International Journal of Mechanical Engineering

A new class of local function on Nano Ideal Topological Spaces

Baby Suganya G¹, Pasunkilipandian S², Kalaiselvi M³

¹Research Scholar(Reg.No : 19222072092002), Department of Mathematics, Govindammal Aditanar College for Women (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India), Tiruchendur, sugangvs@gmail.com.

²Associate Professor, Department of Mathematics, Aditanar College of Arts and Science (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India), Tiruchendur, pasunkilipandian@yahoo.com.

³Associate Professor, Department of Mathematics, Govindammal Aditanar College for Women, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamil Nadu, India),Tiruchendur, kesriharan@gmail.com.

Abstract

The intention of this paper is to introduce a new class of local function namely, $ns_{\alpha}g$ – local function in the $n\mathcal{I}$ – topological spaces. We investigate certain properties and characteristics of $ns_{\alpha}g$ – open set and $ns_{\alpha}g$ – local function in n – topological space and $n\mathcal{I}$ – topological space respectively. Furthermore, we construct a new class of topology and discuss certain characteristics.

Keywords: nano ideal topological space, $ns_{\alpha}g$ - closure, $ns_{\alpha}g$ - interior, $ns_{\alpha}g$ - local function, $\mathcal{N}^{s_{\alpha}g^{\star}}$ - topology

1.INTRODUCTION

Hamlett and Jankovic[9] have considered the local function in ideal topological space and they have obtained a new topology. Parimala et.al[5] introduced a notion of nano ideal topological space by introducing a similar type of local function, namely nano local function. Pasunkilipandian et.al [10] introduced a new class of nano generalized closed set in n – topological space namely, $ns_{\alpha}g$ – closed set. In this paper, we introduce the notion of $ns_{\alpha}g$ – local function using $ns_{\alpha}g$ – open sets and study its properties in nano ideal topological space. Further, we construct a topology $\mathcal{N}^{s_{\alpha}g^{\star}}$ for Γ using $ns_{\alpha}g$ – open set and an ideal \mathcal{I} on Γ .

2.PRELIMINARIES

We recall the following definitions, which will be used in sequel.

Definition 2.1[2] Let Γ be a nonempty finite set of objects called the universe and \mathcal{R} be an equivalence relation on Γ named as indiscernibility relation. Then Γ is divided into disjoint equivalence classes. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (Γ, \mathcal{R}) is said to be an approximation space. Let $\mathcal{X} \subseteq \Gamma$. Then,

(i) The lower approximation of \mathcal{X} with respect to \mathcal{R} is the set of all objects which can be for certain classified as \mathcal{X} with respect to \mathcal{R} and is denoted by $L_{\mathcal{R}}(\mathcal{X})$. That is, $L_{\mathcal{R}}(\mathcal{X}) = \bigcup_{x \in \Gamma} \{\mathcal{R}(\mathcal{X}) \subseteq X : x \in \Gamma\}$ where $\mathcal{R}(\mathcal{X})$ denotes the equivalence class determined by $x \in \Gamma$.

(ii) The upper approximation of \mathcal{X} with respect to \mathcal{R} is the set of all objects which can be possibly classified as \mathcal{X} with respect to \mathcal{R} and is denoted by $U_{\mathcal{R}}(\mathcal{X})$. That is, $U_{\mathcal{R}}(\mathcal{X}) = \bigcup_{x \in \Gamma} \{\mathcal{R}(\mathcal{X}) : \mathcal{R}(\mathcal{X}) \cap X \neq \emptyset, x \in \Gamma\}$ where $\mathcal{R}(\mathcal{X})$ denotes the equivalence class determined by $x \in \Gamma$.

(iii) The boundary region of \mathcal{X} with respect to \mathcal{R} is the set of all objects which can be classified neither as \mathcal{X} nor as not $-\mathcal{X}$ with respect to \mathcal{R} and is denoted by $B_{\mathcal{R}}(\mathcal{X})$. That is, $B_{\mathcal{R}}(\mathcal{X}) = U_{\mathcal{R}}(\mathcal{X}) - L_{\mathcal{R}}(\mathcal{X})$. **Definition 2.2** [2] Let Γ be a universe, \mathcal{R} be an equivalence relation on Γ and $\mathcal{N}_{\mathcal{R}}(\mathcal{X}) = \{\mathcal{U}, \emptyset, L_{\mathcal{R}}(\mathcal{X}), U_{\mathcal{R}}(\mathcal{X}), B_{\mathcal{R}}(\mathcal{X})\}$, where $X \subseteq \Gamma$, satisfies the following axioms: (i) $\mathcal{U}, \emptyset \in \mathcal{N}_{\mathcal{R}}(\mathcal{X})$.

(ii) The union of the elements of any sub-collection of $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$ is in $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$.

(iii) The intersection of the elements of any finite subcollection of $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$ is in $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$.

Therefore, $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$ is a topology on Γ called the nano topology on Γ with respect to \mathcal{X} . We call $(\Gamma, \mathcal{N}_{\mathcal{R}}(\mathcal{X}))$ as the nano topological space. The elements of $\mathcal{N}_{\mathcal{R}}(\mathcal{X})$ are called nano open sets (briefly, *n*- closed set). The complement of a nano open set is called a nano closed set (briefly, *n* - closed set).

Definition 2.3 [6] A subset C of a nano topological space (Γ, \mathcal{N}) is said to be nano semi α – open set (briefly, $NS_{\alpha} - O.S$) if there exists a $n\alpha$ – open set \mathcal{P} in Γ such that $\mathcal{P} \subseteq C \subseteq n - cl(\mathcal{P})$ or equivalently if $C \subseteq n - cl(n\alpha - int(\mathcal{P}))$. The family of all $NS_{\alpha} - O.S$ of \mathcal{U} is denoted by $NS_{\alpha}O(\mathcal{U},\mathcal{M})$.

Definition 2.4 [7] A subset \mathcal{H} of a nano ideal topological space $(\Gamma, \mathcal{N}, \mathcal{I})$ is said to be nano ideal semi α – generalized closed set (briefly, $nIs_{\alpha}g$ – closed set) if $\mathcal{H}_{n}^{*} \subseteq \mathcal{K}$ whenever $\mathcal{H} \subseteq \mathcal{K}$ and \mathcal{K} is nano semi α – open.

Definition 2.5 [8] Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be an ideal topological space and $x \in A \subseteq X$. Then \mathcal{X} is said to be an $\mathcal{I}\alpha$ – interior point of A if A contain an $\mathcal{I}\alpha$ – open neighborhood set for \mathcal{X} . The set of all $\mathcal{I}\alpha$ – interior points of A is called $\mathcal{I}\alpha$ – interior set and simply is denoted by $\mathcal{I}\alpha - int(A)$.

Definition 2.6 [5]Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a nano ideal topological space with an ideal \mathcal{I} on Γ and $(.)^*$ be a set operator from 2^{Γ} to $2^{\Gamma} (2^{\Gamma}$ is the set of all subsets of Γ). For a subset $\mathcal{A} \subset \Gamma, \mathcal{A}_n^*(\mathcal{I}, \mathcal{N}) = \{x \in \Gamma: \mathcal{G}_n \cap \mathcal{A} \notin \mathcal{I}, \text{ for every } \mathcal{G}_n \in \mathcal{G}_n(x)\}$, where $\mathcal{G}_n(x) = \{\mathcal{G}_n: x \in \mathcal{G}_n, \mathcal{G}_n \in \mathcal{N}\}$ is a family of nano open sets which contain x, is called the nano local function (briefly, n – local function) of \mathcal{A} with respect to \mathcal{I} and \mathcal{N} . We will simply write \mathcal{H}_n^* for $\mathcal{H}_n^*(\mathcal{I}, \mathcal{N})$.

