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Abstract - This paper deals with economic production quantity(EPQ) model with production process characterized by two 

component mixture of Weibull distribution. Demand is considered to be a power function of time. Furthermore, it is assumed that 

the commodity's lifespan is random and follows an exponential distribution. Assuming that demand is a function of time, the 

production quantity can be derived. The optimal ordering policies and optimal production quantity are obtained. The production 

rate distribution parameters and the deterioration rate distribution parameters have a significant impact on the model's optimal 

production schedule, according to sensitivity analysis. This model is extended to the case of without shortages. This model can be 

used to analyze heterogeneous production systems. 

Index Terms - Mixture of Weibull rate of production, Exponential rate of decay, Heterogeneous production, Time dependent 

demand, Stochastic production scheduling model. 

 

INTRODUCTION 

Stochastic production quantity models plays a significant role in determining the optimal production schedules and production 

quantity. Recently the researchers in operations research are working more on random production and lifetime of the 

commodities. Shah and Jaiswal (1977), Nahmias (1982), Dave and Shah (1982), Nirupama Devi, et al (2001), Srinivasa Rao, et al 

(2009), Biswajit Sarkar (2012) developed inventory models for deteriorating items with time dependent demand. The 

replenishment (production) is considered to be instantaneous in all of these articles. But in reality replenishment depends on time 

and is a variable. It depends on several factors such as change in supply of raw materials, change in ordering quantity, change in 

storage space, transportation etc. In the literature, very little work has been published on inventory models with time-dependent 

demand having random replenishment. 

Recently Sridevi, et al (2010), Srinivasa Rao, et al (2010), Lakshamana Rao, et al (2016), Srinivasa Rao, et al (2020) and 

Madhulatha, et al (2021) developed and analyzed Economic production quantity models assuming that the production is random 

and their is a variable rate of production. They assumed that the production process is homogeneous in nature in all of these 

articles. Hence, in this article, we created and analyzed production quantity models based on the assumption that production is 

random and follows a mixture of two parameter Weibull distribution with heterogeneous production processes having 

exponential rate of deterioration. Furthermore, demand is assumed to be a power function of time. 

The total cost function is obtained using differential calculus. By minimizing the total cost function the optimal production 

downtime, optimal production uptime and optimal production quantity are obtained. Through sensitivity analysis the effect of 

change in parameters and costs is examined. This model is extended to the case of without shortages. 

 

ASSUMPTIONS 

For developing the model the following assumptions are made: 

1. The demand rate is a power function of time. i.e., 

𝜆(𝑡) =
𝑟𝑡

1
𝑛
−1

𝑛𝑇
1
𝑛

                                                            (1) 

where ‘n’ is the indexing parameter, ‘T’ is the cycle length and ‘r’ is the total demand.  

2. The production is finite and follows a two parameter Weibull distribution.  

The instantaneous rate of production is:  

𝑅(𝑡) =
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
; 

𝛼1, 𝛼2 > 0, 𝛽1, 𝛽2 > 0,0 ≤ 𝑝 ≤ 1                          (2) 



Copyrights @Kalahari Journals Vol. 7 No. 1 (January, 2022) 

International Journal of Mechanical Engineering 

6966 

3. Lead time is zero. 

4. Cycle length is T. It is known and fixed. 

5. Shortages are allowed and fully backlogged. 

6. A deteriorated unit is lost. 

7. The lifetime of the item is random and follows a exponential distribution with probability density function 

𝑓(𝑡) = ѳ𝑒−𝜃𝑡;  ѳ > 0, 𝑡 > 0 

Therefore the instantaneous rate of deterioration is ℎ(𝑡) = ѳ;  ѳ > 0                                                        (3) 

The following notations are used for developing the model. 

 Q is the production quantity 

 A is setup cost 

 C is cost per unit 

 h Inventory holding cost per unit per unit time 

π Shortages cost per unit per unit time 

 

 

EPQ MODEL WITH SHORTAGES 

Consider a production system with zero stock at time t = 0. Because of production after meeting demand and deterioration, the 

stock level rises during the period (0, t1). When the stock level reaches S, production ends at time t1. The inventory continues to 

decline due to demand and deterioration in the interval (t1, t2). Back orders accumulate during the interval (t2, t3) as inventory 

reaches zero at time  t2. At time  t3, replenishment begins again, and after fulfilling demand, it completes the backlog. 

Backorders are fulfilled during (t3, T) and inventory levels drop to zero at the end of cycle T. Figure 1 depicts a schematic 

diagram of the instantaneous state of inventory. 

  

FIGURE 1 

SCHEMATIC DIAGRAM DEPICTING  THE INVENTORY LEVEL 

Let I(t) be the inventory level of the system at time ‘t’(0 ≤ t ≤ T). The differential equations governing the instantaneous state of 

inventory I(t) over the cycle of length T are 

𝑑

𝑑𝑡
𝐼(𝑡) + ℎ(𝑡)𝐼(𝑡) = 

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
 

−
𝑟𝑡

1
𝑛
−1

𝑛𝑇
1
𝑛

; 0 ≤ 𝑡 ≤ 𝑡1                                                                  (4)
𝑑

𝑑𝑡
𝐼(𝑡) + ℎ(𝑡)𝐼(𝑡) = −

𝑟𝑡
1
𝑛
−1

𝑛𝑇
1
𝑛

;  𝑡1 ≤ 𝑡 ≤ 𝑡2                       (5) 

                    

𝑑

𝑑𝑡
𝐼(𝑡) = −

𝑟𝑡
1
𝑛
−1

𝑛𝑇
1
𝑛

; 𝑡2 ≤ 𝑡 ≤ 𝑡3                                              (6) 

                                 

𝑑

𝑑𝑡
𝐼(𝑡) =

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
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−
𝑟𝑡

1
𝑛
−1

𝑛𝑇
1
𝑛

;  𝑡3 ≤ 𝑡 ≤ 𝑇                                                               (7)   

 

Where, h(t) is as given in equation (3), with the initial conditions I(0) = 0, 𝐼(𝑡1) = 𝑆, 𝐼(𝑡2) = 0 and 𝐼(𝑇) = 0 

Substituting h(t) given in equation (3) in equations (4) and (5) and solving the differential equations, the on hand inventory at time 

‘t’ is obtained as 

𝐼(𝑡) = 𝑆𝑒𝜃(𝑡1−𝑡) − 𝑒−𝑡𝜃 ∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

] 𝑒𝑢𝜃𝑑𝑢; 0 ≤ 𝑡 ≤ 𝑡1                                                    (8) 

                                              

𝐼(𝑡) = 𝑆𝑒𝜃(𝑡1−𝑡) −
𝑟𝑒−𝑡𝜃

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃

𝑡

𝑡1

𝑑𝑢;  𝑡1 ≤ 𝑡 ≤ 𝑡2(9) 

     

