ISSN: 0974-5823 ol. 7 No. 1 January, 2022

International Journal of Mechanical Engineering

Solving a Fuzzy Linear System of First Order inn -
Dimension Via Fuzzy logic

Samer Thaaban Abaas Alshibley®?) Athraa Neamah Albukhuttar® Ameera Nema Alkiffai®®
(1) Department of Mathematics, Faculty of Education, University of Kufa, Najaf, Iraq.
(2) Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Irag.

Abstract: In this paper, fuzzy Aboodh transform used to solve system of fuzzy linear differential equations of first order in
n -dimensions. Moreover, support work with an applied example in one of the institution.

Keywords: fuzzy number; fuzzy Aboodh transform; system of fuzzy linear first order differential equation in

n -dimensions.

2. Introduction:

In the recent years, several authors have worked much attention to the study of fuzzy integral transform and fuzzy system of
differential equations. We refer to [1, 2, 3, 4], where the reader will find the theoretical results necessary to deal with this kind of
integrals and equations.

In the other hand, many researchers have studied to the “fuzzification” of varied approaches that are commonly used in the crisp case
, and they have developed some fuzzy version of methods: fuzzy Laplace, Sumudu, Elzaki, ...etc (see [5,6,7,8] and the references
therein).

Calculating the costs of certain activities within governmental or private institutions is one of the uses of ambiguous mathematical
systems, which help accountants give an approximate future picture to investors in calculating the costs of specific activities for the
coming years depending on the relationship between these activities and their representation in a fuzzy mathematical system.

In the past, the accountant used the ABC system to calculate costs, but this system neglects the time component and the relationship
between costs [9]. Later, the TDABC system arose, which calculates costs and takes time into account [10]. Samer et al, used fuzzy
systems in the second dimension to approximate costs (system research) [11]. In this paper, we develop the slavery technique to obtain
the formula of general solutions for a system of first-order fuzzy linear differential equations in n dimensions, as well as an example in
dimension three solved using this formula.

2. Basic Concepts

This section introduces several terminology keys and basic ideas.

Definition (2.1) [5]: The mapping Hs: R — [0,1] is fuzzy number if satisfies

I. Hu is upper semi-continuous.

I1.Hs is fuzzy convex, i.e., Fu(ct + (1 — ¢)¥) = min{Hs(%), Hu(¢¥)},forall t,£ € Rand ¢ € [0,1].
I1I.Ks is normal i. e, 3 x, € R for which Fu(x) = 1.
IV.Supp (Fb) ={x € R;Hu(x) > 0 }, and cl(Supp (F)) is compact.

Definition (2.2) [12]: Assume that ¥, ® € R;.Where there is Y € R such that ¥ = & + Y then (s is known the H-differential of ¥ and &
and it is represented by ¥ © &.

Note that in this work, the sign © always meant the H-difference aswellasW © ® = ¥ + (—=1)® .
Definition (2.3) [13]: A parametrically ordered pair is a fuzzy number (p, p) of functions p(c), p(s),

¢ € [0,1], which satisfies
L.p(3) is a non-decreasing bounded, 0 continuous right, and (0,1] continuous left function.

I1.p(c) is a non-increasing bounded, 0 continuous right and (0,1] continuous left function.
.p(5) =<p(s). s € [0,1].

Copyrights @Kalahari Journals Vol. 7 No. 1 (January, 2022)
International Journal of Mechanical Engineering
6495



Theorem (2.1) [14]: Let Hy(x) be a fuzzy valued function on [e, o) embodied by ((Hi(x,¢),Hs(x,¢)) .For any fixed ¢ € [0,1] , let
(Hu(x,6),Hu(x,¢) are Riemann-integrals on [e,r]. For every r>e, if two positive functions exist 8(g) and 6(g) such
that f;| Fu(x,)|dx < 8(c) and [| Fu(x, <) [dx < 8(c) for every r >e, then Fu(x) is said to be improper fuzzy Riemann-Liouville
integrals function on [e,), i.e.

S (%) dx = [ (Fo(x, 6)dx, [ Fu(x, ¢)dx].