Definition 2.7 [5]A subset \mathcal{H} of a nano ideal topological space $(\Gamma, \mathcal{N}, \mathcal{I})$ is n^* – dense in itself (resp. n^* – perfect and n^* – closed) if $\mathcal{H} \subseteq \mathcal{H}_n^*$ (resp. $\mathcal{H} = \mathcal{H}_n^*$ and $\mathcal{H}_n^* \subseteq \mathcal{H}$).

Definition 2.8 [5] A basis $\beta(\mathcal{I}, \mathcal{N})$ for \mathcal{N}^* can be described as follows: $\beta(\mathcal{I}, \mathcal{N}) = \{A - B : A \in \mathcal{N}, B \in \mathcal{I}\}.$

Definition 2.9 [5] $\mathcal{N}^*(\mathcal{I}, \mathcal{N}) = \{V \subset \Gamma: n - cl^*(\Gamma - V) = \Gamma - V\}$ is called nano*- topology which is finer than \mathcal{N} . The elements of $\mathcal{N}^*(\mathcal{I}, \mathcal{N})$ are called nano*-open (briefly, n *- open) and the complement of an n *- open set is called nano*- closed (briefly, n *- closed).

3. $ns_{\alpha}g$ – closure and $ns_{\alpha}g$ – interior

Definition 3.1. For every set $\mathcal{H} \subseteq (\Gamma, \mathcal{N})$,

- (i) $ns_{\alpha}g$ closure of \mathcal{H} is defined as the intersection of all $ns_{\alpha}g$ closed sets containing $\mathcal{H}(i.e.,)ns_{\alpha}g cl(\mathcal{H}) = \cap \{\mathcal{F}: \mathcal{H} \subseteq \mathcal{F}, \mathcal{F} \in ns_{\alpha}g closed set\}.$
- (ii) $ns_{\alpha}g$ interior of \mathcal{H} is defined as the union of all $ns_{\alpha}g$ open sets contained in \mathcal{H} (i.e.,) $ns_{\alpha}g$ - $int(\mathcal{H}) = \bigcup \{\mathcal{K}: \mathcal{K} \subseteq \mathcal{H}, \mathcal{K} \in ns_{\alpha}g$ - open set}.

Lemma 3.2 If $ns_{\alpha}g - cl(\Gamma, \mathcal{N})$ is closed under finite union, then $ns_{\alpha}g - closure$ is a Kuratowski operator on $(\Gamma, \mathcal{N}, \mathcal{I})$.

Proof: (i)
$$ns_{\alpha}g - cl(\emptyset) = \emptyset$$
 and $ns_{\alpha}g - cl(\Gamma) =$. Also, $\mathcal{H} \subseteq ns_{\alpha}g - cl(\mathcal{H})$.

Copyrights @Kalahari Journals

(ii) Suppose that \mathcal{H} and \mathcal{K} are two subsets of Γ , then $ns_{\alpha}g - cl(\mathcal{H}) \subseteq ns_{\alpha}g - cl(\mathcal{H} \cup \mathcal{K})$ and $ns_{\alpha}g - cl(\mathcal{K}) \subseteq ns_{\alpha}g - cl(\mathcal{H} \cup \mathcal{K})$. Hence, $ns_{\alpha}g - cl(\mathcal{H}) \cup ns_{\alpha}g - cl(\mathcal{K}) \subseteq ns_{\alpha}g - cl(\mathcal{H} \cup \mathcal{K})$. If $\gamma \notin ns_{\alpha}g - cl(\mathcal{H}) \cup ns_{\alpha}g - cl(\mathcal{K}) \cup ns_{\alpha}g - cl(\mathcal{K})$, then there exists $\mathcal{A}, \mathcal{B} \in ns_{\alpha}g - cl(\Gamma, \mathcal{N}, \mathcal{I})$ such that $\mathcal{H} \subseteq \mathcal{A}, \gamma \notin \mathcal{A}, \mathcal{K} \subseteq \mathcal{B}$ and $\gamma \notin \mathcal{B}$. Hence, $\mathcal{H} \cup \mathcal{K} \subseteq \mathcal{A} \cup \mathcal{B}$ and $\gamma \notin \mathcal{A} \cup \mathcal{B}$. By hypothesis, $\mathcal{A} \cup \mathcal{B}$ is $ns_{\alpha}g - cl(\mathcal{H} \cup \mathcal{K})$. Hence, $ns_{\alpha}g - cl(\mathcal{H} \cup \mathcal{K})$.

(iii) Let $\mathcal{H} \subseteq \Gamma$ and \mathcal{F} be a $ns_{\alpha}g$ - closed set containing \mathcal{H} . Then by Definition 3.1.(i), $ns_{\alpha}g - cl(\mathcal{H}) \subseteq \mathcal{F}$ and $ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subseteq \mathcal{F}$. Since $ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subseteq \mathcal{F}$, $ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subseteq \mathcal{F}$, $ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subseteq \Gamma$, $ms_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subseteq ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \equiv ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H})) \subset (ns_{\alpha}g - cl(\mathcal{H}))$ implies that $(ns_{\alpha}g - cl(\mathcal{H})) = ns_{\alpha}g - cl(ns_{\alpha}g - cl(\mathcal{H}))$. Thus, $ns_{\alpha}g - closure$ is a Kuratowski closure operator on Γ .

Theorem 3.3 Let \mathcal{H} be a subset of the $n\mathcal{I}$ – topological space (Γ, \mathcal{N}) . Then $\gamma \in ns_{\alpha}g - cl(\mathcal{H})$ if and only if $\mathcal{H} \cap \mathcal{G} \neq \emptyset$ for every $ns_{\alpha}g$ – open set \mathcal{G} containing γ .

Proof: Suppose that $\gamma \in ns_{\alpha}g - cl(\mathcal{H})$. Let \mathcal{G} be a $ns_{\alpha}g$ - open set containing γ such that $\mathcal{H} \cap \mathcal{G} = \emptyset$ so that $\mathcal{H} \subset \mathcal{G}^c$. But \mathcal{G}^c is a $ns_{\alpha}g$ - closed set and $ns_{\alpha}g - cl(\mathcal{H}) \subset \mathcal{G}^c$. Since $\gamma \notin \mathcal{G}^c$, $\gamma \notin ns_{\alpha}g - cl(\mathcal{H})$ which is contrary to the hypothesis. Hence, $\mathcal{G} \cap \mathcal{H} \neq \emptyset$ for every $ns_{\alpha}g$ - open set \mathcal{G} containing γ . Conversely, suppose that every $ns_{\alpha}g$ - open set of Γ containing γ such that $\mathcal{H} \cap \mathcal{G} \neq \emptyset$. If $\gamma \notin ns_{\alpha}g - cl(\mathcal{H})$, then there exists a $ns_{\alpha}g$ - closed set \mathcal{F} of Γ such that $\mathcal{H} \subset \mathcal{F}$ and $\gamma \notin \mathcal{F}$. Hence, $\gamma \in \mathcal{F}^c$ and \mathcal{F}^c is an $ns_{\alpha}g$ - open set containing γ . Thus, $\mathcal{F}^c \cap \mathcal{H} = \emptyset$ which is a contradiction. Hence, $\gamma \in ns_{\alpha} - cl(\mathcal{H})$.