𝐼(𝑡) =
𝑟

𝑇
1
𝑛

(𝑡2
1
𝑛 − 𝑡

1
𝑛) ; 𝑡2 ≤ 𝑡 ≤ 𝑡3                                     (10)𝐼(𝑡) = 

∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡

 

 

+
𝑟

𝑇
1
𝑛

(𝑇
1
𝑛 − 𝑡

1
𝑛) ; 𝑡3 ≤ 𝑡 ≤ 𝑇                                                 (11) 

                              

Stock loss due to deterioration in the interval (0,t) is 

𝐿(𝑡) = ∫ 𝑅(𝑡)𝑑𝑡
𝑡

0

− ∫ 𝜆(𝑡)𝑑𝑡 − 𝐼(𝑡);
𝑡

0

 0 ≤ 𝑡 ≤ 𝑡2 

𝐿(𝑡) = [∫(
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
)𝑑𝑡 − r (

t

T
)

1
n

𝑡

0

 

−[𝑆𝑒𝜃(𝑡1−𝑡) − 𝑒−𝑡𝜃 ∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑡1

𝑡

 

−
ru

1
n
-1

nT
1
n

] 𝑒𝑢𝜃𝑑𝑢]] 0 ≤ 𝑡 ≤ 𝑡1 ∫ (
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
)𝑑𝑡

𝑡1

0

− r (
t

T
)

1
n
 

−[𝑆𝑒𝜃(𝑡1−𝑡) −
ru

1
n
-1

nT
1
n

𝑒−𝑡𝜃 ∫ 𝑒𝑢𝜃
𝑡

𝑡1

𝑑𝑢] ; 𝑡1 ≤ 𝑡 ≤ 𝑡2 

Stock loss due to deterioration in the cycle of length T is 

𝐿(𝑡) = ∫ (
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
)

𝑡1

0

𝑑𝑡 − 𝑟 (
𝑡2
𝑇

)

1
𝑛
                                                                                  (12) 

            

Production quantity Q in the cycle of length T is 

𝑄 = ∫ 𝑅(𝑡)𝑑𝑡 + ∫ 𝑅(𝑡)𝑑𝑡
𝑇

𝑡3

𝑡1

0

 

= ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0
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+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡 

𝑇

𝑡3

 

                                                                                      (13) 

From equation (8) and using the initial condition I(0) = 0,we obtain the value of ‘S’ as 

𝑆 = 𝑒−𝜃𝑡1 ∫ (
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

0

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

)𝑒𝑢ѳ𝑑𝑢                                                                    (14) 

 

When t = 𝑡3, then equations (10) and (11) becomes 

𝐼(𝑡3) =
𝑟

𝑇
1
𝑛

(𝑡2
1
𝑛 − 𝑡3

1
𝑛)                                                              (15)𝐼(𝑡3) =

𝑟

𝑇
1
𝑛

(𝑇
1
𝑛 − 𝑡3

1
𝑛) 

+∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑇

𝑡3

 

                                                                                     (16) 

𝑡2=𝑇 [1 +
1

𝑟
 

× ∫(
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
)𝑑𝑢

𝑇

𝑡3

]

𝑛

 

=  𝑥(𝑡3)                                                                                (17) 

Let 𝐾(𝑡1,𝑡2, 𝑡3) be the total production cost per unit time. Since the total production cost is the sum of the set up cost, cost of the 

units, the inventory holding cost. Hence the total production cost per unit time become 

𝐾(𝑡1,𝑡2, 𝑡3) =
𝐴

𝑇
+

𝐶𝑄

𝑇
+

ℎ

𝑇
[∫ 𝐼(𝑡)𝑑𝑡 + ∫ 𝐼(𝑡)𝑑𝑡

𝑡2

𝑡1

𝑡1

0

] 

+
𝜋

𝑇
[∫ −𝐼(𝑡)𝑑𝑡 + ∫ −𝐼(𝑡)𝑑𝑡

𝑇

𝑡3

𝑡3

𝑡2

]                                        (18) 

Substituting the values of I(t) given in equations (8),(9),(10) and (11) and Q given in equation (13) in equation (18) one can obtain 

𝐾(𝑡1,𝑡2, 𝑡3) as: 

𝐾(𝑡1, 𝑡2, 𝑡3) =
𝐴

𝑇
 

+
𝐶

𝑇
[∫

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡3

] 

+
ℎ

𝑇
[∫ [𝑆𝑒𝜃(𝑡1−𝑡) − 𝑒−𝑡𝜃

𝑡1

0

 

× ∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

 

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

] 𝑒𝑢𝜃𝑑𝑢] 𝑑𝑡 

+ ∫ [𝑆𝑒𝜃(𝑡1−𝑡) − 𝑒−𝑡𝜃 ∫
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

𝑒𝑢𝜃

𝑡

𝑡1

𝑑𝑢] 𝑑𝑡]

𝑡2

𝑡1
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−
𝜋

𝑇
[

𝑟

𝑇
1
𝑛

∫ (𝑡2
1
𝑛 − 𝑡

1
𝑛) 𝑑𝑡

𝑡3

𝑡2

 

+ ∫[∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑇

𝑡

] 𝑑𝑡

𝑇

𝑡3

 

+
𝑟

𝑇
1
𝑛

∫ (𝑇
1
𝑛 − 𝑡

1
𝑛) 𝑑𝑡

𝑇

𝑡3

]                                                         (19) 

  

On integration and simplification one can get 

𝐾(𝑡1, 𝑡2, 𝑡3) =
𝐴

𝑇
 

+
𝐶

𝑇
[∫

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡3

] 

+
ℎ

𝑇
[
𝑆

ѳ
𝑒𝑡1𝜃(1 − 𝑒−𝑡2𝜃) − ∫ 𝑒−𝑡𝜃

𝑡1

0

 

× [∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

 

−
𝑟

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

] 𝑑𝑡 − ∫ 𝑒−𝑡𝜃
𝑟

𝑛𝑇
1
𝑛

(∫𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡

𝑡1

)𝑑𝑡

𝑡2

𝑡1

] 

−
𝜋

𝑇
[
𝑟 [𝑡3(1 + 𝑛) (𝑡2

1
𝑛 − 𝑇

1
𝑛) + 𝑇

1+𝑛
𝑛 − 𝑡2

1+𝑛
𝑛 ]

𝑇
1
𝑛(𝑛 + 1)

 

+ ∫[∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑇

𝑡

] 𝑑𝑡

𝑡

𝑡3

] 

                                                                          (20) 

Substituting the value of S given in equation (14) in the total production cost equation (20), we obtain 

𝐾(𝑡1, 𝑡2, 𝑡3) =
𝐴

𝑇
 

+
𝐶

𝑇
[∫

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡3

] 

+
ℎ

𝑇
[[

1

ѳ
∫

𝑝𝛼1𝛽1𝑢
𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢

𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

0

𝑒𝑢𝜃𝑑𝑢 

−
𝑟

ѳ𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

0

] × (1 − 𝑒−𝜃𝑡2) 