Definition (2.4) [15]: A function H: (e, r): — R and x, € (e, r). We say that a mapping H is strongly generalized differentiable at x,
if there exists an element Hy'(x,) € Ry, such that:

i.v T > 0 that is sufficiently small, there exist Hs(x, + T) © Hi(x, ), u(x, ) © Hi(x, — D),

Where llm H(x0 +T)OH(x0 ) - llm Hi(x0 )OH (%0 —T) — HJ’ ()S() ) or
T —0 T T —0 T
ii.V T > 0 thatis sufficiently small, there exist Hi(x,) © Hi(x, + T), Hu(x, —T) © Hi(x, )

Hi (%0 )OO (%0 +T) — lim Hi(xo —T)OH(%0) _

where lim = R or
oy 5 o _5 (%)

iii.v T > 0 that is sufficiently small, there exist Hi(x, + T) © Hi(x,), Fu(xo — T) © Hi(x)

Whel’e llm H(x0+T) ©H(%0) — llm H(x0—T)SH(%p) — HJ’()SO) or
T —0 T —0 -0
iv.v G > 0 that is sufficiently small, there exist Hi(x,) © Hi(x, + T), Hi(xy) © Hi(x, — )
where Jim ROOONGT _ ;) REOORGTD _ pey )
T —0 -0 T —0 T

Theorem (2.2) [5]: Let Hy(x): [e, r] — Ry be a function and represent Hs(x) = ((Hu(x, 5),Fu(x, <)) in each case for ¢ € [0,1]. Then:
1. Ru(x) is differentiable in form i, then (Eu(x,5) and Fu(x,c) are differentiable functions and

H' (%) = (B’ (%,6), o (%,9)).

2. If Hu(x) is differentiable in form ii, then (Hs(x, ¢) and Hu(x, ) are differentiable functions and

R (1) = (5 (,6), B’ (%,9)).

Definition (2.5) [8]: Let Hs(x) be a continuous fuzzy-valued function. Assume that iH;(;g)e‘S’S is an improper fuzzy Rimann-integrable
on [0, o), then ifow Hi(x)e™s% dx is being called fuzzy Aboodh transform and it is referred by A[H:(x)] = ifow Hi(x)e % dx, (s >
0 and integer). Thus

L ree s dy = (217 B e dx, 2 [ ke dx).

Using the definition of classical Aboodh transform,

ARG )] = £ [ Hu(x §)e™*t dt and A[ Fo(x 6)] = £ [ Fu(x, 6)e™dx, then

Al®X)] = (A[HG )], A[ (& ).

Theorem (2.3) [8]: Let Hu(x) is the primitive of Hy'(x) on [0, o) and Hy(x) be an integrable fuzzy-valued function. Then:
a. Hu(x) is (i)-differentiable and A[H' (x) ] = sA[Hi(x)] © gﬂ,(o).

b. Hs(x) is (ii)-differentiable and A[H'(x) ] = (—iHj(O)) O (—sA[H(x)].

3. General Formula of Solution Sets for Fuzzy Systems Linear Differential Equations in n-Dimensional Fuzzy Aboodh
Transform

In this section, fuzzy Aboodh transform technique used for solving the following system:
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%1 (8) = Hoy (£,%,(8), %, (8), ..., %, (8))

x5(8) = oy (5%, (8), %2 (8), ..., %, (1))
: (€Y)

X (1) = Fop, (8, xlft),XZ(t). )
Where,
X (t) =

;82005 ¢<1

%1 (%, c).a(t,,q)); £>0,0<g<1

(
x2(8) = ()S_z (9. %2(56)

Xa(t) = (x_n(t,g),x_n(t, g)); £>0,0< g<1,

and Foy (£,%1(8), X2(1), o, X0 (8)), Fug (£, %0(8), %2 (8), wve, % (8)), -, Fopy (£, %1 (8), %2 (8), ., %, (£)) are linear fuzzy value functions.
Apply fuzzy Aboodh transform, to both side of (1) with Theorem (2.3):

R sAlx;(1)] © 1&1 (0) if X, be (i) — dif ferentiable
AlHy (5% 1), %2 (1), .., %, (8)] = s

>>)

[x:(B)] = — %gz(o) O —sA[x;(+)] if x, be (ii) — dif ferentiable

A sAl ()] © 1)52(0) if x, be (i) — dif ferentiable
A[l, (t, x1(8), %2 (1), ...,)gn(t,))] =4 S1 .
$ Alx,(®)] = - ;Xz(O) © —sAlx,(B)] if x, be (ii) — dif ferentiable