Theorem 3.4 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space and \mathcal{H} be a subset of Γ , then the following axioms are satisfied.

- (i) $(ns_{\alpha}g int(\mathcal{H}))^{c} = ns_{\alpha}g cl(\mathcal{H}^{c}).$
- (ii) $ns_{\alpha}g int(\mathcal{H}) = (ns_{\alpha}g cl(\mathcal{H}^{c}))^{c}$.
- (iii) $ns_{\alpha}g cl(\mathcal{H}) = (ns_{\alpha}g int(\mathcal{H}^{c}))^{c}$.

Proof: (i) Let $\gamma \in (ns_{\alpha}g - int(\mathcal{H}))^{c}$. Then $\gamma \notin ns_{\alpha}g - int(\mathcal{H})$. That is, every $ns_{\alpha}g -$ open set \mathcal{F} containing γ is such that $\mathcal{F} \notin \mathcal{H}$. That is, every $ns_{\alpha}g -$ open set \mathcal{F} containing γ is such that $\mathcal{F} \cap \mathcal{H}^{c} \neq \emptyset$. Since $\gamma \in ns_{\alpha}g - cl(\mathcal{H}^{c})$, $(nls_{\alpha}g - int(\mathcal{H}))^{c} \subseteq ns_{\alpha}g - cl(\mathcal{H}^{c})$. Conversely, let $\gamma \in ns_{\alpha}g - cl(\mathcal{H})^{c}$. Then, every $ns_{\alpha}g -$ open set \mathcal{F} containing γ is such that $\mathcal{F} \cap \mathcal{H}^{c} \neq \emptyset$. That is, every $ns_{\alpha}g - cl(\mathcal{H})^{c}$. Then, every $ns_{\alpha}g -$ open set \mathcal{F} containing γ is such that $\mathcal{F} \cap \mathcal{H}^{c} \neq \emptyset$. That is, every $ns_{\alpha}g - cl(\mathcal{H})^{c}$. Then, every $ns_{\alpha}g -$ open set \mathcal{F} containing γ is such that $\mathcal{F} \notin \mathcal{H}$. By the Definition 3.1. (ii), $\gamma \notin ns_{\alpha}g - int(\mathcal{H})$. That is, $\gamma \in (ns_{\alpha}g - int(\mathcal{H}))^{c}$ so that $ns_{\alpha}g - cl(\mathcal{H}^{c}) \subset (ns_{\alpha}g - int(\mathcal{H}))^{c}$. Thus, $(ns_{\alpha}g - int(\mathcal{H}))^{c} = ns_{\alpha}g - cl(\mathcal{H}^{c})$.

(ii) Follows by taking complements in (i).

(iii) Follows by replacing \mathcal{H} by \mathcal{H}^{c} in (i).

4. $ns_{\alpha}g$ – local function

Definition 4.1 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space and $(.)^{s_{\alpha}g^*}$ be a set operator from 2^{Γ} to 2^{Γ} , where 2^{Γ} is the set of all subsets of Γ . For a subset $\mathcal{H} \subset \Gamma$, $\mathcal{H}^*_{n,s_{\alpha},d}(\mathcal{I}, \mathcal{N}) = \{x \in \Gamma: \mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}, \text{ for } x \in \Gamma\}$

Copyrights @Kalahari Journals

every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha} \mathscr{G}}(\gamma)$ is called the nano semi α generalized local function (briefly, $ns_{\alpha}g$ – local function) of \mathcal{H} with respect to \mathcal{I} and \mathcal{N} . We will simply write $\mathcal{H}^*_{ns_{\alpha} \mathscr{G}}$ instead of $\mathcal{H}^*_{ns_{\alpha} \mathscr{G}}(\mathcal{I}, \mathcal{N})$.

Remark 4.2 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space. The minimal ideal is $\{\emptyset\}$ for any $n\mathcal{I}$ – topological space $(\Gamma, \mathcal{N}, \mathcal{I})$ and the maximal ideal is 2^{Γ} .

Remark 4.3 For every $\mathcal{H} \subseteq \Gamma$,

- (i) If $\mathcal{I} = \{\emptyset\}$, then $\mathcal{H}^*_{n \delta_{\alpha} \mathcal{G}} = n s_{\alpha} g cl(\mathcal{H}) \neq n cl(\mathcal{H})$.
- (ii) If $\mathcal{I} = 2^{\Gamma}$, then $\mathcal{H}_{ns_{\alpha}\mathcal{G}}^* = \emptyset$.
- (iii) If $\mathcal{H} \in \mathcal{I}$, then $\mathcal{H}^*_{n \delta_{\alpha} \mathscr{G}} = \emptyset$.
- (iv) Neither $\mathcal{H} \subset \mathcal{H}_{n\mathfrak{s}_{\alpha}\mathfrak{G}}^*$ nor $\mathcal{H}_{n\mathfrak{s}_{\alpha}\mathfrak{G}}^* \subset \mathcal{H}$, in general.

Proposition 4.4 Let (Γ, \mathcal{N}) be a nano topological space with ideals $\mathcal{I}, \mathcal{I}'$ on Γ and \mathcal{H}, \mathcal{K} be subsets of Γ . Then,

- (i) $(\emptyset)_{ns_{\alpha}g}^* = \emptyset.$
- (ii) $\mathcal{H} \subseteq \mathcal{K} \setminus implies \mathcal{H}_{ns_{\alpha}g}^* \subseteq \mathcal{K}_{ns_{\alpha}g}^*$.
- (iii) $\mathcal{I} \subseteq \mathcal{I}' \Longrightarrow \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}') \subseteq \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}).$
- (iv) $\mathcal{H}^*_{ns_{\alpha}g} \subseteq ns_{\alpha}g cl(\mathcal{H}).$
- (v) $\mathcal{H}_{ns_{\alpha}\mathcal{G}}^* = ns_{\alpha}g cl(\mathcal{H}_{ns_{\alpha}\mathcal{G}}^*) \subseteq ns_{\alpha}g cl(\mathcal{H}), \ (\mathcal{H}_{ns_{\alpha}\mathcal{G}}^* * \text{ is a $ns_{\alpha}]} = s_{\alpha}s_{\alpha}s_{\alpha}$ subset of \mathcal{H}).

(vi)
$$\left(\mathcal{H}_{n\mathfrak{s}_{\alpha}\mathfrak{G}}^{*}\right)_{n\mathfrak{s}_{\alpha}\mathfrak{G}}^{*} \subseteq \mathcal{H}_{n\mathfrak{s}_{\alpha}\mathfrak{G}}^{*}$$

- (vii) $\mathcal{H}_{ns_{\alpha}g}^* \cup \mathcal{K}_{ns_{\alpha}g}^* = (\mathcal{H} \cup \mathcal{K})_{ns_{\alpha}g}^*.$
- (viii) $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}} \setminus \mathcal{K}^*_{ns_{\alpha}\mathcal{G}} = (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}\mathcal{G}} \subseteq (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g}.$
- (ix) $\mathcal{I} \in \mathcal{I} \setminus implies(\mathcal{H} \setminus \mathcal{I})^*_{ns_{\alpha}g} \subseteq \mathcal{H}^*_{ns_{\alpha}g} = (\mathcal{H} \cup \mathcal{I})^*_{ns_{\alpha}g}.$

Proof: (i) The proof is trivial.