−∫ 𝑒−𝑡𝜃 (∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

𝑒𝑢𝜃𝑑𝑢

𝑡1

0
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−
𝑟

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

) − ∫
𝑟𝑒−𝑡𝜃

𝑛𝑇
1
𝑛

(∫𝑢
1
𝑛
−1𝑒−𝑢𝜃𝑑𝑢

𝑡

𝑡1

)𝑑𝑡

𝑡2

𝑡1

] 

−
𝜋

𝑇
[
𝑟 [𝑡3(1 + 𝑛) (𝑡2

1
𝑛 − 𝑇

1
𝑛) + 𝑇

1+𝑛
𝑛 − 𝑡2

1+𝑛
𝑛 ]

𝑇
1
𝑛(𝑛 + 1)

 

+ ∫[∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑇

𝑡

] 𝑑𝑡

𝑡

𝑡3

] 

                                                                                   (21) 

Substituting the value of 𝑡2 given in equation (17) in the total production cost equation (21), we obtain 

𝐾(𝑡1, 𝑡3) =
𝐴

𝑇
 

+
𝐶

𝑇
[∫

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡3

] 

+
ℎ

𝑇
[[

1

ѳ
∫

𝑝𝛼1𝛽1𝑢
𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢

𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑒𝑢𝜃𝑑𝑢

𝑡1

0

 

−
𝑟

ѳ𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

0

] × (1 − 𝑒−𝜃𝑥(𝑡3)) − ∫ 𝑒−𝑡𝜃

𝑡1

0

 

× (∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

𝑒𝑢𝜃𝑑𝑢 

−
𝑟

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

)𝑑𝑡 − ∫
𝑟𝑒−𝑡𝜃

𝑛𝑇
1
𝑛

(∫𝑢
1
𝑛
−1𝑒−𝑢𝜃𝑑𝑢

𝑡

𝑡1

)𝑑𝑡

𝑥(𝑡3)

𝑡1

] 

−
𝜋

𝑇
[
𝑟 [𝑡3(1 + 𝑛) [[𝑥(𝑡3)]

1
𝑛 − 𝑇

1
𝑛] + 𝑇

1+𝑛
𝑛 − [𝑥(𝑡3)]

1+𝑛
𝑛 ]

𝑇
1
𝑛(𝑛 + 1)

 

+ ∫[∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢

𝑇

𝑡

] 𝑑𝑡

𝑡

𝑡3

] 

                                                                                (22) 

 

OPTIMAL ORDERING POLICIES OF THE MODEL 

In this section, we determine the system's optimal policies. We obtain the first order partial derivatives of 𝐾(𝑡1, 𝑡3) given in 

equation (22) with respect to t1 and t3  equate them to zero to obtain the optimal values of t1 and t3. The minimizing condition for 

𝐾(𝑡1, 𝑡3) is 

𝐷 = |
|

𝜕2𝐾(𝑡1, 𝑡3)

𝜕𝑡1
2

𝜕2𝐾(𝑡1, 𝑡3)

𝜕𝑡1𝜕𝑡3
𝜕2𝐾(𝑡1, 𝑡3)

𝜕𝑡1𝜕𝑡3

𝜕2𝐾(𝑡1, 𝑡3)

𝜕𝑡3
2

|
| > 0 

where D is the Hessian matrix. 

Differentiating 𝐾(𝑡1, 𝑡3) given in equation (22) with respect to t1 and equating to zero, we get 

{
𝐶

𝑇
[
𝑝𝛼1𝛽1𝑡1

𝛽1−1𝑒−𝛼1𝑡1
𝛽1

+ (1 − 𝑝)𝛼2𝛽2𝑡1
𝛽2−1𝑒−𝛼2𝑡1

𝛽2

𝑝𝑒−𝛼1𝑡1
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡1

𝛽2
] 
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+
 ℎ

𝑇
[
1 − 𝑒−𝑥(𝑡3)𝜃𝑒𝑡1𝜃

ѳ
 

× [
𝑝𝛼1𝛽1𝑡1

𝛽1−1𝑒−𝛼1𝑡1
𝛽1

+ (1 − 𝑝)𝛼2𝛽2𝑡1
𝛽2−1𝑒−𝛼2𝑡1

𝛽2

𝑝𝑒−𝛼1𝑡1
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡1

𝛽2
 

      −
𝑟𝑡1

1
𝑛
−1

𝑛𝑇
1
𝑛

]]} = 0                                                           (23) 

Differentiating 𝐾(𝑡1, 𝑡3) given in equation (22) with respect to t3 and equating to zero, we get 

{−
𝐶

𝑇
[
𝑝𝛼1𝛽1𝑡3

𝛽1−1𝑒−𝛼1𝑡3
𝛽1

+ (1 − 𝑝)𝛼2𝛽2𝑡3
𝛽2−1𝑒−𝛼2𝑡3

𝛽2

𝑝𝑒−𝛼1𝑡3
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡3

𝛽2
] 

+
ℎ

𝑇
[𝑒−𝜃𝑥(𝑡3)𝑦(𝑡3) 

× [∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
] 𝑒𝑢𝜃

𝑡1

0

𝑑𝑢 

+
𝑟

𝑛𝑇
1
𝑛

[ѳ ∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢 − ∫ 𝑢

1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

0

𝑥(𝑡3)

𝑡1

]

]
 
 
 

]
 
 
 
 

 

−
𝜋

𝑇
[[

𝑝𝛼1𝛽1𝑡3
𝛽1−1𝑒−𝛼1𝑡3

𝛽1
+ (1 − 𝑝)𝛼2𝛽2𝑡3

𝛽2−1𝑒−𝛼2𝑡3
𝛽2

𝑝𝑒−𝛼1𝑡3
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡3

𝛽2
] 

× (𝑥(𝑡3) − 1) − 𝑟] 

− ∫[
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑑𝑢]

𝑇

𝑡3

]} = 0                                                                                                  (24) 

Solving the equations (23) and (24) simultaneously, we obtain the optimal time at which production is stopped 𝑡1
∗ of 𝑡1 and the 

optimal time 𝑡3
∗ of 𝑡3 at which the production is restarted after accumulation of backorders. 

