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Abstract - This study presents a computational technique based on Haar Wavelet to find the solutions of fractional dispersive 

partial differential equations. Fractional dispersive equations have important applications in science and engineering. By 

applying Haar functions along with its operational matrix, it transforms the fractional dispersive equations to system of linear 

algebraic equations. These system of equations are then solved by using reasonable number of collocation points. Examples 

are also given to support the theoretical predictions and then compared with the classical solution of dispersive equations to 

validate the efficiency of the proposed computational wavelet technique.  

  

1. INTRODUCTION 

Fractional Calculus has attained significant interest among researchers due to its considerable scope and applications in 

science and engineering. It belongs to the field of applied mathematics which is as old as the classical one. It covers the 

derivatives and integrals of non-integer order. Many natural phenomena can be modelled by using fractional derivatives and 

Integrals. These fractional order models play a vibrant role in unfolding the problems of science and engineering, and have 
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already been applied in many real-world applications such as control theory (Debnath 2003), viscoelastic systems (Koeller 

1984), analysis of electrode processes (Ichise et al. 1971), biological systems (Gómez et al. 2019) and many more. 

For numerical approximation of fractional differential equations, numerous approaches have been adopted by researchers 

(Ali, S.R., et al., 2022). Some of them are Fractional reduced differential transform method (Abuasad et al., 2019), Fractional 

Laplace Adomian Decomposition method (Mahmood and Arif, 2019 ), Fractional Homotopy Perturbation method (Javeed et 

al., 2019), Fractional Natural transform (Shah et al., 2018), Fractional Variational iteration method (Durgun and Konuralp 

2018), Fractional Integral transform (Demir et al., 2019), Fractional Homotopy Analysis method (Mohamed and Elzaki, 

2018), Polynomial based Approximation method (Daşcioğlu et.al., 2019), Wavelet Methods (Singh et al., 2018) and many 

more. 

 

The basic objective of this paper is to apply Haar wavelet approximation to third order fractional dispersive partial 

differential equations. Third order dispersive equations have important applications in the theory of water wave, plasma 

physics and nonlinear optics. Their extensive occurrence in the oceans and solitary waves are of immense importance to 

oceanographers and geophysicists. Furthermore, the coastal scientists and engineers also utilize the c-noidal wave solutions  

to examine sedimentation, disintegration of sand particles from beaches, interaction of waves with marine structures nearby 

coast i.e., piers, jetties, wharfs etc. (Verma et al., 2019). 

     

Many researches have obtained solutions of Fractional order problems through wavelet analysis and approximation (Mustafa, 

A.R. et al., 2021). Some of these wavelets namely Legendre wavelet (Mohammadi and Cattani, 2018), Chebysheve wavelet 

(Rafiei et al., 2018), Haar wavelet (Wang et al., 2014; Rehman and Khan 2013; Li and Zhao, 2010) are available in the 

literature. Among them, Haar wavelet is the simplest one. It has many advantages like simple applicability, orthogonality and 

compact support. By considering its advantages, Nazir (2019) applied Haar technique on birthmark based identification of 

software privacy,  Zanaty and Ibrahim  (2019) used high efficient Haar wavelets for medical imaging compression, Omar 

et.al (2019) utilized the same wavelet for time fractional reaction sub-diffusion equations, Subrat and chakraverty (2019) 

studied the vibrant manner of an electromagnetic nanobeam by using Haar wavelet method, Siraj ul haq et.al (2019) 

numerically solved Sobolev and Benjamin-Bona-Mahony-Burgers equation through Haar wavelet technique. 

 

Previously, Pandey and Mishra (2017) used Homotopy analysis Sumudu transform method to find numerical solutions of 

fractional third order dispersive equations.  Shah et al. (2019) solved third order fractional dispersive equations by Laplace-

Adomian decomposition method. Whereas in this study, the authors used Haar wavelet to obtain the approximate solution of 

the time-fractional third-order dispersive partial differential equations. 

The outline of the paper is designed as follows: Section 2 stated some basic theory of fractional calculus. Haar wavelet theory 

is discussed in section 3. In Section 4, solution process to solve fractional third order dispersive equations are discussed. 

Section 5 represents the numerical examples to elucidate Haar wavelet. Finally, at the end, conclusion is given in Section 6. 

 

2. THEORY OF FRACTIONAL CALCULUS 

This section presents few important definitions and properties related to fractional calculus theory for the convenience of the 

readers.  

Many researchers defined fractional derivatives and integrals namely Riemann-Liouville, Atangana-Balenau, Grunwald-

Letnikov, and Caputo etc. but the most popular and commonly used definitions on fractional derivative are proposed by 

Reimann-Liouville and Caputo. 

Definition 2.1 Reimann-Liouville fractional integral of a function f ∈ C μ, μ ≥ –1, is defined as 

 

        (1)       

    

Basic properties of fractional integrals are given below 

 

                       (2) 
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2.                                    (3) 

3.                                     (4) 

Definition 2.2 Caputo defined the fractional derivative of the function   

                           (5)  

                           (6) 

where 

                       

For further information, one can consult to ref (Miller and Ross, 1993; Oldham and Spanier, 1974; Podlubny 1999) 

3. HAAR WAVELET 

Haar wavelet functions are defined by 

                                                       (7) 

                        (8) 

where r = 0, 1, 2, ……. m - 1, m = 2s, s ≥ 0, 0 ≤ k ≤ 2s-1, s and k links to integer decomposition of the index r, r = 2s + k - 1, 

s ≥ 0. Maximum of r is M = 2m =2s +1. 

