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Abstract 

In regression models, the multicollinearity effects on the ordinary least squares estimator performance make it inefficient. To solve 

this, several estimators are proposed for coping with multicollinearity problem in regression models as ridge, Liu, and the recent 

one is the Kibria-Lukman estimator (KLE). And because the important role of the biasing parameters in these estimators in 

determining their performances, so several estimators of the biasing parameters are proposed and examined in recent papers. But 

the existing estimators do not perform very well due to their mean squared error for multicollinearity high noise. Therefore, this 

paper proposes a new robust estimator of the biasing parameter of the KLE and compares its performance with some existing 

estimators. The new estimator of the biasing parameter is based on the quantile of the error variance ratio to the canonical 

parameter. Furthermore, the simulation study and the numerical example are performed for studying the performance of the 

proposed estimator. The main results indicate that our proposed estimator has a better performance when the multicollinearity 

degree and the error variance of the model are large.  
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1. Introduction 

The multiple linear regression model in the matrix form is given as 

 

cXby  ,                                                             (1) 

 

where y  is an 1n  given responses vector, X  is defined as an pn  explanatory variables matrix, b  is called as an 1p  

unknown regression parameter vector, and c  is known as an 1n  errors vector such that its mean is equal to zero and its 

variance-covariance matrix, nIcCov 2)(  , 
2  error variance and nI  is an nn  identity matrix. So, the least squares 

estimator (LSE) of b  is 

yXXXbLSE
 1)(ˆ . 

Theoretically, it is assumed that the explanatory variables in the regression model should be independent but practically this 

assumption may be violated which means there is relationships between the explanatory variables and this caused 

multicollinearity (Kibria 2003). The multicollinearity effects on the LSE is very serious such that the LSE becomes inefficient as 

well unstable by giving incorrect signs of the regression parameter estimates and other trouble issues, see Hoerl and Kennard 

(1970) and Ullah et al. (2019). As a remedy of that, various estimators are proposed and the basic one is the ridge regression 

estimator (RRE) (Hoerl and Kennard 1970). Then, the recent one is the Kibria-Lukman estimator (KLE) and it is given as: 

LSEppKLE bkXXkXXb ˆ)'()'(ˆ 1  
 

where 0k  is the biasing parameter (Kibria and Lukman 2020). As any regression estimator, the determination of the biasing 

parameter in the recent KLE is important to show its performance. Different studies proposed and investigated the biasing 

parameter estimators for the RRE such as (Hoerl and Kennard 1970), (Hoerl et al. 1975), (Lawless and Wang 1976), (Hocking et 

al. 1976), (Kibria 2003), (Khalaf and Shukur 2005), (Alkhamisi et al. 2006), (Alkhamisi and Shukur 2008), (Muniz and Kibria 

2009), (Muniz et al. 2012), (Abonazel and Farghali 2019), and (Abonazel and Taha 2021). In addition to, Dawoud (2021a) 

proposed and examined the new biasing parameter estimators for the KLE in the linear regression model. Since there is a little 



Copyrights @Kalahari Journals                                                                                            Vol. 7 No. 1 (January, 2022) 

International Journal of Mechanical Engineering 

6277 

discussion of the multicollinearity with the noise parameter which means a high multicollinearity degree with a high variance of 

the error challenge and affect the existing biasing parameter estimators' performances; so, we introduce a new estimator of the 

biasing parameter, k, in the KLE to handle the above issue.  

This paper sections are: the statistical methodology is stated in Sec. 2. In Sec. 3, we state the new estimator of the biasing 

parameter. A simulation study and a real data are stated in Sec. 4. In final, conclusion is stated in Sec. 5. 