(ii) Let $\mathcal{H} \subset \mathcal{K}$ and $\gamma \in \mathcal{H}_{ns_{\alpha}g}^*$. Assume that $\gamma \notin \mathcal{K}_{ns_{\alpha}g}^*$. We have $\mathcal{G}_n \cap \mathcal{K} \in \mathcal{I}$ for some $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$. Since $\mathcal{G}_n \cap \mathcal{H} \subseteq \mathcal{G}_n \cap \mathcal{K}$ and $\mathcal{G}_n \cap \mathcal{K} \in \mathcal{I}$, we obtain $\mathcal{G}_n \cap \mathcal{H} \in \mathcal{I}$. Thus, $\gamma \notin \mathcal{H}_{ns_{\alpha}g}^*$ which is a contradiction. Clearly, $\mathcal{H}_{ns_{\alpha}g}^* \subseteq \mathcal{K}_{ns_{\alpha}g}^*$.

(iii) Let $\mathcal{I} \subseteq \mathcal{I}'$ and $\gamma \in \mathcal{H}^*_{n, \delta_{\alpha} \notin}(\mathcal{I}')$. Then, $\mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}'$ for every $\mathcal{G}_n \in \mathcal{N}^{\delta_{\alpha} \notin}(\gamma)$. By hypothesis, $\mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}$. So $\gamma \in \mathcal{H}^*_{n, \delta_{\alpha} \notin}(\mathcal{I})$. Therefore, $\mathcal{H}^*_{n, \delta_{\alpha} \notin}(\mathcal{I}') \subseteq \mathcal{H}^*_{n, \delta_{\alpha} \notin}(\mathcal{I})$.

(iv) Let $\gamma \in \mathcal{H}_{ns_{\alpha}g}^*$. Then by Definition 4.1, for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma), \mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}$ which implies $\mathcal{G}_n \cap \mathcal{H} = \emptyset$. Hence, $\gamma \in ns_{\alpha}g - cl(\mathcal{H})$, therefore, $\mathcal{H}_{ns_{\alpha}g}^* \subseteq ns_{\alpha}g - cl(\mathcal{H})$.

(v) $\mathcal{H}_{ns_{\alpha}g}^* \subseteq ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*)$ hold in general. Let $\gamma \in ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*)$. Then $\mathcal{H}_{ns_{\alpha}g}^* \cap \mathcal{G}_n \neq \emptyset$ for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$. Therefore, there exists some $\lambda \in \mathcal{H}_{ns_{\alpha}g}^* \cap \mathcal{G}_n$ and $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$. Since $\lambda \in \mathcal{H}_{ns_{\alpha}g}^*$, $\mathcal{H} \cap \mathcal{G}_n \notin \mathcal{I}$ and hence $\gamma \in \mathcal{H}_{ns_{\alpha}g}^*$. Thus, $ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*) \subseteq \mathcal{H}_{ns_{\alpha}g}^*$. Now, $ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*) = \mathcal{H}_{ns_{\alpha}g}^*$. Then $\mathcal{H} \cap \mathcal{G}_n \notin \mathcal{I}$ for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$. This implies that $\mathcal{H} \cap \mathcal{G}_n \neq \emptyset$ for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$ and so $\gamma \in ns_{\alpha}g - cl(\mathcal{H})$. Consequently, $\mathcal{H}_{ns_{\alpha}g}^* = ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*) \subseteq ns_{\alpha}g - cl(\mathcal{H})$ and $\mathcal{H}_{ns_{\alpha}g}^*$ is a $ns_{\alpha}g - closed$.

(vi) From (v),
$$\left(\mathcal{H}_{ns_{\alpha}g}^*\right)_{ns_{\alpha}g}^* \subseteq ns_{\alpha}g - cl\left(\mathcal{H}_{ns_{\alpha}g}^*\right) = \mathcal{H}_{ns_{\alpha}g}^*$$
, since $\mathcal{H}_{ns_{\alpha}g}^*$ is a $ns_{\alpha}g$ - closed set.

Copyrights @Kalahari Journals

(vii) $\mathcal{H} \subset \mathcal{H} \cup \mathcal{K}$ and $\mathcal{K} \subset \mathcal{H} \cup \mathcal{K}$ and $\mathcal{H}_{ns_{\alpha}g}^* \cup \mathcal{K}_{ns_{\alpha}g}^* \subseteq (\mathcal{H} \cup \mathcal{K})_{ns_{\alpha}g}^*$ by (ii). Conversely, let $\gamma \in (\mathcal{H} \cup \mathcal{K})_{ns_{\alpha}g}^*$. Then for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}g}(\gamma)$, $\mathcal{G}_n \cap (\mathcal{H} \cup \mathcal{K}) \notin \mathcal{I}$ implies that $(\mathcal{G}_n \cap \mathcal{H}) \cup (\mathcal{G}_n \cap \mathcal{K}) \notin \mathcal{I}$. Therefore, $\mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}$ and $\mathcal{G}_n \cap \mathcal{K} \notin \mathcal{I}$. This implies that $\gamma \in \mathcal{H}_{ns_{\alpha}g}^*$ and $\gamma \in \mathcal{K}_{ns_{\alpha}g}^*$, that is, $\gamma \in \mathcal{H}_{ns_{\alpha}g}^* \cup \mathcal{K}_{ns_{\alpha}g}^*$. So we obtain the equality.

(viii) Clearly, $(\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g} \subseteq (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g}$. Since $\mathcal{H} \setminus \mathcal{K} \subseteq \mathcal{H}$, by (ii), $(\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$ and hence $(\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g}$. Conversely, $\mathcal{H} \subseteq (\mathcal{H} \setminus \mathcal{K}) \cup \mathcal{K}$, by (vii) $\mathcal{H}^*_{ns_{\alpha}g} \subseteq (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \cup \mathcal{K}^*_{ns_{\alpha}g}$ and hence $\mathcal{H}^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g} \subseteq ((\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \cup \mathcal{K}^*_{ns_{\alpha}g}) \setminus \mathcal{K}^*_{ns_{\alpha}g}$. Therefore, $\mathcal{H}^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g} \subseteq (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \setminus (\mathcal{K}^*_{ns_{\alpha}g} \cup \mathcal{K}^*_{ns_{\alpha}g})$ so that $\mathcal{H}^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g} \subset (\mathcal{H} \setminus \mathcal{K})^*_{ns_{\alpha}g} \setminus \mathcal{K}^*_{ns_{\alpha}g}$.

(ix) By (vii) and Remark 3.2 (iii), $(\mathcal{H} \cup \mathcal{I})^*_{ns_{\alpha}g} = \mathcal{H}^*_{ns_{\alpha}g} \cup \mathcal{I}^*_{ns_{\alpha}g} = \mathcal{H}^*_{ns_{\alpha}g} \cup \emptyset = \mathcal{H}^*_{ns_{\alpha}g}$. Since $\mathcal{H} \setminus \mathcal{I} \subset \mathcal{H}$ by (ii), $(\mathcal{H} \setminus \mathcal{I})^*_{ns_{\alpha}g} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$. Hence, we get the result.

