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Abstract— 

Die steel has major application in aviation and automobile and industry. In both of the industry surface roughness is a major factor. 

Although plenty of literature is available where input parameters get optimized but very few literatures are available which compare 

various optimization technique for the same input parameters. In this research work  we compare the parameters optimized by 

Teaching learning based optimization technique ( TLBO ) and Grey Relational Analysis (GRA). Full factorial design was used for 

the experiment conduction. Carbide inserts were used for the machining of die steel. 

Index Terms—Grey Relational Analysis (GRA), Teaching learning based optimization (TLBO), Die Steel 

 

1. Introduction 

1.1. Work Material 

Die steel having a hardness between 40 HRC to 65 HRC is widely used in aviation, die making and automobile industry. On the 

opposite side, due to its highly  resistance nature  to the  wear and rust, very great fatigue strength and favorable ratio of strength to 

temperature, it is very tough task to machine this material[1, 2]. Because cost of machining plays a significant role in any industry, 

keeping the dimensional accuracy of die steel components in minimum cost is a very typical. We can perform the machining using 

nontraditional methods but they are very expensive compared to traditional process.[3, 4] 

1.2. Surface Finish and cutting force 

The role of surface finish becomes prominent when the parts are subjected to different conditions like precision, fatigue loading, 

fastener holes etc. In majority of organizations surface roughness is a factor which decides the product quality and on the basis of 

this factor machined parts may be accepted or rejected, which makes it a critical parameter during the machining. [5-7] 

The final surface finish obtained on the machined parts is a result of combination of factors like tool wear, vibration of the machine 

tool, defects in the structure of the work piece and if not look after carefully they lead to surface distortion.  Surface roughness is 

directly associated with the overall cost of the production and working cost of parts[8-10]. A model which is popularly used to find 

the surface roughness is:  

 𝑅𝑎 =  
0.0321𝑓2

𝑟
  

Where, f is feed in mm/rev, r is the cutter nose radius in mm and Ra is the surface roughness in μm. 

The depth of cut, feed, and particular cutting energy coefficient all influence cutting force. Various research paper are underway to 

examine this impact and build models for various tools and work materials in order to reduce power usage.[11-13] 

1.3. TLBO 

The use of meta-heuristic techniques to optimize various input machining parameters has expanded significantly in recent years in 

the realm of production. However, many of these algorithms may be efficiently implemented once a set of tuning parameters is 

available and can be modified to meet the needs. Optimized values of certain tuning parameters are required for the said algorithms 

to perform at their best, which is extremely difficult to accomplish.[14, 15] 

TLBO is a population-based algorithm that simulates the teaching-learning environment in the classroom. In TLBO, no algorithm-

specific control parameters are required. Various research papers are accessible for a more in-depth understanding of TLBO.[16]  

The results of TLBO are compared to prior optimization approaches such as bee colony. In terms of computing time, number of 

generations, population size, and other factors, TLBO outperforms. The teacher and learner are the two most important core parts 

of TLBO, and they describe the two separate ways of learning. Learning is accomplished in two ways: first, by highly qualified 

individuals (teachers), and second, by student engagement.[17] 

The impact of the elitism idea, as well as the number of generations and population size, on TLBO performance was investigated. 

This principle is used in the majority of evolutionary algorithms, where the best solution replaces the worst solution every generation. 
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When the learner phase ends and the elite solution replaces the worst solution in TLBO, if there is duplicity in the solution, the 

duplicate solution must be altered to avoid being locked in the local optimum solution.[18]  

1.4. Grey Relational Analysis 

Deng developed Grey System theory in 1982, which focused on decision-making with partial information and partial unknowns. 

Grey information is the information that exists between known and unknown information. The Grey System Theory is used to solve 

complex problems with complex data. Grey relation analysis is a quantitative and systematic way to solving complicated systems 

that is a subsystem of grey system theory.[19, 20] 

GRA can be applied to financial, logistic, and process optimization. The GRA method can be used to solve problems involving 

multiple criteria and complicated relationships between them. It can also be used to find the best process parameter that influences 

two or more response variables[21]. 