The optimum production quantity Q* of Q in the cycle of length T is obtained by substituting the optimal values of 𝑡1
∗, 𝑡3

∗ in 

equation (13) as 

𝑄∗ = ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

+ ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑇

𝑡3

 

                                                                                (25) 

 

NUMERICAL ILLUSTRATION 

In this section, we study  how the model works with a numerical example to obtain the production uptime, downtime, optimum 

production quantity, and profit of an inventory system. It is presumed that the commodity is deteriorating in nature, and shortages 

are permitted and fully backlogged. The following parameters are used to demonstrate the model's solution procedure: 

𝐴 = 100, 105, 110, 115;  

𝐶 = 10,10.5, 11, 11.5; 

ℎ = 0.3, 0.315, 0.33, 0.345;  

𝜋 = 0.5, 0.525, 0.55, 0.575; 

𝛼1 = 11, 11.55, 12.1, 12.65; 

𝛼2 = 15, 15.75, 16.5, 17.25; 
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𝛽1 = 0.45, 0.473, 0.495, 0.518; 

𝛽2 = 3, 3.15, 3.3, 3.45; 

𝜃 = 3, 3.15, 3.3, 3.45; 

𝑟 = 100, 105, 110, 115; 

𝑛 = 1, 1.05, 1.1, 1.15; 

𝑝 = 0.5, 0.525, 0.55, 0.575; 

and 𝑇 = 12 months 

Substituting these values the optimal production quantity Q∗,the production uptime, production downtime and total production 

cost are computed and presented in Table 1. 

From Table 1 it is observed that the deterioration parameter and production parameters have a tremendous influence on the 

optimal values of production times, production quantity and total production cost function. 

It is found that as the ordering cost “A” goes up from 100 to 115, the optimal production down time  t1
∗ ,  the optimal production 

uptime t3
∗, the optimal production quantity  Q*  remains constant, the total production cost per unit time K∗ rises from 72.608 to 

73.857. 

It is found that as the cost per unit “C” goes up from 10 to 11.5, the optimal production downtime t1
∗  rises from 1.268 to 1.271, 

the optimal production uptime t3
∗ remains constant,  the optimal production quantity  Q*  rises from 24.969 to 24.974, the total 

production cost per unit time K∗ rises from 72.608 to 74.229. 

It is found that as the holding cost “h” goes up from 0.3 to 0.345, the optimal production downtime  t1
∗  and the optimal 

production uptime t3
∗  remains constant, the optimal production quantity  Q*  drops from 24.969 to 24.968, the total production 

cost per unit time K∗ drops from 72.608 to 72.485. 

It is found that as the shortage cost “π’ goes up from 0.5 to 0.575, the optimal production downtime  t1
∗ remains constant,  the 

optimal production uptime t3
∗ rises from 4.488 to 4.496, the optimal production quantity  Q*  drops from 24.969 to 24.951, the 

total production cost per unit time K∗ rises from 72.608 to 80.621. 

It is found that as the production parameter “α1” goes up from 11 to 12.65, the optimal production downtime  t1
∗ rises from 1.268 

to 1.271, the optimal production uptime t3
∗ drops from 4.488 to 4.484,  the optimal production quantity  Q* rises from 24.969 to 

28.611, the total production cost per unit time K∗ rises from 72.608 to 82.781. 

It is found that as the production parameter “α2” goes up from 15 to 17.25, the optimal production down time  t1
∗ , the optimal 

production uptime t3
∗, the optimal production quantity  Q*  and the total production cost per unit time K∗ remains constant. 

It is found that as the production parameter “β1” goes up from 0.45 to 0.518, the optimal production downtime  t1
∗ rises from 

1.268 to 1.271, the optimal production uptime t3
∗ rises from 4.488 to 4.494, the optimal production quantity  Q* rises from 24.969 

to 29.036 and the total production cost per unit time K∗ rises from 72.608 to 91.594. 

It is found that as the production parameter “β2” goes up from 3 to 3.45, the optimal production down time  t1
∗ ,  the optimal 

production uptime t3
∗ and the optimal production quantity  Q* and the total production cost per unit time K∗ remains constant. 

It is found that as the production parameter “p” goes up from 0.5 to 0.575, the optimal production down time  t1
∗  and  the optimal 

production uptime t3
∗  remains constant, the optimal production quantity  Q*  drops from 24.969 to 24.83  and the total production 

cost per unit time K∗  drops from 72.608 to 72.49. 

It is found that as the deterioration parameter “ѳ” goes up from 3 to 3.45, the optimal production down time  t1
∗ , the optimal 

production uptime t3
∗ and the optimal production quantity  Q* remains constant and the total production cost per unit time K∗  

rises from 72.608 to 72.71. 

It is found that as the demand  parameter “r” goes up from 100 to 115,  the optimal production down time  t1
∗ remains constant,  

the optimal production uptime t3
∗ rises from 4.488 to 4.489, the optimal production quantity  Q* drops from 24.969 to 24.965 and 

the total production cost per unit time K∗ drops from 72.608 to 72.098. 

It is found that as the demand  parameter “n” goes up from 1 to 1.15, the optimal production down time  t1
∗ remains constant, the 

optimal production uptime t3
∗ rises from 4.488 to 4.489, the optimal production quantity  Q* drops from 24.969 to 24.966  and the 

total production cost per unit time K∗ drops from 72.608 to 77.449. 
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TABLE 1 

NUMERICAL ILLUSTARTION 

 

A C h π T α1 α2 β1 β2 ѳ r n p 𝑡1
∗ 𝑡3

∗ Q* K* 

100 10 0.3 0.5 12 11 15 0.45 3 3 100 1 0.5 1.268 4.488 24.969 72.608 

105             1.268 4.488 24.969 73.024 

110             1.268 4.488 24.969 73.441 

115             1.268 4.488 24.969 73.857 

 10.5            1.269 4.488 24.97 73.148 

 11            1.27 4.488 24.972 73.688 

 11.5            1.271 4.488 24.974 74.229 

  0.315           1.268 4.488 24.969 72.568 

  0.33           1.268 4.488 24.968 72.528 

  0.345           1.268 4.488 24.968 72.485 

   0.525          1.268 4.491 24.963 75.278 

   0.55          1.268 4.493 24.957 77.95 

   0.575          1.268 4.496 24.951 80.621 

     11.55        1.269 4.487 26.189 76.003 

     12.1        1.27 4.485 27.411 79.416 

     12.65        1.271 4.484 28.611 82.781 

      15.75       1.268 4.488 24.969 72.608 

      16.5       1.268 4.488 24.969 72.608 

      17.25       1.268 4.488 24.969 72.608 

       0.473      1.269 4.49 26.256 78.52 

       0.495      1.27 4.492 27.57 84.649 

       0.518      1.271 4.494 29.036 91.594 

        3.15     1.268 4.488 24.969 72.607 

        3.3     1.268 4.488 24.969 72.607 

        3.45     1.268 4.488 24.969 72.607 

         3.15    1.268 4.488 24.969 72.645 

         3.3    1.268 4.488 24.969 72.681 

         3.45    1.268 4.488 24.969 72.71 

          105   1.268 4.489 24.967 72.414 

          110   1.268 4.489 24.966 72.234 

          115   1.268 4.489 24.965 72.098 

           1.05  1.268 4.488 24.968 74.212 

           1.1  1.268 4.489 24.967 75.826 

           1.15  1.268 4.489 24.966 77.449 

            0.525 1.268 4.488 24.92 72.567 

            0.55 1.268 4.488 24.874 72.528 

            0.575 1.268 4.488 24.83 72.49 

 SENSITIVITY ANALYSIS OF THE MODEL 

By changing each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) for the model under study at a time, Sensitivity analysis is 
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used to see how changes in model parameters and costs effect the optimal  policies.  