  

2. Statistical methodology 

2.1.  Canonical form  

The popular canonical form of the model in (1) is  

 

,cZy                                                            (2) 

where XRZ  , bR , R  is called as an orthogonal matrix such that ).,,,( 21 ptttdiagTXRXRZZ   The 

LSE of   is as 

 

.ˆ 1 yZTLSE
                                                             (3) 

 The matrix mean squares error (MMSE) and the scalar mean squares error (SMSE) of the LSE are  

 

12)ˆ()ˆ(  TCovMMSE LSELSE                                          (4) 

and 





p

i i

LSELSE
t

MMSEtraceSMSE
1

2 1
))ˆ(()ˆ(  .                              (5) 

The generalized KLE of   (Dawoud 2021b) is given as  

 

,ˆˆ
LSEGKLE WM                                                          (6) 
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and the MMSE and the SMSE are given as 
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2.2.  Biasing parameters  

 

We state some existing estimators of the biasing parameter for the KLE are as follows: 
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3. The New Estimator 

 

Consider that )ˆ,...,ˆ,ˆ( 21 pkkk  are the real values of 
ik̂
 
that defined in equation (6). Writing )ˆ,...,ˆ,ˆ( 21 pkkk

 
in the magnitude 

ascending order as 

 

)()2()1(
ˆˆˆ

pkkk                                                   (16) 

where  1k̂  and  pk̂
 
are the minimum and the maximum of )ˆ...,,ˆ,ˆ( 21 pkkk  respectively, and

 
}ˆ...,,ˆ,ˆ{ )()2()1( pkkk  is the order 

statistics set for )ˆ,...,ˆ,ˆ( 21 pkkk  as well 
)(

ˆ
ik , pi ...,,2,1  is defined as the observation of i-th order. By following Suhail et al. 

(2020), we consider KQ , 10  , which it is the 100  quantile of the set }ˆ...,,ˆ,ˆ{ )()2()1( pkkk ; therefore, the new quantile 

estimator is given as:  

 

 }ˆ...,,ˆ,ˆ{}ˆ{ )()2()1()( pi kkkkKQ  ,                                  (17) 
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and 

  )ˆ(Pr KQk ,                                                    (18) 

 

Now, considering three levels following Suhail et al. (2020) i.e., low level ( 10.0
 
and 0.25), moderate level ( 50.0 ) and 

high level ( 75.0 , 0.90 and 0.95). So, the new six estimators are denoted as 
10.0

*

1
ˆ KQk  , 

25.0

*

2
ˆ KQk  , 

50.0

*

3
ˆ KQk  , 

75.0

*

4
ˆ KQk  , 

90.0

*

5
ˆ KQk   and 

95.0

*

6
ˆ KQk  . It is noted that when  equals 0.50 in equation (18), we get equation (15), that 

means 
7k̂  estimator is special case of the new quantile approach. 

4. Applications 

4.1 Simulation Study 

 

The impossibility of performing the theoretical comparisons among estimators in this case gives us a motivation to conduct a 

massive simulation study using various factors to give a useful view about the biasing parameter new defined estimators' 

performances in the KLE. As known, the MSE criterion is used for measuring the new defined estimators effects. The MATLAB 

software is used for the computational procedures. By following the authors (Gibbons 1981) and (Kibria 2003), explanatory 

variables are generated using: 

pinjzzx pjjiji ...,,2,1,...,,2,1,)1( 1,

2/12                   (19) 

where jiz   are known as the independent numbers that distributed as a standard normal and here 90.0,80.0
 
and 0.99 that 

is defined as any two explanatory variables correlation degree. Considering 3p
 
and 7p

 
in simulation where the variables 

are standardized. The response variable iy  are defined as: 

njcxbxbxby jjppjjj ,,2,1,2211                             (20) 

where jc  are known as an ),0(.. 2Ndii . And 1bb  as in Dawoud and Abonazel (2021), Lukman et al (2021), Algamal 

and Abonazel (2021), Awwad et al. (2021), and Abonazel et al. (2022a,b). The number of replications in the performed simulation 

is 2000 times with 50n , 100 and 150 and 2 1, 25, and 100. The estimated MSE (EMSE) of estimators are measured in 

each replicate and computed as: 

 

where 
*  is an 

estimator of the true 

parameter is  . 

We have the following comments due to Tables 1 – 6 results: 

 

1. In case of the factors  ,   and p
 
have an increase, the EMSEs of the estimators have an increase but our suggested 

estimator with higher quantiles in special has the least increase while the EMSEs of the estimators have a decrease in case of the 

sample size n  has an increase. 

2. As expected, the LSE gives the highest EMSEs in multicollinearity existence.  

3. Generally, the KLE with new quantile estimators of biasing parameter has better performance by giving lower EMSEs 

than LSE and other available estimators. So, our suggested new quantile estimator has a good impact on KLE performance. 