A grey relational grade is created using this method (average sum of grey relational coefficients) described by the following 

relation.:- 

𝑌(𝑥0 ∗, 𝑥𝑖 ∗) = 𝑌𝑖 = (1
𝑛⁄ )ξi(k)  

Here, n indicate no. of process responses. 

 

2. Experimental Plan 

For three levels of parameter, a full factorial design is utilized in this article. Table I shows the specified parameter and its 

level.TABLE I  machining parameters with their level 

TABLE I  MACHINING PARAMETER WITH THEIR LEVEL 

S.N. A B C 

Factors Speed in rpm Feed in mm per rev Depth of Cut in mm 

Levels    

Level I 120 0.12 0.150 

Level II 200 0.16 0.300 

Level III 280 0.20 0.450 

 

3. Result of Experiment and Discussion 

3.1. Cutting Force and Surface Roughness 

27 experiments are carried out according to the full factorial design. Table II shows the conventional full factorial design employed 

in the experiment with result. 

TABLE II FULL FACTORIAL DESIGN WITH RESULTS 

S.N. Speed in rpm Feed in mm per rev Depth of Cut in mm Cutting Force in Kgf Surface Roughness in µm 

1 120 0.12 0.15 27.8 2.9467 

2 120 0.16 0.15 26.5 3.14767 

3 120 0.2 0.15 25.1 3.69572 

4 120 0.12 0.3 14.2 2.85969 

5 120 0.16 0.3 25.3 3.3208 

6 120 0.2 0.3 26.1 3.61916 

7 120 0.12 0.45 24.6 2.87808 

8 120 0.16 0.45 27.9 3.31111 

9 120 0.2 0.45 28.1 3.76063 

10 200 0.12 0.15 23.2 3.23411 

11 200 0.16 0.15 19.3 3.18871 

12 200 0.2 0.15 23.8 4.12838 

13 200 0.12 0.3 36.1 3.21988 

14 200 0.16 0.3 17.7 3.35085 

15 200 0.2 0.3 19.5 3.97017 

16 200 0.12 0.45 20.3 3.2177 

17 200 0.16 0.45 28.7 3.42755 

18 200 0.2 0.45 41.6 4.11726 

19 280 0.12 0.15 15.8 2.8383 

20 280 0.16 0.15 27.6 3.12085 

21 280 0.2 0.15 28.4 3.84063 
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22 280 0.12 0.3 26.1 2.97032 

23 280 0.16 0.3 22.8 3.38311 

24 280 0.2 0.3 27.2 3.80415 

25 280 0.12 0.45 23.5 2.94496 

26 280 0.16 0.45 30.6 3.2074 

27 280 0.2 0.45 34.4 3.73835 

 

3.2. Grey Relational Analysis 

Step I: Table III standardizes cutting force and surface roughness data. Using the smaller-is-better quality criteria, the following 

equation is used to normalize the original sequence for both cutting force and surface roughness. 

 

𝑧𝑖
∗(𝑥) =  

𝑚𝑎𝑥 𝑏𝑖(𝑥)−𝑏𝑖(𝑥)

𝑚𝑎𝑥 𝑏𝑖(𝑥)−𝑚𝑖𝑛 𝑏𝑖(𝑥)
  

TABLE III GREY RELATIONAL NORMALIZATION 

S.N. Cutting Force Surface Roughness S.N. 
Cutting 

Force 
Surface Roughness 

1 0.503 0.91597 15 0.806 0.12263 

2 0.551 0.76019 16 0.777 0.70591 

3 0.602 0.33537 17 0.470 0.54324 

4 1 0.98342 18 0 0.00862 

5 0.594 0.62599 19 0.941 1 

6 0.565 0.39472 20 0.510 0.78098 

7 0.620 0.96916 21 0.481 0.22304 

8 0.5 0.63350 22 0.565 0.89766 

9 0.492 0.28506 23 0.686 0.57769 

10 0.671 0.69319 24 0.525 0.25132 

11 0.813 0.72838 25 0.660 0.91732 

12 0.649 0 26 0.401 0.71389 

13 0.200 0.70422 27 0.262 0.30233 

14 0.872 0.60269    

 

Step II : Examine the variation sequence for each of the table IV responses. 