The results are presented in Table 2. Figure 2 illustrates the relationship between the parameters and the replenishment schedule's 

optimal values. 

TABLE 2 

SENSITIVITY ANALYSIS OF THE MODEL - WITH SHORTAGES 

Variation 

Parameters 

Optimal 

Policies 
-15% -10% -5% 0% 5% 10% 15% 

A 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.968 24.968 24.968 24.969 24.969 24.969 24.969 

 K* 71.358 71.775 72.025 72.608 73.024 73.441 73.857 

C 𝑡1
∗ 1.265 1.266 1.267 1.268 1.269 1.27 1.271 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.963 24.965 24.967 24.969 24.97 24.972 24.974 

 K* 70.988 71.528 72.068 72.608 73.148 73.688 74.229 

h 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.969 24.969 24.969 24.969 24.969 24.968 24.968 

 K* 72.728 72.688 72.648 72.608 72.568 72.528 72.485 

Π 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.48 4.482 4.485 4.488 4.491 4.493 4.496 

 Q* 24.987 24.981 24.975 24.969 24.963 24.957 24.951 

 K* 64.599 67.268 69.938 72.608 75.278 77.95 80.621 

α1 𝑡1
∗ 1.265 1.266 1.267 1.268 1.269 1.27 1.271 

 𝑡3
∗ 4.492 4.491 4.489 4.488 4.487 4.485 4.484 

 Q* 21.311 22.529 23.749 24.969 26.189 27.411 28.611 

 K* 62.517 65.865 69.228 72.608 76.003 79.416 82.781 

α2 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.969 24.969 24.969 24.969 24.969 24.969 24.969 

 K* 72.608 72.608 72.608 72.608 72.608 72.608 72.608 

β1 𝑡1
∗ 1.265 1.266 1.267 1.268 1.269 1.27 1.271 

 𝑡3
∗ 4.485 4.486 4.487 4.488 4.49 4.492 4.494 

 Q* 21.767 22.686 23.765 24.969 26.256 27.57 29.036 

 K* 58.29 62.348 67.16 72.608 78.52 84.649 91.594 

β2 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.969 24.969 24.969 24.969 24.969 24.969 24.969 

 K* 72.608 72.608 72.608 72.608 72.607 72.607 72.607 

Ѳ 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 24.968 24.968 24.969 24.969 24.969 24.969 24.969 

 K* 72.471 72.522 72.567 72.608 72.645 72.681 72.71 
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r 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.486 4.487 4.487 4.488 4.489 4.489 4.489 

 Q* 24.973 24.972 24.97 24.969 24.967 24.966 24.965 

 K* 73.298 73.047 72.818 72.608 72.414 72.234 72.098 

n 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.486 4.487 4.487 4.488 4.488 4.489 4.489 

 Q* 24.972 24.971 24.97 24.969 24.968 24.967 24.966 

 K* 67.849 69.426 71.012 72.608 74.212 75.826 77.449 

p 𝑡1
∗ 1.268 1.268 1.268 1.268 1.268 1.268 1.268 

 𝑡3
∗ 4.488 4.488 4.488 4.488 4.488 4.488 4.488 

 Q* 25.155 25.075 25.02 24.969 24.92 24.874 24.83 

 K* 72.765 72.695 72.651 72.608 72.567 72.528 72.49 

 The major observations drawn from the numerical study of the Table 2 are 

 t1
∗ and t3

∗ are less sensitive, Q* is slightly sensitive and K∗ is moderately sensitive to the changes in ordering cost ‘A’. 

 t1
∗ and Q* are slightly sensitive, t3

∗ is less sensitive  and K∗ is moderately sensitive to the changes in cost per unit ‘C’. 

 t1
∗ and t3

∗ are less sensitive, Q*  and K∗  are slightly sensitive  to the changes in holding cost ‘h’. 

 t1
∗ is  less sensitive,  t3

∗ and  Q* are  slightly sensitive and K∗ is moderately sensitive to the changes in  shortage cost ‘π’. 

 t1
∗ and t3

∗ are slightly sensitive, Q*  and K∗  are  moderately sensitive to the change in the production parameter  ‘α1’. 

 t1
∗, t3

∗, Q*  and K∗ are less sensitive  to the change in the production parameter ‘α2’. 

 t1
∗ and t3

∗ are slightly sensitive, Q*  and K∗ are  moderately sensitive to the change in the production parameter ‘β1’. 

 t1
∗, t3

∗ and Q* are less sensitive, K∗ is slightly sensitive  to the change in the production parameter ‘β2’ . 

 t1
∗ and t3

∗ are less sensitive,  Q* is moderately sensitive and  K∗ is slightly sensitive  to the change in the production 

parameter ‘p’. 

 t1
∗ and t3

∗ are less sensitive,  Q*  and K∗  are slightly sensitive  to the change in the deterioration parameter ‘ѳ’. 

 t1
∗ is  less sensitive,  t3

∗ and Q* are slightly sensitive, K∗ is moderately sensitive to the change in the demand parameter ‘r’. 

 t1
∗ is  less sensitive, t3

∗ and Q* are slightly sensitive, K∗ is moderately sensitive to the change in the demand parameter ‘n’. 
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FIGURE 2 

 RELATIONSHIP BETWEEN PARAMETERS AND OPTIMAL VALUES WITH SHORTAGES 

EPQ MODEL WITHOUT SHORTAGES 

The inventory model for decaying products without shortages is established and studied in this part. At time t = 0, it is assumed 

that shortages are not permitted and that the  stock level is zero. Due to excess production after meeting demand and deterioration, 

the stock level rises during the period (0, 𝑡1). When the stock level reaches S, production ends at time t1. In the interval (𝑡1, 𝑇), the 

inventory reduces gradually because of demand and deterioration. The inventory reaches zero at time T. Figure 3 depicts a 

schematic diagram of the instantaneous state of inventory. 

  

FIGURE 3 

 SCHEMATIC DIAGRAM DEPICTING THE INVENTORY LEVEL 

Let I(t) be the inventory level of the system at time ‘t’ 

(0 ≤ t ≤T). Then the differential equations governing the instantaneous state of I(t) over the cycle of length T are 

𝑑

𝑑𝑡
𝐼(𝑡) + ℎ(𝑡)𝐼(𝑡) = 
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𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
 

−
𝑟𝑡

1
𝑛
−1

𝑛𝑇
1
𝑛

;  0 ≤ 𝑡 ≤ 𝑡1                                                        (26)
𝑑

𝑑𝑡
𝐼(𝑡) + ℎ(𝑡)𝐼(𝑡) = −

𝑟𝑡
1
𝑛
−1

𝑛𝑇
1
𝑛

; 𝑡1 ≤ 𝑡 ≤ 𝑇                 (27) 

where, h(t) is as given in equation (3), with the initial conditions I(0) = 0, 𝐼(𝑡1) = 𝑆 and I(T) = 0. 