4. The new quantile estimator has a better performance in high degrees of collinearity with high variance of errors. 

5. The estimators 
5k̂ , 6k̂ , 

*

3k̂ , 
*

4k̂ , 
*

5k̂
 
and 

*

6k̂
 
for the KLE have less EMSEs than others in general and specially 

*

4k̂  has 

the best EMSEs in many different values of factors.  

6. The KLE with estimators 
5k̂ , 6k̂ , 

*

3k̂ , 
*

4k̂ , 
*

5k̂
 
and 

*

6k̂  has better performance than with others for 3p  and different 

values of   , n , and  .  

7. The KLE with estimators 
5k̂ , 6k̂ , 

*

3k̂  and 
*

4k̂  has better performance than with others especially with 
*

4k̂  for 7p  and 

different values of   , n , and  .  

8. The performance of KLE with 1k̂  is approximately the same with 
*

1k̂ . 
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Table 1. EMSEs of KLE when 50n  and 3p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.1207 3.0183 12.0732 0.2178 5.4443 21.777 1.9842 49.6047 198.419 

)ˆ( 1kKLE  0.1055 1.6834 6.0367 0.1758 2.732 10.1093 1.0881 21.0614 83.1397 

)ˆ( 2kKLE  0.0956 1.1239 3.96 0.1457 1.7372 6.4818 0.6546 13.1115 52.043 

)ˆ( 3kKLE  0.1198 2.9136 11.609 0.2137 5.1478 20.5337 1.6966 42.5185 169.929 

)ˆ( 4kKLE  0.0854 2.0777 7.8941 0.1211 4.0378 15.3956 1.4512 36.0104 139.213 

)ˆ( 5kKLE  0.0742 0.6641 2.2657 0.0813 1.0806 3.9868 0.4732 10.081 40.3855 

)ˆ( 6kKLE  0.0844 0.811 2.938 0.109 1.2313 4.7528 0.4182 9.5538 38.2458 

)ˆ( *

1kKLE  0.1055 1.6834 6.0367 0.1758 2.732 10.1093 1.0881 21.0614 83.1397 

)ˆ( *

2kKLE  0.1008 1.2987 4.891 0.1577 2.1318 8.3775 0.7647 17.9249 71.6266 

)ˆ( *

3kKLE  0.0895 0.7834 3.1026 0.1213 1.2715 5.472 0.3546 12.0614 49.1073 

)ˆ( *

4kKLE  0.0762 0.6542 1.8591 0.0773 1.0454 3.4567 0.4733 8.6962 34.3459 

)ˆ( *

5kKLE  0.0824 0.7178 1.9393 0.086 1.1245 3.6098 0.5044 8.9102 35.1155 

)ˆ( *

6kKLE  0.0824 0.7178 1.9393 0.086 1.1245 3.6098 0.5044 8.9102 35.1155 

 

 

Table 2: EMSEs of KLE when 100n  and 3p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.059 1.4753 5.9012 0.1081 2.7016 10.8063 1.0084 25.2105 100.842 