Remark 4.5 In general, the reverse implications of (ii),(iii) and (iv) of Proposition 4.4 does not hold. For instance, consider the $n\mathcal{I}$ – topological spaces $(\Delta, \mathcal{N}, \mathcal{I}')$, $(\Delta_1, \mathcal{N}_1, \mathcal{I}_1)$ and $(\Delta_1, \mathcal{N}_1, \mathcal{I}_1)$ as follows: (a) $\Delta = \{\delta_1, \delta_2, \delta_3, \delta_4\}$; $\Delta/\mathcal{R} = \{\{\delta_1\}, \{\delta_2, \delta_3\}, \{\delta_4\}\}$; $\mathcal{X} = \{\delta_1, \delta_3\}$; $\mathcal{N} = \{\emptyset, \Delta, \{\delta_1\}, \{\delta_1, \delta_2, \delta_3\}, \{\delta_2, \delta_3\}\}; \mathcal{I}' = \{\emptyset, \{\delta_2\}, \{\delta_3\}, \{\delta_4\}, \{\delta_2, \delta_3\}, \{\delta_3, \delta_4\}, \{\delta_2, \delta_4\}, \{\delta_2, \delta_3, \delta_4\}\}.$ (b) $\Delta_1 = \{\delta_1, \delta_2, \delta_3\}; \Delta_1/\mathcal{R} = \{\{\delta_1, \delta_2\}, \{\delta_3\}\}; \mathcal{X} = \{\delta_2\}; \mathcal{N}_1 = \{\emptyset, \Delta_1, \{\delta_1, \delta_2\}\}; \mathcal{I}_1 = \emptyset, \{\delta_3\}\}.$ (c) $\Delta_1 = \{\delta_1, \delta_2, \delta_3\}; \Delta_1/\mathcal{R} = \{\{\delta_1, \delta_2\}, \{\delta_3\}\}; \mathcal{X} = \{\delta_2\}; \mathcal{N}_1 = \{\emptyset, \Delta_1, \{\delta_1, \delta_2\}\}; \mathcal{I}'_1 = \emptyset, \{\delta_2\}\}.$ (i) Let $\mathcal{H} = \{\delta_2, \delta_3\}; \mathcal{H} = \{\delta_2\}; \mathcal{H}^*_{ns_{\alpha}g}} = \{\delta_3\} \subset \mathcal{H}^*_{ns_{\alpha}g}} = \{\delta_1, \delta_3\}, \text{but } \mathcal{H} \notin \mathcal{K}.$

- (ii) For $\mathcal{H} = \{\delta_1, \delta_2\}, \mathcal{H}^*_{n \delta_{\alpha} \mathcal{G}}(\mathcal{I}') = \Delta_1 \subset \mathcal{H}^*_{n \delta_{\alpha} \mathcal{G}}(\mathcal{I}) = \{\delta_1, \delta_3\} \text{ but } \mathcal{I} \not\subseteq \mathcal{I}'.$
- (iii) For $\mathcal{H} = \{\delta_1, \delta_2\}, \ \mathcal{H}^*_{ns_{\alpha}g} = \{\delta_1, \delta_4\} = ns_{\alpha}g cl(\mathcal{H}^*_{ns_{\alpha}g}); \ ns_{\alpha}g cl(\mathcal{H}) = \{\delta_1, \delta_2, \delta_4\}.$ Here, $ns_{\alpha}g - cl(\mathcal{H})/\subseteq \mathcal{H}^*_{ns_{\alpha}g} = ns_{\alpha}g - cl(\mathcal{H}^*_{ns_{\alpha}g}).$

Theorem 4.6 Let (Γ, \mathcal{N}) be a nano topological space with ideals $\mathcal{I}, \mathcal{I}'$ on Γ and let \mathcal{H} be a subset of Γ. Then $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I} \cap \mathcal{I}') = \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}) \cup \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}').$

Proof: Since $\mathcal{I} \cap \mathcal{I}' \subset \mathcal{I}$ and $\mathcal{I} \cap \mathcal{I}' \subseteq \mathcal{I}'$, by Proposition 4.4 (iii), $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}) \subseteq \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I} \cap \mathcal{I}')$ and $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}') \subseteq \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I} \cap \mathcal{I}')$. Hence, $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}) \cup \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}') \subseteq \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I} \cap \mathcal{I}')$. Conversely, let $\gamma \in \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I} \cap \mathcal{I}')$. Then for every $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha}\mathcal{G}}(\gamma), \mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I} \cap \mathcal{I}'$ hence, $\mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}$ or $\mathcal{G}_n \cap \mathcal{H} \notin \mathcal{I}'$. This shows that $\gamma \in \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I})$ or $\gamma \in \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}')$. Therefore, $\gamma \in \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}(\mathcal{I}) \cup \mathcal{H}_{ns_{\alpha}\mathcal{G}^*}(\mathcal{I}')$. Hence, we get the result.

Lemma 4.7 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space. If $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha} \mathcal{G}}(\gamma)$, then $\mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \mathcal{G}} = \mathcal{G}_n \cap (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} \mathcal{G}} \subseteq (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} \mathcal{G}}$ for any subset \mathcal{H} of Γ .

Proof: Suppose that $\mathcal{G}_n \in \mathcal{N}^{s_{\alpha} \notin}(\gamma)$ and $\gamma \in \mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \#}$. Then $\gamma \in \mathcal{G}$ and $\gamma \in \mathcal{H}^*_{ns_{\alpha} \#}$. Let \mathcal{F} be any $ns_{\alpha}g$ – open set containing γ . Then $\mathcal{F} \cap \mathcal{G}_n \in \mathcal{N}^{s_{\alpha} \#}(\gamma)$ and $\mathcal{F} \cap (\mathcal{G}_n \cap \mathcal{H}) = (\mathcal{F} \cap \mathcal{G}_n) \cap \mathcal{H} \notin \mathcal{I}$, by Definition 4.1. This shows that $\gamma \in (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g}$ and hence we obtain $\mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \#} \subseteq (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g}$. Moreover, $\mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \#} \subseteq \mathcal{G}_n \cap (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g}$. Since $\mathcal{G}_n \cap \mathcal{H} \subseteq \mathcal{H}$ by Proposition 4.4 (iii), $(\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g} \subseteq \mathcal{H}^*_{ns_{\alpha} \#}$ and $\mathcal{G}_n \cap (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g} \subseteq \mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \#}$. Therefore, $\mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha} \#} = \mathcal{G}_n \cap (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha} g}$.

Copyrights @Kalahari Journals

Theorem 4.8 If $(\Gamma, \mathcal{N}, \mathcal{I})$ is a $n\mathcal{I}$ – topological space and $\mathcal{H} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$, then $\mathcal{H}^*_{ns_{\alpha}g} = ns_{\alpha}g - cl(\mathcal{H}^*_{ns_{\alpha}g}) = ns_{\alpha}g - cl(\mathcal{H})$.