Substituting h(t) given in equation (3) in equations (26) and (27) and solving the differential equations, the on hand inventory at 

time ‘t’ is obtained as : 

𝐼(𝑡) = 𝑆𝑒𝜃(𝑡1−𝑡) 

−𝑒−𝑡𝜃 ∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

] 𝑒𝑢𝜃𝑑𝑢; 0 ≤ 𝑡 ≤ 𝑡1                                           (28)𝐼(𝑡) = 𝑆𝑒𝜃(𝑡1−𝑡) −
𝑟𝑒−𝑡𝜃

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃

𝑡

𝑡1

𝑑𝑢; 𝑡1 ≤ 𝑡 ≤ 𝑇(29) 

Stock loss due to deterioration in the interval (0, t) is 

𝐿(𝑡) =  ∫𝑅(𝑡)𝑑𝑡

𝑡

0

− ∫𝜆(𝑡)𝑑𝑡

𝑡

0

− 𝐼(𝑡); 0 ≤ 𝑡 ≤ 𝑇       (30) 

This implies 

L(t)= [∫(
pα1β

1
tβ1-1e-α1tβ1

+(1-p)α2β
2
tβ2-1e-α2tβ2

pe-α1tβ1+(1-p)e-α2tβ2
) dt

t

0

 

−𝑟 (
t

T
)

1
n
 

−[Seθ(t1-t)-e-tθ ∫ [
pα1β

1
uβ1-1e-α1uβ1

+(1-p)α2β
2
uβ2-1e-α2uβ2

pe-α1uβ1+(1-p)e-α2uβ2

t1

𝑡

 

−
ru

1
n
-1

nT
1
n

] euθ𝑑𝑢] 0≤t≤t1 

∫ (
pα1β

1
tβ1-1e-α1tβ1

+(1-p)α2β
2
tβ2-1e-α2tβ2

pe-α1tβ1+(1-p)e-α2tβ2
) dt

t1

0

 

−𝑟 (
t

T
)

1
n
 

−[Seθ(t1-t)-
ru

1
n

-1

nT
1
n

e-tθ ∫ euθ
t

t1

du;] ; t1≤t≤T                  (31)   

                                                                 

Production quantity Q in the cycle of length T is 

𝑄 =  ∫ 𝑅(𝑡)𝑑𝑡

𝑡1

0

 

= ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

                                                                                      (32) 

From equation (28) and using the initial conditions I(0) = 0, we obtain the value of ‘S’ as 

𝑆 = 𝑒−𝜃𝑡1  
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∫ (
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

0

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

)𝑒𝑢ѳ𝑑𝑢                                                               (33) 

Let 𝐾(𝑡1) be the total production cost per unit time. Since the total production cost is the sum of the set up cost, cost of the units, 

the inventory holding cost. Therefore the total production cost per unit time becomes 

𝐾(𝑡1) =  
𝐴

𝑇
+

𝐶𝑄

𝑇
+

ℎ

𝑇
[∫ 𝐼(𝑡)𝑑𝑡

𝑡1

0

+ ∫ 𝐼(𝑡)𝑑𝑡

𝑇

𝑡1

]           (34) 

Substituting the values of I(t) and Q from equation’s (28),(29) and (32) in equation (34), we obtain K(t1) as 

𝐾(𝑡1) =
𝐴

𝑇
 

+
𝐶

𝑇
∫ [

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
] 𝑑𝑡

𝑡1

0

 

+
ℎ

𝑇
[∫[𝑆𝑒𝜃(𝑡1−𝑡)

𝑡1

0

 

−𝑒−𝑡𝜃 ∫ [
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

𝑡

 

−
𝑟𝑢

1
𝑛
−1

𝑛𝑇
1
𝑛

] 𝑒𝑢𝜃𝑑𝑢] 𝑑𝑡 

+ ∫[𝑆𝑒𝜃(𝑡1−𝑡) −
𝑟𝑒−𝑡𝜃

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃

𝑡

𝑡1

𝑑𝑢] 𝑑𝑡

𝑇

𝑡1

]             (35) 

 

0n integration and simplification we get 

𝐾(𝑡1) =
𝐴

𝑇
 

+
𝐶

𝑇
∫ [

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
] 𝑑𝑡

𝑡1

0

 

+
ℎ

𝑇
[
𝑆

ѳ
𝑒𝑡1𝜃(1 − 𝑒−𝜃𝑇) − ∫ 𝑒−𝑡𝜃

𝑡1

0

 

× [∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

 

−
𝑟

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

] 𝑑𝑡 

− ∫𝑒−𝑡𝜃 [
𝑟

𝑛𝑇
1
𝑛

∫𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡

𝑡1

] 𝑑𝑡

𝑇

𝑡1

]                                       (36) 

Substituting the value of S given in equation (33) in the total cost equation (36), we obtain 

𝐾(𝑡1) =
𝐴

𝑇
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+
𝐶

𝑇
∫ [

𝑝𝛼1𝛽1𝑡
𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡

𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
] 𝑑𝑡

𝑡1

0

 

+
ℎ

𝑇
[(1 − 𝑒−𝜃𝑇) [

1

ѳ
 

× ∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2

𝑡1

0

𝑒𝑢𝜃𝑑𝑢 

−
𝑟

ѳ𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

0

] 

−∫ 𝑒−𝑡𝜃

𝑡1

0

 

× [∫
𝑝𝛼1𝛽1𝑢

𝛽1−1𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑢
𝛽2−1𝑒−𝛼2𝑢𝛽2

𝑝𝑒−𝛼1𝑢𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑢𝛽2
𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

 

−
𝑟

𝑛𝑇
1
𝑛

∫ 𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡1

𝑡

] 𝑑𝑡 

− ∫𝑒−𝑡𝜃 (
𝑟

𝑛𝑇
1
𝑛

∫𝑢
1
𝑛
−1𝑒𝑢𝜃𝑑𝑢

𝑡

𝑡1

)𝑑𝑡

𝑇

𝑡1

]                                    (37) 

  

OPTIMAL ORDERING POLICIES OF THE MODEL 

To find the optimal values of 𝑡1, we equate the first order partial derivatives of 𝐾(𝑡1) with respect to 𝑡1 equate them to zero. The 

condition for minimum of 𝐾(𝑡1) is 

 

𝜕2𝐾(𝑡1)

𝜕𝑡1
2 > 0 

Differentiating 𝐾(𝑡1) with respect to 𝑡1 and equating to zero, we get 

 

{
𝐶

𝑇
[
𝑝𝛼1𝛽1𝑡1

𝛽1−1𝑒−𝛼1𝑡1
𝛽1

+ (1 − 𝑝)𝛼2𝛽2𝑡1
𝛽2−1𝑒−𝛼2𝑡1

𝛽2

𝑝𝑒−𝛼1𝑡1
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡1

𝛽2
] 

 

+
 ℎ

𝑇
[
(1 − 𝑒−𝜃𝑇)𝑒𝑡1𝜃

ѳ
 

× [
𝑝𝛼1𝛽1𝑡1

𝛽1−1𝑒−𝛼1𝑡1
𝛽1

+ (1 − 𝑝)𝛼2𝛽2𝑡1
𝛽2−1𝑒−𝛼2𝑡1

𝛽2

𝑝𝑒−𝛼1𝑡1
𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡1

𝛽2
 

−
𝑟𝑡1

1
𝑛
−1

𝑛𝑇
1
𝑛

]]} = 0                                                                  (38) 

Solving the equation (38), we obtain the optimal time 𝑡1
∗ of 𝑡1at which the production is to be stopped. 