)ˆ( 1kKLE  0.0543 0.8985 3.02 0.094 1.454 5.0891 0.6262 10.9583 42.932 

)ˆ( 2kKLE  0.0516 0.6016 1.9618 0.0846 0.9079 3.2016 0.3955 6.7285 26.5124 

)ˆ( 3kKLE  0.0589 1.4529 5.7877 0.1077 2.6316 10.4895 0.94 23.0052 92.0974 

)ˆ( 4kKLE  0.053 1.161 2.9301 0.0833 1.3464 4.669 0.7079 13.7723 52.7101 

)ˆ( 5kKLE  0.0473 0.367 1.175 0.0619 0.6086 2.1938 0.2597 5.7313 22.1847 

)ˆ( 6kKLE  0.0499 0.4053 1.3841 0.0757 0.5876 2.1994 0.2232 4.6758 18.5959 

)ˆ( *

1kKLE  0.0543 0.8985 3.02 0.094 1.454 5.0891 0.6262 10.9583 42.932 

)ˆ( *

2kKLE  0.0533 0.6731 2.4134 0.0898 1.0835 4.153 0.4371 9.2154 36.8403 

)ˆ( *

3kKLE  0.0506 0.3986 1.5506 0.0791 0.6094 2.7159 0.2131 6.1927 25.4408 

)ˆ( *

4kKLE  0.042 0.4333 1.2197 0.0462 0.6967 2.3019 0.2647 5.5923 21.4297 

)ˆ( *

5kKLE  0.04 0.4929 1.3408 0.0419 0.7726 2.4915 0.2844 5.8779 22.5878 

)ˆ( *

6kKLE  0.04 0.4929 1.3408 0.0419 0.7726 2.4915 0.2844 5.8779 22.5878 
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Table 3: EMSEs of KLE when 150n  and 3p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.0416 1.04 4.1602 0.076 1.9005 7.6019 0.7053 17.6326 70.5303 

)ˆ( 1kKLE  0.039 0.6705 2.194 0.0681 1.0768 3.6383 0.4645 7.6395 29.5464 

)ˆ( 2kKLE  0.0376 0.4558 1.4089 0.0631 0.6678 2.2464 0.304 4.6004 17.9934 

)ˆ( 3kKLE  0.0416 1.03 4.1044 0.0759 1.8666 7.4415 0.6733 16.452 65.7495 

)ˆ( 4kKLE  0.0364 0.5373 2.1876 0.0495 0.9334 4.084 0.6105 13.4849 60.4232 

)ˆ( 5kKLE  0.0362 0.281 0.8576 0.0536 0.4515 1.5404 0.1867 3.9647 15.4788 

)ˆ( 6kKLE  0.037 0.3029 0.9806 0.0595 0.4209 1.5234 0.1642 3.174 12.5563 

)ˆ( *

1kKLE  0.039 0.6705 2.194 0.0681 1.0768 3.6383 0.4645 7.6395 29.5464 

)ˆ( *

2kKLE  0.0385 0.5021 1.7074 0.0661 0.7812 2.902 0.3325 6.3379 25.2711 

)ˆ( *

3kKLE  0.0372 0.2933 1.0377 0.0608 0.4051 1.805 0.1667 4.1532 17.3193 

)ˆ( *

4kKLE  0.0339 0.3499 0.9202 0.0439 0.5388 1.6354 0.187 3.9197 15.0196 

)ˆ( *

5kKLE  0.0329 0.4068 1.0219 0.0405 0.608 1.7761 0.2015 4.1154 15.7884 

)ˆ( *

6kKLE  0.0329 0.4068 1.0219 0.0405 0.608 1.7761 0.2015 4.1154 15.7884 

 

Table 4. EMSEs of KLE when 50n  and 7p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.4032 10.0789 40.3155 0.7581 18.9517 75.8069 7.184 179.6 718.401 

)ˆ( 1kKLE  0.3038 5.3179 20.411 0.5233 9.7166 37.942 3.847 89.2727 356.153 

)ˆ( 2kKLE  0.2061 2.5539 9.7585 0.3079 4.5992 17.9422 1.8164 41.7882 166.697 

)ˆ( 3kKLE  0.3943 9.5387 38.0572 0.7254 17.4924 69.8365 5.9019 146.66 586.606 

)ˆ( 4kKLE  0.27 4.8755 16.1642 0.5228 7.9308 31.073 4.2861 100.554 401.586 

)ˆ( 5kKLE  0.0936 1.3676 5.3384 0.1425 2.8826 11.2967 1.2941 30.904 122.625 

)ˆ( 6kKLE  0.1391 1.5747 6.0901 0.1868 2.7985 11.0081 1.0748 25.2713 101.007 

)ˆ( *

1kKLE  0.2942 4.9019 18.9366 0.498 8.9762 35.2192 3.5307 82.8656 330.874 

)ˆ( *

2kKLE  0.2469 3.4079 13.305 0.3824 6.2469 24.6847 2.4217 57.8447 231.077 

)ˆ( *

3kKLE  0.1572 1.7915 6.9952 0.205 3.2398 12.8334 1.2381 29.6706 118.416 

)ˆ( *

4kKLE  0.0715 1.0233 3.9791 0.0969 1.8178 7.2272 0.6842 16.617 66.5108 

)ˆ( *

5kKLE  0.1387 2.5745 9.9069 0.2128 5.0493 19.8595 2.0193 49.6915 198.621 

)ˆ( *

6kKLE  0.1595 2.8192 10.7976 0.2374 5.4589 21.4393 2.1611 53.2063 212.755 
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Table 5: EMSEs of KLE when 100n  and 7p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.175 4.3749 17.4996 0.3291 8.2277 32.9108 3.1258 78.1443 312.577 