. sAlx,(£)] © 1)511 (0) if X, be (i) — dif ferentiable
AR, (8%:(8), %2(8), ., %, ()] = s

Alx, ()] = — %xn(o) O —sA[x,(t)] if x, be (ii) — dif ferentiable

Depending on the formula of the functions  Huy (%, (8), %2 (8), e, % (8)), Fog (£, %, (8), X, (1), ..., %, (8))  and
H, (t, %1(£), %2(%), ...,)gn(t)) the right-hand side can be assumed with the following functions:

A [>s_1 @, c)] =Pi(s,5)
AlX; (5 )] = Ny (s,6)
A [)S_z @, c)] =P5(s,¢)
{ AlXz (5 9] = Np(s,6)

A [x_n(t. c)] =Pu(s,6)
Alx,(t )] = Ny (s,9)
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The solution set of system (1) is obtained by taking the inverse Aboodh transform for the previous system.
(529 = A [Py (5, 0)]
[X:(t, )] = A7 [Ny (s, 9)]
[525,6)] = A1 [P, (s, 0)]
[X2(t, )] = A7 [N (s, 9)]

[%0(5.9)] = A1 [Pa(s,6)]
[X:(t, )] = A7 [N, (s,6)]
4. Application:

To provide an approximate future picture of the size of the costs of three activities within a governmental or private institution, without
appointment, which benefits investors in estimating profits and costs in advance, that helps in the success of investment projects. If we
consider the following system with the initial cost of each activity.

x'(8) = o (5,%(8), ¥(1), 2(8)) = x(8) + (&) + z(5).
¥ (8) = Ju (5,x(8), ¥(8),3(8)) = —y(&) — z(v).

7' (1) = o (5%, ¥1), 3(5) = 2x(t) + (&) + 3(0).
Under initial fuzzy conditions:

x(0,6)=(52-¢), ¥0,9)=(—-11-5), 30,6 =(c—3,-20).
Apply general formula in sections 3 with Theorem (2.3) such as following:
Case (1): If x(t),7(t) and (t) are (i)-differentiable, then

Al®)] © x(0) = Alx®) +y() + 20,
Aly(®)] © <30 = Al-y(4) ~ 7®)]

~ 1 —~
sAlz(1)] © $2(0) = Al2x() + y(1) +2(0)].
After substitution initial condition.

(G- DAxED]-AlyEo] - ALzl =2,

(s — DA 9] — Al 5t )] — A[3(16)] = %
sA [z(t» c)] + AlFE, Q)]+ A[Z (56)] = %
sAly(t6)] + A [g(t. Ol + Alz(s, g)] = %
s—3

(s = DA[5(,0)] - 2[5t )] - A[ 36, 0)] =,

-2
[ 5= DA[Z(E0)] — 24K 9] — AlF(E Q)] = Tg

With simple calculation:
—G+¢s3—gs?—¢s—4s2+7s+ 1
s5 — 4s* + 53 + 652
¢—¢s®+gs?+4¢s+2s3 =552+ 25— 1
s5 — 4s* + 53 + 652 '
¢+ cs* —gs® —4¢s? +3¢gs —s* + 353 — 652+ 95— 1
s® — 455 + s* 4 653 '

A[x(t,6)] =

A[X(E 9] =

ALyt 9] =
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—¢—¢s*+2¢s3+s*+10s2 + 125+ 1

A[5(5, )] = Py
AL2(50)] = —¢+¢s3— gszs; 355—5433-36-!;31152 —11s + 1.

Mg g = S 2SS 2 S D10 L

Using the inverse Aboodh transform obtained the solution of case (1)

x(%,6) =c(%+% e‘t—% 62‘+€ e3t)+g+g e“"+% eZF—g e

x(5,6) = C(g+% e‘t’—g e2t—% e“) —%+2 etz ez‘;+g e

¥(t, ) —C(%-I-% t—% e"”+% ez”’+g e3t>+§—%t—§ e"‘“—% ezn_g e3*
¥(t,6) =§(%—% t—% e‘t+% e -3 e3t>+%+g;_§ e—t_% ezu+g 30
3(t6) = c(;—ll—% t—% e2t+%e~”"’)_3—661 %t+% eZE—%e%.