The optimal production quantity 𝑄∗ of Q in the cycle of length T is obtained by substituting the optimal values of 𝑡1 in equation 

(32) as 

𝑄∗ = ∫
𝑝𝛼1𝛽1𝑡

𝛽1−1𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝛼2𝛽2𝑡
𝛽2−1𝑒−𝛼2𝑡𝛽2

𝑝𝑒−𝛼1𝑡𝛽1 + (1 − 𝑝)𝑒−𝛼2𝑡𝛽2
𝑑𝑡

𝑡1

0

 

                                                                                         (39) 
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NUMERICAL ILLUSTRATION 

In this section, we study how the model works with a numerical example to obtain the production time, optimum production 

quantity and profit of an inventory system. The following parameters are used to illustrate the model's solution procedure: 

𝐴 = 300, 315, 330, 345; 

𝐶 = 10, 10.5, 11, 11.5; 

ℎ = 0.2, 0.21, 0.22, 0.23; 

𝛼1 = 20, 21, 22, 23; 

𝛼2 = 50, 52.5, 55, 57.5; 

𝛽1 = 0.55, 0.578, 0.605, 0.633; 

𝛽2 = 2, 2.1, 2.2, 2.3; 

ѳ = 3, 3.15, 3.3, 3.45; 

𝑟 = 50, 52.5, 55, 57.5; 

𝑛 = 5, 5.25, 5.5, 5.75; 

𝑝 = 0.5, 0.525, 0.55, 0.575;  

 and 𝑇 = 12 months 

Substituting these values the optimal production quantity Q∗, the production time and total production cost are computed and 

presented in Table 3 

It is found that as the ordering cost “A” goes up from 300 to 345, the optimal production downtime  t1
∗  remains constant, the 

optimal production quantity Q∗ drops from 52.287 to 52.285 and the total production cost per unit time K∗ rises from 68.596 to 

72.345. 

It is found that as the cost per unit “C” goes up from 10 to 11.5, the optimal production downtime  t1
∗  rises from 5.601 to 5.613, 

the optimal production quantity Q∗ rises from 52.287 to 52.346 and  the total production cost per unit time K∗ rises from 68.596 to 

75.189. 

It is found that as the holding cost “h” goes up from 0.2 to 0.23, the optimal production downtime  t1
∗  and the optimal production 

quantity Q∗ remains constant and the total production cost per unit time K∗ rises from 68.596 to 68.599. 

It is found that as the production parameter “α1” goes up from 20 to 23, the optimal production downtime  t1
∗   rises from 5.601 to 

5.619,  the optimal production quantity Q∗ rises from 52.287 to 60.128 and  the total production cost per unit time K∗ rises from 

68.596 to 75.184. 

It is found that as the production parameter “α2” goes up from 50 to 57.5, the optimal production downtime  t1
∗   rises from 5.601 to 

5.603, the optimal production quantity Q∗ rises from 52.287 to 52.293 and  the total production cost per unit time K∗ rises from 

68.596 to 68.624.  

It is found that as the production parameter “β1” goes up from 0.55 to 0.633, the optimal production downtime  t1
∗   rises from 

5.601 to 5.651, the optimal production quantity Q∗ rises from 52.287 to 60.549 and  the total production cost per unit time K∗ rises 

from 68.596 to 75.541. 

It is found that as the production parameter “β2” goes up from 2 to 2.3, the optimal production downtime  t1
∗  drops from 5.601 to 

5.597, the optimal production quantity Q∗ drops from 52.287 to 52.262 and  the total production cost per unit time K∗ drops from 

68.596 to 68.577. 
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TABLE 3 

NUMERICAL ILLUSTRATION 

A C h T 𝛼1 𝛼2 𝛽1 𝛽2 ѳ r n p 𝑡1
∗ Q* K* 

300 10 0.2 12 20 50 0.55 2 3 50 5 0.5 5.601 52.287 68.596 

315            5.601 52.286 69.845 

330            5.601 52.286 71.095 

345            5.601 52.285 72.345 

 10.5           5.605 52.306 70.792 

 11           5.611 52.334 73.869 

 11.5           5.613 52.346 75.189 

  0.21          5.601 52.287 68.597 

  0.22          5.601 52.287 68.598 

  0.23          5.601 52.287 68.599 

    21        5.608 54.899 70.779 

    22        5.613 57.51 72.971 

    23        5.619 60.128 75.184 

     52.5       5.602 52.291 68.607 

     55       5.603 52.292 68.616 

     57.5       5.603 52.293 68.624 

      0.578      5.617 54.924 70.813 

      0.605      5.633 57.61 73.071 

      0.633      5.651 60.549 75.541 

       2.1     5.6 52.278 68.58 

       2.2     5.597 52.266 68.577 

       2.3     5.597 52.262 68.577 

        3.15    5.601 52.286 68.591 

        3.3    5.601 52.286 68.587 

        3.45    5.601 52.286 68.583 

         52.5   5.601 52.287 68.584 

         55   5.601 52.287 68.573 

         57.5   5.601 52.287 68.562 

          5.25  5.601 52.287 68.6 

          5.5  5.601 52.287 68.604 

          5.75  5.601 52.287 68.608 

           0.525 5.602 52.239 68.557 

           0.55 5.602 52.193 68.52 

           0.575 5.602 52.15 68.485 

 It is found that as the production parameter “p” goes up from 0.5 to 0.575, the optimal production downtime  t1
∗   rises from 5.601 

to 5.602, the optimal production quantity Q∗ drops from 52.287 to 52.15 and the total production cost per unit time K∗ drops from 

68.596 to 68.545. 

It is found that as the deterioration parameter “ѳ” goes up from 3 to 3.45, the optimal production downtime  t1
∗  remains constant, 

the optimal production quantity Q∗ drops from 52.287 to 52.286 and the total production cost per unit time K∗ drops from 68.596 

to 68.583. 
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It is found that as the demand parameter “r” goes up from 50 to 57.5,  the optimal production downtime  t1
∗   and the optimal 

production quantity Q∗ remains constant,  the total production cost per unit time K∗ drops from 68.596 to 68.562. 