TABLE IV FOR EACH OF THE RESPONSES, CALCULATION OF DEVIATION SEQUENCE ∆OI WITH REFERENCES 

SEQUENCES = 1 

S.N. Cutting Force Surface Roughness S.N. Cutting Force Surface Roughness 

1 0.496 0.08402 15 0.193 0.87736 

2 0.448 0.23980 16 0.222 0.2940 

3 0.397 0.66462 17 0.529 0.45675 

4 0 0.01658 18 1 0.99138 

5 0.405 0.37400 19 0.058 0 

6 0.434 0.60528 20 0.489 0.21901 

7 0.379 0.03083 21 0.518 0.77695 

8 0.5 0.36649 22 0.434 0.10233 

9 0.507 0.71494 23 0.313 0.42230 

10 0.328 0.30681 24 0.474 0.74867 

11 0.186 0.27161 25 0.339 0.08267 

12 0.350 1 26 0.598 0.28610 

13 0.799 0.29578 27 0.737 0.69767 

14 0.127 0.39730    

 

Step III: For cutting force and surface roughness, calculate the Grey relational Coefficient. It can be calculated using the formula: 

           𝜉 (𝑧0
∗ (𝑥), 𝑧𝑖

∗(𝑥)) = 𝜉𝑖(𝑥) =  
∆ 𝑚𝑖𝑛 + µ∗ ∆𝑚𝑎𝑥

∆0𝑖(𝑥)+ µ∗ ∆𝑚𝑎𝑥
 

Here, ∆0i (x) is a deviation sequence. 

            ∆0𝑖(𝑥) = ∣ 𝑧0
∗(𝑥) − 𝑧𝑖

∗(𝑥) ∣ 
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The smallest value of ∆0i (x)is ∆min and the largest value of ∆0i (x) is ∆max. 

            ∆0𝑖(𝑥) = ∆ 𝑚𝑖𝑛 = 𝑚𝑖𝑛 ∣ 𝑧0
∗(𝑥) − 𝑧𝑖

∗(𝑥) ∣ 

            ∆0𝑖(𝑥) = ∆ 𝑚𝑎𝑥 =  𝑚𝑎𝑥 ∣ 𝑧0
∗(𝑥) − 𝑧𝑖

∗(𝑥) ∣ 

Here, µ* is the identification coefficient 0 ≤ µ* ≤ 1 

Cutting force and surface roughness, the value of ∆max and ∆min is 1 and 0 respectively. 

For cutting force, the identification coefficient (µ) is 0.25, while for surface roughness, it is 0.65. The grey relationship coefficient 

of performance parameter is shown in Table V. 

TABLE V EACH PERFORMANCE CHARACTERISTIC'S GREY RELATIONSHIP COEFFICIENT 

S.N. 
Cutting Force for 

µ = 0.25 

Surface Roughness for 

µ = 0.65 
S.N. 

Cutting Force for µ = 

0.25 

Surface Roughness for 

µ = 0.65 

1 0.3767 0.781198 15 0.6079 0.254806 

2 0.4005 0.555754 16 0.5740 0.504974 

3 0.4299 0.311002 17 0.3617 0.39643 

4 1 0.947627 18 0.2307 0.23231 

5 0.4254 0.445099 19 0.8370 1 

6 0.4085 0.331389 20 0.3802 0.578015 

7 0.4414 0.906796 21 0.3666 0.278564 

8 0.375 0.450115 22 0.4085 0.745648 

9 0.3716 0.295584 23 0.4887 0.415336 

10 0.4773 0.494388 24 0.3873 0.286075 

11 0.6171 0.524825 25 0.4691 0.783951 

12 0.4612 0.230769 26 0.3338 0.511853 

13 0.2729 0.503541 27 0.2892 0.300701 

14 0.7013 0.43023    

 

Step IV: Calculate the grey relational grade overall. Cutting force and surface roughness are the two reactions, and the value of n 

should be taken as 2. The total grey relationship grade of both process parameters is shown in Table VI. 