Proof: By Proposition 4.4 (iv), for every $\mathcal{H} \subseteq \Gamma$ we have $\mathcal{H}_{ns_{\alpha}g}^* = ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*) \subseteq ns_{\alpha}g - cl(\mathcal{H})$. From the hypothesis, $\mathcal{H} \subseteq \mathcal{H}_{ns_{\alpha}g}^*$ implies that $ns_{\alpha}g - cl(\mathcal{H}) \subseteq ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*)$ so that $\mathcal{H}_{ns_{\alpha}g}^* = ns_{\alpha}g - cl(\mathcal{H}_{ns_{\alpha}g}^*) = ns_{\alpha}g - cl(\mathcal{H})$.

5. The open sets of $\mathcal{N}^{s_{\alpha}\mathcal{G}^{*}}$

Definition 5.1 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space. The set operator $ns_{\alpha}g - cl^*$ is called a nano semi α generalized * closure and is defined as $ns_{\alpha}g - cl^*(\mathcal{H}) = \mathcal{H} \cup \mathcal{H}^*_{ns_{\alpha}g}$ for $\mathcal{H} \subseteq \Gamma$.

Remark 5.2 (i) From Remark 4.2(i), if $\mathcal{I} = \{\emptyset\}$ then $\mathcal{H}_{ns_{\alpha}g}^* = ns_{\alpha}g - cl(\mathcal{H})$. In this case, $ns_{\alpha}g - cl^*(\mathcal{H}) = ns_{\alpha}g - cl(\mathcal{H})$.

(ii) If $(\Gamma, \mathcal{N}, \mathcal{I})$ is a $n\mathcal{I}$ – topological space with $\mathcal{I} = \{\emptyset\}$, then $\mathcal{N}^{\mathfrak{S}_{\alpha}\mathfrak{G}^*} = \mathcal{N}^{\mathfrak{S}_{\alpha}\mathfrak{G}}$.

Definition 5.3 $\mathcal{N}^{s_{\alpha}g^{*}}(\mathcal{I}) = \{\mathcal{F} \subset \Gamma: ns_{\alpha}g - cl^{*}(\mathcal{F}^{c}) = \mathcal{F}^{c}\}$. $\mathcal{N}^{s_{\alpha}g^{*}}(\mathcal{I}, \mathcal{N}^{s_{\alpha}g})$ is called nano semi α generalized * – topology (briefly, $\mathcal{N}^{s_{\alpha}g^{*}} -$ topology), which is finer than $\mathcal{N}^{s_{\alpha}g}$. We simply write $\mathcal{N}^{s_{\alpha}g^{*}}$ instead of $\mathcal{N}^{s_{\alpha}g^{*}}(\mathcal{I}, \mathcal{N}^{s_{\alpha}g})$. The elements of $\mathcal{N}^{s_{\alpha}g^{*}}(\mathcal{I}, \mathcal{N}^{s_{\alpha}g})$ are called nano semi α generalized * – open sets (briefly, $ns_{\alpha}g^{*}$ – open sets) and the complement of a $ns_{\alpha}g^{*}$ – open set is called $ns_{\alpha}g^{*}$ – closed set. Here, $ns_{\alpha}g - cl^{*}(\mathcal{H})$ and $ns_{\alpha}g - int^{*}(\mathcal{H})$ will denote the $ns_{\alpha}g$ – closure and $ns_{\alpha}g$ – interior of \mathcal{H} in $(\Gamma, \mathcal{N}^{s_{\alpha}g^{*}})$.

Remark 5.4 The topology $\mathcal{N}^{s_{\alpha}\mathcal{G}^*}$ is finer than $\mathcal{N}^{s_{\alpha}\mathcal{G}}$.

Proposition 5.5 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space and $\mathcal{H} \subseteq \Gamma$. If $\mathcal{H} \subseteq \mathcal{H}^*_{ns_{\alpha}\mathcal{G}}$, then

- (i) $ns_{\alpha}g cl(\mathcal{H}) = ns_{\alpha}g cl^{*}(\mathcal{H}).$
- (ii) $ns_{\alpha}g int(\mathcal{H}^{c}) = ns_{\alpha}g int^{*}(\mathcal{H}^{c}).$

Proof: (i) The proof follows from Theorem 4.8.

(ii) If $\mathcal{H} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$, then $ns_{\alpha}g - cl(\mathcal{H}) = ns_{\alpha}g - cl^*(\mathcal{H})$ by (i) so that $(ns_{\alpha}g - cl^*(\mathcal{H}))^c = (ns_{\alpha}g - cl^*(\mathcal{H}))^c$. Therefore, $ns_{\alpha}g - int(\mathcal{H}^c) = ns_{\alpha}g - int^*(\mathcal{H}^c)$.

Proposition 5.6 The set operator $ns_{\alpha}g - cl^*$ satisfies the following conditions:

- (i) $\mathcal{H} \subseteq ns_{\alpha}g cl^*(\mathcal{H}).$
- (ii) $ns_{\alpha}g cl^*(\phi) = \phi$ and $ns_{\alpha}g cl^*(\Gamma) = \Gamma$.
- (iii) If $\mathcal{H} \subseteq \mathcal{K}$, then $ns_{\alpha}g cl^*(\mathcal{H}) \subseteq ns_{\alpha}g cl^*(\mathcal{K})$.
- (iv) $ns_{\alpha}g cl^*(\mathcal{H}) \cup ns_{\alpha}g cl^*(\mathcal{H}) = ns_{\alpha}g cl^*(\mathcal{H} \cup \mathcal{H}).$
- (v) $ns_{\alpha}g cl^*(ns_{\alpha}g cl^*(\mathcal{H})) = ns_{\alpha}g cl^*(\mathcal{H}).$
- (vi) $ns_{\alpha}g cl^*(\mathcal{H} \cap \mathcal{K}) \subseteq ns_{\alpha}g cl^*(\mathcal{H}) \cap ns_{\alpha}g cl^*(\mathcal{K}).$
- (vii) If \mathcal{G}_n is $ns_{\alpha}g$ open, then $\mathcal{G}_n \cap (ns_{\alpha}g cl^*(\mathcal{H})) \subseteq ns_{\alpha}g cl^*(\mathcal{G}_n \cap \mathcal{H})$.

Proof: (i) By Definition 3.1, we obtain $\mathcal{H} \subseteq \mathcal{H} \cup \mathcal{H}^*_{ns_{\alpha}g} = ns_{\alpha}g - cl^*(\mathcal{H}).$

(ii) $ns_{\alpha}g - cl^*(\emptyset) = (\emptyset)^*_{ns_{\alpha}g} \cup \emptyset = \emptyset$, by Proposition 4.4 and $ns_{\alpha}g - cl^*(\Gamma) = \Gamma \cup \Gamma^*_{ns_{\alpha}g} = \Gamma$.

(iii) Since $\mathcal{H} \subseteq \mathcal{K}$ and $\mathcal{H}_{ns_{\alpha}g}^* \subseteq \mathcal{K}_{ns_{\alpha}g}^*$ implies that $\mathcal{H} \cup \mathcal{H}_{ns_{\alpha}g}^* \subset \mathcal{K} \cup \mathcal{K}_{ns_{\alpha}g}^*$ so that $ns_{\alpha}g - cl^*(\mathcal{H}) \subseteq ns_{\alpha}g - cl^*(\mathcal{K})$.