It is found that as the demand parameter “n” goes up from 5 to 5.75,  the optimal production downtime  t1
∗   and the optimal 

production quantity Q∗ remains constant,  the total production cost per unit time K∗ rises from 68.596 to 68.608. 

SENSITIVITY ANALYSIS OF THE MODEL 

By changing each parameter (-15%, -10%, -5%, 0%, 5%, 10%, 15%) for the model under study at a time, Sensitivity analysis is 

used to see how changes in model parameters and costs effect the optimal  policies. The results are  presented in Table 4. Figure 4 

illustrates the relationship between the parameters and the production  schedule's optimal values. 

It is observed that production parameters and deterioration parameters are having significant influence on optimal production 

quantity and total cost. 

TABLE 4 

SENSITIVITY ANALYSIS OF THE MODEL - WITHOUT SHORTAGES 

Variation 

Parameters 

Optimal 

Policies 
-15% -10% -5% 0% 5% 10% 15% 

A 𝑡1
∗ 5.602 5.602 5.602 5.601 5.601 5.601 5.601 

 𝑄∗ 52.288 52.287 52.287 52.287 52.286 52.286 52.285 

 𝐾∗ 64.847 66.096 67.346 68.596 69.845 71.095 72.345 

C 𝑡1
∗ 5.59 5.594 5.598 5.601 5.605 5.611 5.613 

 𝑄∗ 52.227 52.247 52.267 52.287 52.306 52.334 52.346 

 𝐾∗ 62.017 64.208 66.401 68.596 70.792 73.869 75.189 

h 𝑡1
∗ 5.601 5.601 5.601 5.601 5.601 5.601 5.601 

 𝑄∗ 52.286 52.286 52.287 52.287 52.287 52.287 52.287 

 𝐾∗ 68.592 68.593 68.594 68.596 68.597 68.598 68.599 

𝛼1 𝑡1
∗ 5.581 5.588 5.595 5.601 5.608 5.613 5.619 

 𝑄∗ 44.717 47.064 49.675 52.287 54.899 57.51 60.128 

 𝐾∗ 62.272 64.234 66.415 68.596 70.779 72.971 75.184 

𝛼2 𝑡1
∗ 5.599 5.599 5.6 5.601 5.602 5.603 5.603 

 𝑄∗ 52.274 52.274 52.281 52.287 52.291 52.292 52.293 

 𝐾∗ 68.587 68.589 68.593 68.596 68.607 68.616 68.624 

𝛽1 𝑡1
∗ 5.561 5.574 5.587 5.601 5.617 5.633 5.651 

 𝑄∗ 45.26 47.507 49.704 52.287 54.924 57.61 60.549 

 𝐾∗ 62.688 64.577 66.424 68.596 70.813 73.071 75.541 

𝛽2 𝑡1
∗ 5.603 5.603 5.602 5.601 5.6 5.597 5.597 

 𝑄∗ 52.293 52.292 52.291 52.287 52.278 52.266 52.262 

 𝐾∗ 68.641 68.627 68.613 68.596 68.58 68.577 68.577 

Ѳ 𝑡1
∗ 5.602 5.602 5.601 5.601 5.601 5.601 5.601 

 𝑄∗ 52.288 52.287 52.287 52.287 52.286 52.286 52.286 

 𝐾∗ 68.61 68.605 68.6 68.596 68.591 68.587 68.583 

r 𝑡1
∗ 5.601 5.601 5.601 5.601 5.601 5.601 5.601 

 𝑄∗ 52.287 52.287 52.287 52.287 52.287 52.287 52.287 

 𝐾∗ 68.63 68.618 68.607 68.596 68.584 68.573 68.562 

n 𝑡1
∗ 5.601 5.601 5.601 5.601 5.601 5.601 5.601 

 𝑄∗ 52.287 52.287 52.287 52.287 52.287 52.287 52.287 

 𝐾∗ 68.583 68.587 68.591 68.596 68.6 68.604 68.608 

p 𝑡1
∗ 5.601 5.601 5.601 5.601 5.602 5.602 5.602 

 𝑄∗ 52.448 52.391 52.326 52.287 52.239 52.193 52.15 

 𝐾∗ 68.727 68.681 68.628 68.596 68.557 68.52 68.485 

 The major observations drawn from the numerical study of the Table 4 are: 

 t1
∗ and Q* are slightly sensitive and K∗ is moderately sensitive to the changes in ordering cost ‘A’. 

 t1
∗ and Q* are slightly sensitive and K∗ is moderately sensitive to the changes in cost per unit ‘C’. 

 t1
∗ is less sensitive, Q* and K∗ are slightly sensitive to the changes in holding cost ‘h’. 

 t1
∗ is slightly sensitive, Q*  and K∗ are moderately sensitive to the change in the production parameter ‘α1’. 

 t1
∗, Q* and K∗ are slightly sensitive to the change in the production parameter ‘α2’. 

 t1
∗ is slightly sensitive, Q*  and K∗ are moderately sensitive to the change in the production parameter ‘β1’. 

 t1
∗, Q* and K∗ are slightly sensitive to the change in the production parameter ‘β2’. 

 t1
∗, Q* and K∗ are slightly sensitive to the change in the production parameter ‘p’. 

 t1
∗, Q* and K∗ are slightly sensitive to the change in the deterioration parameter ‘ѳ’. 
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 t1
∗ and Q* are less sensitive and K∗ is slightly sensitive to the change in the demand parameter ‘r’. 

 t1
∗ and Q* are less sensitive and K∗ is slightly sensitive to the change in the demand parameter ‘n’. 

 

 

 

 

 

FIGURE 4  

RELATIONSHIP BETWEEN PARAMETERS AND OPTIMAL VALUES WITHOUT SHORTAGES 

 

CONCLUSIONS 

This paper addresses the derivation of optimal ordering policies of an EPQ model with mixture of two parameter Weibull 

production for deteriorating items. It is assumed that the lifetime of the commodity is random and follows an exponential 

distribution. Further it is assumed that the production rate increases with increase in time. The instantaneous state of inventory is 

derived by considering the power pattern demand. The optimal production schedules and production quantity are derived. 

Through sensitivity analysis it is observed that the demand function parameters and lifetime distribution parameters have 

significant influence on operating policies of the model. This model also includes some of the earlier models as particular cases. 

This model is useful in situations prevailing at places like vegetable or fruits markets, sea food industries and pharmaceutical 

industries in which the production manager can develop optimal production schedules with the historical data on production. It 

can also be used in supply chain management. This model also includes some of the earlier EPQ models as particular cases for 

specific values of the parameters. This model can be extended to the case of multi commodity production processes where the 

production is random and follows a mixture of Weibull distribution, which will be published elsewhere. 
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