Case (2): If x(+) and z(t) are (i)-differentiable but y(t) is (ii)-differentiable, then similar with case (1), by taking Aboodh transform
and substitution, initial condition, yields:

(s = DA[x(0)] - Aly0)] - ALz o1 = 2,
(s ~ DAL 5)] - AL 0] - A7) =
s+ DAy o] + Al 9] = =7
(s + DA ] + AlZ (59)] = %
(s = DA 0] - 24340 - [ y& 0] = ?
(s — DA[Z(+,9)] — 2A[X(t, )] — Al¥(t, 9] = _ng

Therefore

¢s+2¢+4
AIXGI = F-g 55

_ —¢s—3¢+1+2s
AXLIl=—G5 a5,

—2¢+¢s? —3¢s — 2 + 55 — s?

A or= s* —s3 — 252
e
ALy = ST

AL Q)] = %Q;:S

The inverse Aboodh transform obtained the solution of case (2)

1 4 4 4
— —__ p—t _p2t) __ ot _ p2t
§(t»§)—§<3e +3e> ge tget
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2 5 1 5
3 —clZ ot _Z 52 Tty D L2t
Xt 6) c(ge 3 € )+3e +3 e

2 2 8 2

Z(t,§)=§(1+§e":—§ ez"’>+1—§e""’+§ ezt.
1 4 5 5 2 5

u — . _p—t _ 52t ot __ 52t

¥) g( 2 3% tg¢© )+2 3¢ T

3(t,6) = g(=1—2e%) + 1 — 2.

1 5 5 5
7 = 2t — —_ 52t
349 g(2 2°¢ ) 2 T3¢

Case (3): If x(+) and 5(t) are (i)-differentiable but z(t) is (ii)-differentiable, then
(Al © l>s(0) — AL +¥® + 50,
4 sAly(¥)] © y(O) = Al-y(t) —3(®)],

L— —z(O) © —sAlz(M)] = A[2x(1) + ¥(t) +z(H)].
After substitution, initial condition and simple calculation
—66 + ¢s3 +gs — 465 — 4s? +8$+2

Alx( 9] = —2s*+ 53 —4s
_ 4¢ —gs3 —2gs +5¢s+2s3—s?2—s—8
A[X(, 9] = 25t 153 —4s :
46+ gs* + 63 —7gs2 +gs —4st +s3 + 52+ 7s— 12
ALy 9] = $6 — 255 + 5% — 452 '
: —6G — ¢s* + 5¢s% + 2¢s + 4s* + 253 — 1152 + 65 — 2
Al¥(t,9)] = S6 — 255 + g% — 452 '
—4¢ + gsB —8gs + 13gs — 353 + 1452 — 21s + 12
Alz(5,9)] = Z 35t + 4s? — 4s2
_ 66 — 2¢s® +10§s — 1665 — 4s? +85+2
Alz(t9)] =

— 3s* + 453 — 4s?
Using the inverse Aboodh transform to obtain the solution of case (3)

1 1 v (VT \/_l; 5 1 e (VTR 6 . (VT
§(t,g)=g —e t’—zeZt’+eZcos - + e +-—e E+ge — e2cos — 7e251n - )

2 7 2 6
_(t )— l —F_l 2t _ ; \/_t’ +£ % @ +E —ts+1 21;+ ; \/_t’ i % @
Xk GC) =G 66 66 eZcos 2 \/76’ Sin 2 66 66 eZcos 2 \/76 Sin 2 .
1 1 9t (VTH\ 11 (VT 5 1 9t (VTt
— _ oty 52t — _p37 b o2t " 55 -
Z(E,C)—C( 1 3e +1Ze +462COS< ) 4\/_6 sm( ))+3 3e 12e 4e2cos< > )
11 s (\/_t>
———=e2sin
W7 2
e e (3 temy Lom 9% VTR 11 e (VTR 15 1, 9 e (VTR 1L (VT
¥ 6) =g 573 126 4e cos Tl 4\/7e sin > > 3e 12e 4e cos > 4\/79 sin - )
(b = L 1t V78 _ 37 & (VT s lomy Bt x/_t+ﬂ \/_u
E »G) =G 2 46 Cos ) 4\/76 sin 2 2 46 CoS 2 7 ez sin 2
o o3 len L.t \/71;+37£ V7% 11,10 V7R 37 & \/’1;
z(t,6) =¢ > 4e 4e cos > Wi 2sin - 2 4e 4e cos - 4\/_ sin .
Case (4): If ¥(t) and z(t) are (i)-differentiable but x(t) is (ii)-differentiable, then
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= A [x(®) +¥®) +3(0)],
Al-y() —z(0)],

I
| sAlz(®)] © ;z(O) = A[2x(1) + ¥(8) + z(0)].