TABLE VI OVERALL GREY RELATIONAL GRADE (GRG) 

S.N. Overall GRG S.N. Overall GRG 

1 0.578958 15 0.431397 

2 0.47817 16 0.539498 

3 0.370459 17 0.379113 

4 0.973813 18 0.231539 

5 0.435282 19 0.918534 

6 0.369969 20 0.479109 

7 0.674128 21 0.3226 

8 0.412557 22 0.577098 

9 0.333597 23 0.45202 

10 0.48587 24 0.336723 

11 0.570971 25 0.626564 

12 0.346024 26 0.422864 

13 0.388225 27 0.294967 

14 0.565798   
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Table VI shows that trial number 4 yields the highest overall GRG rating. So, The earliest arrangement of process parameters V1F1D2 

is based on the greatest value of GRG. 

Step V: Calculate the GRG mean now. It's the average of the grey relationship coefficients, which are calculated as follows:            

 ϒ(𝑧0
∗, 𝑧𝑖

∗) =  ϒ𝑖 =  
1

𝑛
∑ 𝜉𝑖(𝑥)𝑛

𝑥=1   

Here, n is the number of process responses. Mean of the GRG shown in the table VII.  

TABLE VII MEAN OF THE OVERALL GRG 

Level Speed in rpm Feed in mm per rev Depth of Cut in mm 

1 0.514104 0.640298781 0.505632855 

2 0.485697 0.466209321 0.503369498 

3 0.438993 0.337475079 0.434980827 

Delta 0.075111 0.302823702 0.070652028 

Rank 2 1 3 

 

The difference between the minimum and maximum mean values of GRG indicates the significance of the process parameters; the 

wider the gap, the greater the significance. As can be seen in table VII, Feed (F) contributes the most to GRG, with the greatest 

differential value, followed by Depth of Cut (DOC), and Cutting Speed (V). 

The ideal combination of process parameters based on this GRG table is V1F1D1, i.e. cutting speed 120, feed 0.12, and cut depth 

0.15. 

Table VIII displays the initial and optimal machining results based on the researched factors. 

TABLE VIII OPTIMUM PARAMETERS 

V F DOC FC Ra 

120 0.12 0.15 27.8 2.859 

 

3.3. Teaching–learning based optimization (TLBO) 

Teacher phase: The student receives instruction from the teacher in this section. The teacher tries to raise the class's average output 

from any value P1 to his or her level (TA). However, because the output cannot be increased to the level of the teacher, the average 

of the class is moved to a better value P2 based on his or her ability.[22] 

Allow Mi to be the instructor in any engagement, and Pj to be the average. Now that the previous mean Pj has been improved toward 

Mi, the new mean will be denoted as PN, and the difference between the new and old means will be presented as:  RNi (PN – MFPj) 

In the said equation, MF stands for the teaching factor, while RNi stands for any random number between 0 and 1. The teaching 

factor determines the value of the mean to be adjusted. MF can be 1 or 2 and is determined at random with the same chance as: 

PF = round (1 + rand (0,1)) 

MF is generated at random during the procedure in the previously established range, where 1 represents unmodified knowledge and 

2 represents complete knowledge transfer. The teaching factor should be either 1 or 2 for simplicity. It depends on how the values 

in between are treated. Any PF value between 1 and 2 can be used, though[23, 24]. 

