal of Mechanical Engineering 

253 

Figure 9: shows is an illustration mesh size of combined Fixed – ALE of the fluid interaction. The mesh size 

near the thin elastic structure must be fine enough to accurately capture the flow physics at the FS-interface. 

The fixed and ALE combined method is used to locally adjust and refine the fluid mesh size near the limit of 

the thin elastic structure, without the need to refine the entire calculation domain, so this method is more 

efficient. The fluid element and the solid node are attached to the boundary without any discontinuity, and can 

capture any deformation of the thin elastic structure. The surface integral at the FS- interface is considered 

massless and can be eliminated when the stiffness matrix is formed. This processing eliminates the need to 

calculate surface forces at the FS-interface. 
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Figure 9: shows is an illustration mesh size of combined Fixed – ALE of the fluid interaction. 

 

Figure 10 shows the comparison of the Cd values obtained from the combined fixed ALE and pure ALE. The 

Cd value is determined by the simulation result of the combined fixed ALE, and the value is compared with 

the result obtained from the pure ALE method. Use ANSYS 17.0 software. The direction here is the total 

hydrodynamic force. Figure 10 shows the difference of the Cd of the deformed thin elastic structure valve 

over time. These changes are obtained from a combination of fixed ALE and pure ALE algorithms with the 

same mesh size and initial time step. The error of the Cd is very small (estimated at ~2%), indicating that the 

values of the Cd between the algorithms have good consistency. However, from a computational point of 

view, the fixed ALE combination algorithm is much simpler to implement and relatively cheap. 

 

 

Figure 10:  Comparison of drag coefficient values obtained by combining Fixed-ALE and pure ALE 

algorithms 
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CONCLUSION 

The main purpose of this research is to develop an algorithm based on a fixed grid combined with arbitrary-

Lagrangian-Euler Method to improve the simulation solution of the FSI problem of thin objects near the fluid-

structure interface. The study illustrates the benefits of using ALE-based FSI methods and fixed complex 

technology. The combination of these two techniques facilitates the analysis of complex FSI problems that 

experience large deformations. Next, the algorithm is calculated to simulate the laminar flow outside the fixed 

and moving thin structures representing the membrane valve in the two-dimensional domain. According to the 

combined result, it can be seen that the background is easier to be gridded, and there is no grid distortion. 

Compared with soft computing modeling, modeling is simple and less time-consuming. It can be extended to 

new areas that require higher resolution or rely on the parallel scaling properties of the solver. 
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