(~sx0e At
sAly(©)] © 17(0) =

With steps similar to the pervious cases, it is possible to obtain the solutions following cases, such as :

N=n )

A[X(t,6)] = - g:3_+2§Zs_+5i§3+—6i§2+—8is =

R
e e e
Alz(59)] = et _—3!225 _23;2 ++8552 kbt L}
ATZ0)] = 3g_2gsss+_.;; e

By the inverse Aboodh transform obtained the solution of case (4)

(o) = 1_;12E+% \/ﬁu+2%,«/ﬁ;+

Xt 6)=¢ 66 66 ezcos > me sin >

)= (Le-t_ Loz _ gt VITEY 2 e (VITEV

X(t,6) = ¢ 6e 68 ezcos > me sin >

1 9 ¢t (\/ﬁt)_i_ 31 ¢
8

1 1
¥ 6) =g (———e_t’+—ez‘3+ e2cos

5
6
5
6

8 3° T12° T8 2 Nevaies
31 E \/1712)
- ezsin .
8v17 2
S0t <) = 3 1 iy 1, 9 % V17t 31 % V17¢
¥ 6) =g g 36 126 86 cos > 8\/ﬁe sin >
4 31 % i (\/171;)
ezsin .
8v17 2
(tc) = 1 1 2u+11 % v 7% 61 ; \/1713 15
z(L6) =6 3 4e P ez2cos 8\/_6 sin 8
7(60) = 3.1, 11 % V17¢ 61 ; \/1713 13+
z(t6) =g P 46 8€COS > 8\/_6 sin 3

Case (5): If x(t), z(+) and x(%) are (ii)-differentiable, then
G+¢s3—2¢s2—3¢s+3s2—3s—1

Alx(,9)] =

s5 4+ 254 — 553 — 652
e S
Al =
eSSty
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eZE

1 1]
e+ gez“" + e2cos

13 V17t 2 2 (N1T%
— e2cos ———e2sIin
17 2
V17% 2 v 17¢
+—ezsin| ——|.
17 2
5 = 1 2 9 % V17%
3 12e 8e cos >
5 ¢ 1 2;+9% V17%
36 126 86 COoS 2
11 5 \/171'.,) 61 L (\/171;)
— —e<«C0S - ez Sin .
8 2 817 2
+11 5 \/17t,>+ 61 L (v17t)
— e2C0S ez Ssin .
8 2 817 2
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—G+¢s3 —4¢s? +2¢s —3s3+ 252+ 10s+ 1
s% +s* — 653 '
_ ¢—2¢s3+2¢s2+¢s—4s2+11s—1
A , = .
[7(t, )] S5 + 5% — 633

Using the inverse Aboodh transform obtained the solution of case (5)

Alz(r9)] =

§(‘%€)=c(—%+%e"”—%e2"+ge‘3“)+%+%e‘t+%e2t_£e-3;_
i(t.€)=€(%+%e‘t—%e“ 26_3“)—%+ge‘t’+zez‘;+ge‘3t’
Z(t,g)=g(g_%;_ée—t+%92t+§e—3c>+§ %t—ge_c—%e%_ge—sc
?(E,C)=§(%+%t—%e“’+%en—ge 35) %_% _g ;_%ezu+ge—3;
Z(E'C)=C(%Z—%t—%en—ge‘“)+_3—665+%‘5+%92“+%e—3t_

Case (6): If x(t) and z(t) are (ii)-differentiable but (t) is (i)-differentiable, then
66+ s3¢— 4¢s? + 352 —4s -2