Copyrights @Kalahari Journals

(iv) $ns_{\alpha}g - cl^{*}(\mathcal{H} \cup \mathcal{K}) = (\mathcal{H} \cup \mathcal{K}) \cup (\mathcal{H} \cup \mathcal{K})^{*}_{ns_{\alpha}g} = (\mathcal{H} \cup \mathcal{K}) \cup (\mathcal{H}^{*}_{ns_{\alpha}g} \cup \mathcal{K}^{*}_{ns_{\alpha}g}) = (ns_{\alpha}g - cl^{*}(\mathcal{H})) \cup (ns_{\alpha}g - cl^{*}(\mathcal{K})).$

$$(v) \qquad ns_{\alpha}g - cl^{*}(ns_{\alpha}g - cl^{*}(\mathcal{H})) = ns_{\alpha}g - cl^{*}(\mathcal{H} \cup \mathcal{H}_{ns_{\alpha}g}^{*}) = (\mathcal{H}_{ns_{\alpha}g}^{*} \cup \mathcal{H}) \cup (\mathcal{H}_{ns_{\alpha}g}^{*} \cup \mathcal{H}) \cup (\mathcal{H}_{ns_{\alpha}g}^{*} \cup \mathcal{H}_{ns_{\alpha}g}^{*}) = \mathcal{H}_{ns_{\alpha}g}^{*} \cup \mathcal{H} = ns_{\alpha}g - cl^{*}(\mathcal{H}).$$

(vi) Let $\gamma \in ns_{\alpha}g - cl^{*}(\mathcal{H} \cap \mathcal{K})$. But $\mathcal{H} \cap \mathcal{K} \subseteq \mathcal{H}$ and $\mathcal{H} \cap \mathcal{K} \subseteq \mathcal{K}$. Therefore, $(\mathcal{H} \cap \mathcal{K})^{*}_{ns_{\alpha}g} \subseteq \mathcal{H}^{*}_{ns_{\alpha}g}$ and $(\mathcal{H} \cap \mathcal{K})^{*}_{ns_{\alpha}g} \subseteq \mathcal{K}^{*}_{ns_{\alpha}g}$. Thus, $ns_{\alpha}g - cl^{*}(\mathcal{H} \cap \mathcal{K}) = (\mathcal{H} \cap \mathcal{K}) \cup (\mathcal{H} \cap \mathcal{K})^{*}_{ns_{\alpha}g} \subseteq \mathcal{H} \cup \mathcal{H}^{*}_{ns_{\alpha}g} = ns_{\alpha}g - cl^{*}(\mathcal{H})$. Similarly, $ns_{\alpha}g - cl^{*}(\mathcal{H} \cap \mathcal{K}) \subseteq ns_{\alpha}g - cl^{*}(\mathcal{K})$. Since $\gamma \in ns_{\alpha}g - cl^{*}(\mathcal{H} \cap \mathcal{K})$, $\gamma \in ns_{\alpha}g - cl^{*}(\mathcal{H})$ and $\gamma \in ns_{\alpha}g - cl^{*}(\mathcal{K})$. Thus, $\gamma \in ns_{\alpha}g - cl^{*}(\mathcal{H}) \cap ns_{\alpha}g - cl^{*}(\mathcal{K})$. Hence, $ns_{\alpha}g - cl^{*}(\mathcal{H} \cap \mathcal{K}) \subseteq ns_{\alpha}g - cl^{*}(\mathcal{H}) \cap ns_{\alpha}g - cl^{*}(\mathcal{K})$.

(vii) Since \mathcal{G} is $ns_{\alpha}g - open$, by Lemma 4.7, we have $\mathcal{G}_n \cap (\mathcal{H} \cup \mathcal{H}^*_{ns_{\alpha}g}) = (\mathcal{G}_n \cap \mathcal{H}) \cup (\mathcal{G}_n \cap \mathcal{H}^*_{ns_{\alpha}g}) \subseteq (\mathcal{G}_n \cap \mathcal{H}) \cup (\mathcal{G}_n \cap \mathcal{H})^*_{ns_{\alpha}g}$. Therefore, $\mathcal{G}_n \cap (ns_{\alpha}g - cl^*(\mathcal{H})) \subseteq ns_{\alpha}g - cl^*(\mathcal{H})$.

Definition 5.7 A subset \mathcal{H} of a $n\mathcal{I}$ – topological space $(\Gamma, \mathcal{N}, \mathcal{I})$ is $\mathcal{N}s_{\alpha}g^*$ – dense in itself (resp. $\mathcal{N}s_{\alpha}g^*$ – perfect and $\mathcal{N}s_{\alpha}g^*$ – closed) if $\mathcal{H} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$ (resp. $\mathcal{H} = \mathcal{H}^*_{ns_{\alpha}g}$ and $\mathcal{H}^*_{ns_{\alpha}g} \subseteq \mathcal{H}$).

Remark 5.8 The relationship related to sets defined in Definition 5.7, we have the following diagram.

 $\mathcal{N}s_{\alpha}g^*$ - dense in itself \checkmark $\mathcal{N}s_{\alpha}g^*$ - *perfect* \longrightarrow $\mathcal{N}s_{\alpha}g^*$ - *closed*

Remark 5.9 The reverse implication of the above figure are not true.

For instance, consider the $n\mathcal{I}$ – topological space $(\Delta_2, \mathcal{N}_2, \mathcal{I}_2)$ as follows: $\Delta_2 = \{\delta_1, \delta_2, \delta_3, \delta_4\}$; $\Delta_2/\mathcal{R} = \{\{\delta_1\}, \{\delta_2, \delta_4\}, \{\delta_3\}\}$; $\mathcal{X} = \{\delta_2, \delta_4\}$; $\mathcal{N}_2 = \{\emptyset, \Delta_2, \{\delta_2, \delta_4\}\}$; $\mathcal{I}_2 = \{\emptyset, \{\delta_2\}\}$. Here, the sets $\mathcal{H} = \{\delta_1, \delta_2, \delta_3\}$ is $\mathcal{N}s_{\alpha}g^*$ – closed and $\mathcal{H} = \{\delta_1\}$ is $\mathcal{N}s_{\alpha}g^*$ – dense-in-itself. But both are not $\mathcal{N}s_{\alpha}g^*$ – perfect.

Lemma 5.10 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ - topological space and $\mathcal{H} \subseteq \Gamma$. If \mathcal{H} is $ns_{\alpha}g^*$ - dense in itself, then $\mathcal{H}^*_{ns_{\alpha}\mathcal{G}} = ns_{\alpha}g - cl(\mathcal{H}^*_{ns_{\alpha}\mathcal{G}}) = ns_{\alpha}g - cl(\mathcal{H}) = ns_{\alpha}g - cl^*(\mathcal{H}).$

Proof: Let \mathcal{H} be a $ns_{\alpha}g^*$ – dense in itself. Then $\mathcal{H} \subseteq \mathcal{H}^*_{ns_{\alpha}g}$. From Proposition 5.6, we obtain $\mathcal{H}^*_{ns_{\alpha}g} = ns_{\alpha}g - cl(\mathcal{H}^*_{ns_{\alpha}g}) = ns_{\alpha}g - cl(\mathcal{H}) = ns_{\alpha}g - cl^*(\mathcal{H})$. The result follows from Theorem 4.8 and Definition 5.1.