The existing solution will be changed as: AN,i = Ao,i + Difference  Meani, here, AN,i represents the new solution while Ao,i represents 

the old solution 

Learner phase: The learner's knowledge is increased in this section when they interact with one another. The interaction is a haphazard 

one. If the other students have more knowledge than the learner, the learner will pick up new information[25]. 

consider Gi and Gj are two distinct learners, and i ≠ j 

YNew,i =  YOld,i   + RNi ( Gi -  Gj) if f(Gi) < f (Gj) 

YNew,i =  YOld,i   + RNi ( Gj -  Gi)   if f(Gj) < f (Gi) 

Accept Ynew if function value given by it is better. 

Where Gi and Gj are two learners (independent) with different levels of knowledge who have interacted to improve their degree of 

knowledge in the preceding equation. 

3.4. Modelling & Optimization 

2nd order mathematical model is represented in Equation given below 

𝑺𝑹 = 𝟏. 𝟐𝟗𝟓 + 𝟎. 𝟎𝟏𝟓𝟎𝟓𝒔 − 𝟏𝟖. 𝟗𝟔𝒇 + 𝟎. 𝟏𝟔𝟗𝒅 −   𝟎. 𝟎𝟎𝟎𝟎𝟒𝟎𝒔𝟐 + 𝟗𝟐. 𝟓𝒇𝟐     
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Where SR = surface roughness, d = depth of cut, f = feed rate and s = speed 

 

3.5. Analysis of Variance 

On the recorded data, MINITAB's ANOVA is used. The ANOVA test is carried out using a 95% confidence level. 

TABLE IX ANNOVA TABLE 

Source Degree of freedom Adjusted sum of squares Adjusted mean squares F-Value P-Value 

Regression 5 3.88615 0.77723 72.09     0.000 

S 1  0.39062 0.39062     36.23     0.000 

f  1 0.05308 0.05308      4.92     0.038 

D 1 0.01186 0.01186      1.10     0.306 

S*S 1 0.37861 0.37861     35.12     0.000 

f*f 1 0.13183 0.13183     12.23     0.002 

Error   21 0.22641 0.01078   

Total 26 4.11256    

TABLE X MODEL SUMMARY 

S R-sq R-sq(adj) R-sq(pred) 

0.103834 94.49% 93.18% 90.92% 

Table shows the R2 value and corrected R2 of the developed model (greater than 90 percent). It shows that the regression model's 

association between the input variables and surface roughness (response) is excellent. 

3.6. Optimization through TLBO 

 The TLBO technique's execution steps are listed below. 

 Initialization and evaluation of the problem's population and design variables, which will be optimized by random generation. 

 Choose the ideal learner for the role of instructor. Determine the mean outcome of learners for each subject and within each 

subject. 

 Using the teaching factor, determine the difference between the current and best mean outcome (TF). 

 By utilizing the teacher's knowledge, the learners' knowledge is updated. 

 By utilizing the knowledge of another learner, the learners' knowledge is updated. 

 Steps 2 through 5 should be repeated until the termination criteria is reached. 

 

In each TLBO run, the optimal parametric condition and the matching response value are generated. Table shows the TLBO-

acquired individual optimal parametric condition and the solution provided by GRA. 

TABLE XI SUMMARY 

 

4. Conclusion 

Although both optimization techniques anticipate the same initial setting, the experimental result differs from the value predicted 

by TLBO. By using regression analysis, a 2nd order mathematical model for surface roughness is built, and ANOVA findings show 

that all input parameters, as well as square combinations of spindle speed and feed rate, have a substantial impact on surface 

roughness. 

 

S.N. 
Optimized parameter by 

TLBO 

Optimized parameter by 

GRA 
TLBO Response Experiment Result 

1 Speed = 120 rpm Speed = 120 rpm 
Surface Roughness = 

2.185 
Surface Roughness = 2.859 

2 Feed = 0.120 mm/rev Feed = 0.120 mm/rev Cutting Force = 24.5 Cutting Force = 27.8 

3 DOC = 0.150 mm DOC = 0.150 mm     
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