)ˆ( 1kKLE  0.1515 2.7016 10.0451 0.2677 4.8433 18.4594 1.9686 43.0603 171.053 

)ˆ( 2kKLE  0.1274 1.3373 4.7852 0.1996 2.2993 8.6295 0.9706 19.8569 78.8527 

)ˆ( 3kKLE  0.1743 4.2861 17.1022 0.326 7.9699 31.8147 2.8586 70.4645 281.792 

)ˆ( 4kKLE  0.1017 1.4707 6.1501 0.1424 3.2936 12.8927 2.0573 45.4045 181.911 

)ˆ( 5kKLE  0.0842 0.512 1.8438 0.0976 1.0552 3.9042 0.5111 11.4657 45.8617 

)ˆ( 6kKLE  0.1112 0.7819 2.8027 0.1496 1.2971 4.9029 0.5299 10.9901 43.6567 

)ˆ( *

1kKLE  0.1494 2.4856 9.2574 0.2612 4.4414 17.0326 1.8123 39.8263 158.569 

)ˆ( *

2kKLE  0.1388 1.6724 6.227 0.2285 2.9551 11.4262 1.2083 26.6638 106.445 

)ˆ( *

3kKLE  0.1176 0.7754 2.7968 0.1623 1.3077 5.0048 0.5469 11.4372 45.7652 

)ˆ( *

4kKLE  0.0752 0.2823 1.0154 0.0639 0.4477 1.7092 0.169 3.7174 14.8952 

)ˆ( *

5kKLE  0.0467 0.8163 2.9662 0.0664 1.6232 6.2577 0.6442 16.1903 64.7467 

)ˆ( *

6kKLE  0.0479 0.9239 3.32 0.0742 1.7853 6.8681 0.6983 17.4954 69.9776 

 

 

Table 6: EMSEs of KLE when 150n  and 7p  

Estimator 
80.0  90.0  99.0  

1  5  10  1  5  10  1  5  10  

LSE 0.1105 2.7613 11.0451 0.2079 5.1972 20.7889 1.9753 49.3826 197.53 

)ˆ( 1kKLE  0.0991 1.7669 6.4172 0.1769 3.1368 11.7323 1.3015 27.2287 107.865 

)ˆ( 2kKLE  0.0888 0.8954 3.0245 0.1445 1.4937 5.4013 0.6693 12.3433 48.7847 

)ˆ( 3kKLE  0.1103 2.7276 10.886 0.2071 5.0946 20.3396 1.8682 45.9118 183.53 

)ˆ( 4kKLE  0.0887 2.6194 9.2518 0.123 4.2014 10.6091 1.6023 28.3791 111.585 

)ˆ( 5kKLE  0.0727 0.3461 1.2185 0.0868 0.6921 2.6147 0.3413 7.8224 31.1758 

)ˆ( 6kKLE  0.0832 0.5232 1.7679 0.1215 0.8418 3.0616 0.3674 6.8039 26.9145 

)ˆ( *

1kKLE  0.0983 1.6328 5.8862 0.1741 2.8716 10.7772 1.2086 25.0984 99.7006 

)ˆ( *

2kKLE  0.094 1.1102 3.9478 0.16 1.909 7.2138 0.8265 16.7789 66.7259 

)ˆ( *

3kKLE  0.0856 0.5223 1.7832 0.1301 0.8614 3.1683 0.3736 7.285 28.9814 

)ˆ( *

4kKLE  0.0682 0.17 0.5692 0.0714 0.2553 0.9291 0.1023 1.9627 7.7578 

)ˆ( *

5kKLE  0.0444 0.5533 1.9507 0.0401 1.0504 4.0607 0.3982 10.5532 42.2238 

)ˆ( *

6kKLE  0.0422 0.6303 2.1856 0.0408 1.1614 4.4462 0.4318 11.3382 45.3725 

 

4.2 Real-Life data: Portland cement data 

 

In this section, we used the Portland cement data that adopted by Woods et al. (1932) to show the performance of the new 

suggested quantile estimator for the biasing parameter for the KLE. Many authors have used this data such as (Kaciranlar et al. 
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1999); (Li and Yang 2012); (Lukman et al. 2019), (Kibria and Lukman 2020), (Dawoud and Kibria 2020) and (Dawoud 2021a). 