Definition 5.11 A basis $\mathcal{B}(\mathcal{I},\mathcal{N})$ for $\mathcal{N}^{s_{\alpha}g^{*}}$ can be described as follows : A subset \mathcal{H} of a $n\mathcal{I}$ – topological space $(\Gamma, \mathcal{N}, \mathcal{I})$ is said to be $\mathcal{N}^{s_{\alpha}g^{*}}$ – closed if $\mathcal{H}_{ns_{\alpha}g}^{*} \subset \mathcal{H}$. Thus, we have $\mathcal{G} \in \mathcal{N}^{s_{\alpha}g^{*}}$ if and only if \mathcal{G}^{c} is $\mathcal{N}^{s_{\alpha}g^{*}}$ – closed which implies $(\mathcal{G}^{c})_{ns_{\alpha}g}^{*} \subset \mathcal{G}^{c}$ and hence $\mathcal{G} \subset ((\mathcal{G}^{c})_{ns_{\alpha}g}^{*})^{c}$. Thus if $\gamma \in \mathcal{G}, \gamma \notin (\mathcal{G}^{c})_{ns_{\alpha}g}^{*}$, then there exists $\mathcal{F} \in \mathcal{N}^{s_{\alpha}g}(\gamma)$ such that $\mathcal{F} \cap \mathcal{G}^{c} \in \mathcal{I}$. Hence, let $\mathcal{I} = \mathcal{F} \cap \mathcal{G}^{c}$ and we have $\gamma \in \mathcal{F} \setminus \mathcal{I} \subset \mathcal{G}$ where $\mathcal{F} \in \mathcal{N}^{s_{\alpha}g}(\gamma)$ and $\mathcal{I} \in \mathcal{I}$. So the basis for $\mathcal{N}^{s_{\alpha}g^{*}}$ is $\mathcal{B}(\mathcal{I},\mathcal{N}) = \{\mathcal{F} \setminus \mathcal{I}: \mathcal{F} \in \mathcal{N}^{s_{\alpha}g}(\gamma), \mathcal{I} \in \mathcal{I}\}$.

Lemma 5.12 Let $(\Gamma, \mathcal{N}, \mathcal{I})$ be a $n\mathcal{I}$ – topological space. Then $\mathcal{B}(\mathcal{I}, \mathcal{N})$ is a basis for $\mathcal{N}^{s_{\alpha}\mathcal{G}^*}$.

Proof: Since $\emptyset \in \mathcal{I}, \mathcal{F} = \mathcal{F} \setminus \emptyset \in \mathcal{N}^{\mathfrak{s}_{\alpha} \mathscr{G}}(\gamma)$ and $\mathcal{N}^{\mathfrak{s}_{\alpha} \mathscr{G}}(\gamma) \subset \mathcal{G}$ from which it follows that $\Gamma = \cup \mathcal{B}$. Also, $\mathcal{B}_1, \mathcal{B}_2 \in \mathcal{B}$ and $\mathcal{I}, \mathcal{I}' \in \mathcal{I}$ we have $\mathcal{B}_1 = \mathcal{F}_1 \setminus \mathcal{I}$ and $\mathcal{B}_2 = \mathcal{F}_2 \setminus \mathcal{I}'$ where $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{N}^{\mathfrak{s}_{\alpha} \mathscr{G}}(\gamma)$. Then $\mathcal{B}_1 \cap \mathcal{I}$

Copyrights @Kalahari Journals

rnals Vol. 7 No. 1 (January, 2022) International Journal of Mechanical Engineering

Vol. 7 No. 1 (January, 2022)

 $\mathcal{B}_{2} = (\mathcal{F}_{1} \setminus \mathcal{I}) \cap (\mathcal{F}_{2} \setminus \mathcal{I}') = (\mathcal{F}_{1} \cap \mathcal{I}^{c}) \cap (\mathcal{F}_{2} \cap \mathcal{I}'^{c}) = (\mathcal{F}_{1} \cap \mathcal{F}_{2}) \setminus (\mathcal{I} \cup \mathcal{I}') \in \mathcal{B} \quad \text{where} \quad \mathcal{F}_{1}, \mathcal{F}_{2} \in \mathcal{N}^{s_{\alpha} \notin}(\gamma), \mathcal{I} \cup \mathcal{I}' \in \mathcal{I}.$

Remark 5.13 $\mathcal{B}(\mathcal{I}, \mathcal{N})$ is not a topology in general.

For instance, consider the $n\mathcal{I}$ – topological space $(\Delta, \mathcal{N}, \mathcal{I})$ as follows: $\Delta = \{\delta_1, \delta_2, \delta_3, \delta_4\}$; $\Delta/\mathcal{R} = \{\{\delta_1\}, \{\delta_2, \delta_3\}, \{\delta_4\}\}$; $\mathcal{X} = \{\delta_1, \delta_3\}$; $\mathcal{N} = \{\emptyset, \Delta, \{\delta_1\}, \{\delta_1, \delta_2, \delta_3\}, \{\delta_2, \delta_3\}\}$; $\mathcal{I} = \{\emptyset, \{\delta_1\}, \{\delta_3\}, \{\delta_4\}, \{\delta_1, \delta_3, \delta_4\}\}$. $\{\delta_1, \delta_3, \delta_4\}, \{\delta_1, \delta_3, \delta_4\}$. $\mathcal{B}(\mathcal{I}, \mathcal{N}) = \{\emptyset, \Delta, \{\delta_1\}, \{\delta_2\}, \{\delta_3\}, \{\delta_1, \delta_2\}, \{\delta_2, \delta_3\}, \{\delta_3, \delta_4\}\}$. Here, $\{\delta_1\} \cup \{\delta_3\} \notin \mathcal{B}(\mathcal{I}, \mathcal{N})$. Hence, it is not a topology.

REFERENCES

- [1] Al-Omeri.W, Mohd.Salmi Md.Noorani, Al.Omeri.A, a-Local Function and its properties in Ideal Topological Spaces, Fasciculi Mathematici, Nr.53, 2014, 5-15.
- [2] Lellis Thivagar.M and Carmel Richard, On nano forms of weakly open sets, International journal of mathematics and statistics invention, 1(1):31–37, 2013.
- [3] Parimala.M, Jafari.S and Murali.S, Nano ideal generalized closed sets in nano ideal topological spaces, In Annales Univ. Sci. Budapest, volume 60, pages 3–11, 2017.
- [4] Parimala.M, Jeevitha.R, and Selvakumar.A, A new type of weakly closed set in ideal topological spaces, rn, 55:7, 2017.
- [5] Parimala.M, Jafari.S, On some new notions in nano ideal topological spaces, Eurasian Bulletin of Mathematics, Vol.1, No.3,85-93,2018.
- [6] Qays Hatem Imran, On nano semi alpha open sets, arXiv preprint arXiv:1801.09143, 2018.
- [7] Pasunkilipandian.S, Baby Suganya.G and Kalaiselvi.M, On Some New Notions using $nIs_{\alpha}g$ closed sets in Nano Ideal Topological Spaces (communicated).
- [8] Vinodhini.D, Karpagadevi.M, Senthil Kumar.L, Santhiya.S, A Note on AIG-Closure and AIG-Interior in Ideal Topological Spaces, Turkish Journal of Computer and Mathematics Education, Vol.12 No.4(2021), 1276-1279.
- [9]Jankovic D, Hamlett T.R, New Topologies from Old Via Ideals, Amer.Math. Monthly, 97(1990),295-310.
- [10] Baby Suganya G, Pasunkilipandian S, Kalaiselvi M, A New Class of Nano Ideal Generalized Closed Set in Nano Ideal Topological Space (communicated).