A . =
[x(t ] s> —5s3 4+ 4s
_ —46—¢s3+3¢s2 —gs+ 253 —4s2 - 35+ 8
AR 0)] = s .
s> —5s3 4+ 4s
46+ gs* + 3¢s® — 7¢s? —7gs —s* —s® + 552 — s+ 4
ALy( 9] = L .
= s6 — 5s% 4+ 4s
_ —26 —gs* — 2653 + 7¢s? + 4gs + s* + 453 — 952 — 125 + 10
Al¥(t,9)] = 5 Z 2 :
s® —5s% + 45
46+ ¢s? —5¢s—3s2+ 55+ 4
A . = .
[2(t,6)] Ty
_ —2¢—2¢s? +4¢s—4s+ 10
A . = .
[7(t )] pr—y
Using the inverse Aboodh transform obtained the solution of case (6)
1 1 3 1 1 3 7
e s e 2 B S S R T
x(%,6) §(6€ 2e+2e 66) e +Ze+ze +6e.
3 1 13 11 5
Z B e P T | BT e ST T "
Xt 6) §(6e +23 28 66) 68 2e+6e +6e
y(t»g)=g(1——e‘”’+e""—§e‘2“+—e2'7’)+1——e""’—et+§e‘2""—ie2""
’ 4 2 3 4 12
1 1 3 1 3 1
e S 1 N S
¥(%,6) g( > "3 etty et >+2 et tet—qe vk
9 9 1
E(t,§)=§<—1 +Ze‘2‘;——62“)+1——e‘2“+ze2t’
1 9 1 5 9
= (22 21 )2 -2t 2t
(5 6) g(2 3¢ 4e> 2tze e

Case (7): If x(+) and 5(t) are (ii)-differentiable but z(t) is (i)-differentiable, then

4¢+s3¢—4¢s? +3s> -8
s> —s3 —4s? — 4s

Alx(0)] =
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—6G — 53¢ + 3¢s%2 — ¢s + 253 — 452 +s+2

A X »
(%t 91 = s5 —s3 —4s2 —4s
46 + ¢s* — 2¢s® — 3¢s? + 665 — s* + 453 + 52 —65—12
Al Z(t» Q] = S6 — g% — 453 — 452
_ —6G —¢s* + 3653 + 7¢s? — 5¢s + s* + 453 + 52 — 65 — 12
A[¥3,9)] = N S—p 3 :
§6 —s* —4s3 —4s
—4¢+ ¢s3 4+ 3¢s? — 10¢s — 3s3 —s2 + 10s + 12
A[g(t,,g)]z 5 __ ¢4 _ 2 !
= s°> —s*—4s
_ — 2¢s3 — 3¢s? + 9¢s + 5s? —9s+2
A[ Z(t’; g)] - S5 _ 54 452
Using the inverse Aboodh transform obtained the solution of case (7)
o =cf e? V7t\ 6 \/_t+1_.;1 Lz \/71,-,+3—2: V7g) 11 2
x(k6) =¢| ez cos| —= \/76 sm > G ¢ 5 Sezcos(— 2\/7.9 sin| — 5 3

X(t,6) = eZt’cos V7t +ie_7tsin @ +le“‘° 132‘9 +e_2tcos V7 iez sin \/_E +Ee—t+1 @2t

9 -t V7 11 = (V7)1 1 9 -t V78 11 = (VT7E\ 5
¥t o) =g 1+Zezcos ———e2sin|—|—-z-et+-—e* +3—ZeZ cos +—e2sin|—|—=e*

2 ) a7 2 3 12 2 ) a7 2 3

—%ez‘:.

56 <) = 3.9 = \/_1;+11 (VT 1 NSRRI V7R 11 =t (VTR 5

¥k G6) =G 2 46 Cos 4\/_ 2 sin 2 36 126 2 46 Ccos 2 4\/76 sin 2 36
_%ezu_

29 LY (YT BT g (VTR g L L (VTR 37 e (VTR

tG6) =g 4e 4e cos > 4\/76 sin - 4e 4e cos > 4\/76 sin -

o T B S V78 _ 37 (VT 1.1, 13 \/_t, NEL V7t

Zt,g = > 46 46 Cos 2 4\/_8 Sin 2 > 4 46 Cos 4\/_ 2 sln 5 )

Case (8): Finally, if ¥(t) and z(t) are (ii)-differentiable but x(t) is (i)-differentiable, then solution set for the last case takes the
following form :

§(“"'9)=€(E—13—08_E—%62t>—g ?e‘t’+%en
X(FJC)=C(—;+%e‘t’—%e2f’)+§_§e—u+%ezu
7(t9) =g E—gt—le“)—$+gt+% 2

7(t6) = ¢ (=

Conclusion: The fuzzy Aboodh transform is used to find solutions to a system of n-dimensional fuzzy linear first order differential
equations. To show the method's efficiency and quality, we provided a practical example.
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