The model of this data is written as 

.13...,,2,1,44332211  jcxbxbxbxby jj                       (22) 

To learn about this data and its variables, see (Woods et al. 1932). Some of the measures are computed to clarify the 

multicollinearity happen as the variance inflation factors (VIFs) in which their values are as: 38.50, 254.42, 46.87 and 282.51. And 

the eigenvalues of XX   are 206.446761 t , 422.59652 t , 952.8093 t , 419.1054 t , as well the condition number 

(CN) of XX   is near to 20.58. The VIFs, eigenvalues, and CN tell us a severe multicollinearity happen in the data. In Table 7, we 

state the estimated parameter with the estimators' EMSEs. Table 7 appears that the available estimator 1k̂  and the suggested new 

quantile estimator 
*

1k̂  for the KLE have the same performance and they outperform better than others for this data. 

Table 7: SMSEs of LSE and KLE using different biasing estimators 

Estimator 
1b̂  2b̂ 

3b̂ 4b̂ k̂  
SMSE  

LSE 2.1930 1.1533 0.7585 0.4863 ----- 0.0638 

)ˆ( 1kKL  
2.1764 1.1572 0.7465 0.4888 0.6042 0.0629 

)ˆ( 2kKL  
2.1473 1.1639 0.7257 0.4932 1.6741 0.0636 

)ˆ( 3kKL  
2.1930 1.1533 0.7585 0.4863 0.00075 0.0638 

)ˆ( 4kKL  
1.8960 1.2215 0.5475 0.5308 11.8634 0.1826 

)ˆ( 5kKL  
2.0590 1.1842 0.6626 0.5065 5.0564 0.0824 

)ˆ( 6kKL  
2.1116 1.1721 0.7001 0.4986 3.0186 0.0682 

)ˆ( *

1kKL  
2.1764 1.1572 0.7465 0.4888 0.6042 0.0629 

)ˆ( *

2kKL
 

2.1548 1.1622 0.7310 0.4921 1.3978 0.0632 

)ˆ( *

3kKL
 

2.0955 1.1758 0.6886 0.5010 3.6335 0.0716 

)ˆ( *

4kKL
 

1.9691 1.2048 0.5989 0.5199 8.7151 0.1272 

)ˆ( *

5kKL
 

1.8849 1.2240 0.5398 0.5324 12.3545 0.1924 

)ˆ( *

6kKL
 

1.8849 1.2240 0.5398 0.5324 12.3545 0.1924 

 

5. Conclusions 

In regression model, the performance of KLE depends on the biasing parameter determination. We propose a new quantile 

estimator of the biasing parameter for the KLE. Our suggested quantile estimator with a useful quantile level choice has a better 

performance than others with using different values of factors, especially in severe multicollinearity and from moderate to high 

variance of the error. Within different available and suggested estimators of the biasing parameter, we have focused on giving the 

one/ones outperform better by using a simulation study and a real data. Then, we have investigated the performance of the 

suggested quantile estimator with different quantile levels by giving various correlation levels between the explanatory variables, 

various variance of error, various sample sizes, various numbers of explanatory variables in our simulation study. In general, the 

KLE has a better performance with the suggested quantile estimator of the biasing parameter. The available 
5k̂ , 6k̂  and the 

suggested 
*

3k̂ , 
*

4k̂ ,
 

*

5k̂ , 
*

6k̂  estimators of the biasing parameter in the KLE are better than others in various different cases in the 

simulation study. Also, the KLE has a better performance than the LSE through various available and suggested estimators and it 

has the least EMSEs with the available 1k̂  and the suggested 
*

1k̂  in the real data. Finally, the KLE with the available 1k̂ , 
5k̂ , 6k̂  

and the suggested
*

1k̂ ,
*

3k̂ , 
*

4k̂ ,
 

*

5k̂ , 
*

6k̂  is highly recommended to the practitioners. 
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