3.1 HAAR FUNCTION ANALYSIS 

A function  can be expanded into Haar wavelet series by 

                                   (9) 

Approximating the function u(t) as piece wise constant during each subinterval, Equation 9 can be terminated at fixed terms 

                     (10) 

 where 

      

                       (11) 

For arbitrary function  can be approximated into Haar series form as 
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                          (12) 

where 

            

Equation 12 will be written in matrix form as  

                                (13) 

By using wavelet collocation procedure, we can solve the coefficients . The collocation points are defined as : 

                          (14) 

Discretizing (14) by using eq. (13), to obtain the matrix form of Equation 13 

                               (15) 

where 

             

Haar matrix  is an orthogonal matrix of order m (Wang et al., 2014). The integration of  defined in (11) can be 

approximately converted into haar series with haar wavelet coefficient matrix . 

                                     (16) 

where P is called Haar Operational matrix of integration of mth order (Wang et al., 2014). 

3.2 HAAR OPERATIONAL MATRIX OF FRACTIONAL ORDER INTEGRATION 

This section presents Haar wavelet operational matrix of integration for fractional order. The details can be found in (Li and 

Zhao, 2010). Let is the fractional integral operator of Haar wavelet, then we get 

                                             (17) 

where  is known as fractional Haar wavelet operational matrix of integration. We need to define here piece wise Block 

Pulse Functions as follows,  

         (18) 

  where  

 

Also, are orthogonal functions. 

As Haar functions are in piecewise form so by extending them into an m-term block pulse functions, we get, 

                          (19) 

Where                   (20) 
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                                        (21) 

where  

                (22) 

with  

If we take  and , then fractional Haar operational matrix  is calculated as 

 

  

 

 

 

 

 

 

4.  METHODOLOGY 

Consider third order dispersive partial differential equation of fractional order  

 

     (23) 

         is known as source function. 

 

 subject to initial-boundary conditions 

                                                              (24)   

 ,                                (25)  

 

By approximating   into 2D Haar wavelet series as 

                                                                   (26) 

Integrating (26) and using the initial condition, we get 

 

                                                (27) 

By putting (26) in (23) and integrating with respect to x, we get 

  (28) 

Equating (27) and (28), we get 

 

                        (29) 

where 

             

Solving (29) by using MATLAB, we can get the coefficient matrix.  
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5. APPLICATIONS 

 

Problem 1 

Consider the fractional homogenous form of third order dispersive equation  

 

                        (30) 

subject to conditions 

                                       (31) 

                                    

                 (32) 

 

The exact solution for   (Pandey & Mishra 2017) is 

 

                               (33) 

 

Numerical results for fractional order at α = 0.5, 0.75 and 1.0 are  

computed by the Haar wavelet algorithm. Figure (a), (b) and (c) reflects the approximate solutions for α = 0.5, 0.75 and 1.0 

respectively whereas figure (d) shows exact solution.  

 

Moreover, the results given in Table 1 clearly demonstrates that the solutions are in good agreement and are approaching to 

exact solution for . Also, Figure (i) shows the graphical analysis of problem 1 on different values of .  

 

Table 1 Numerical and exact solution for  of Problem 1 

 
Haar Solution 

 
Absolute 

Error α = 0.5 α = 0.75 α = 1 

1/16,1/16 0.9922 0.9922 0.9922 0.9922 0.0000 

3/16,3/16 0.9304 0.9306 0.9308 0.9305 3.0 x10-4 

5/16,5/16 0.8102 0.8107 0.8113 0.8110 3.0 x10-4 

7/16,7/16 0.6384 0.6401 0.6424 0.6410 1.4 x 10-3 

9/16,9/16 0.4253 0.4289 0.4320 0.4312 8.0 x 10-4 

11/16,11/16 0.1846 0.1910 0.1974 0.1945 2.9 x 10-3 

13/16,13/16 0.0677 0.0585 0.0516 0.0542 2.6 x 10-3 

15/16,15/16 0.3133 0.3022 0.2980 0.2995 1.5 x 10-3 

 

 

 

 

Fig (a) 3D solution of problem 1 for α =0.5                                          Fig (b) 3D solution of problem 1 for α = 0.75 
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Fig (c) 3D solution of problem 1 for α = 1.0                       Fig (d) Exact solution of problem 1 for α =1.0 

                   

Fig (e) Haar solution of problem 2 for α = 1.0      Fig (f) Exact solution of problem 1 for α =1.0 

 

 

                                                      
 

 Fig (g) Haar solution of problem 2 for α =0.5                                            Fig (h) Haar solution of problem 2 for α =0.75 
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       Fig(i) Haar and exact solution for    Fig (j) Haar and exact solution for 

       α = 0.5, 0.75, 1.0 of Problem 1    α = 0.5, 0.75, 1.0 of Problem 2 

 
 

Problem 2 

Consider non-homogenous third order time fractional dispersive partial differential equation  

                                  (34) 

 

                        (35)  

 

subject to conditions  

                                                               (36) 

                                  (37) 

 

The exact solution is 

                             (38) 

 

In Table 2, the numerical results are given for different values of α. The solutions obtained from fractional cases are in good  

agreement and approaching to classical order solutions. Figure (e) and (f) reflects Haar and exact solution for α = 1 

respectively, whereas figure (g) and (h) reflects the Haar solutions for α = 0.5 and 0.75 respectively. Also, Figure (j) shows 

the graphical analysis of problem 2 on different values of . 

 

Table 2 Numerical and exact solution for  of Problem 2 

 Haar Solution 
 

Absolute 

Error  α = 0.5 α = 0.75 α = 1 

1/16,1/16 0.1947 0.1947 0.1947 0.1947 0.0000 

3/16,3/16 0.5458 0.5459 0.5459 0.5458 1.0x10-4 

5/16,5/16 0.7911 0.7912 0.7913 0.7912 1.0x10-4 

7/16,7/16 0.8877 0.8883 0.8891 0.8884 7.0x10-4 

9/16,9/16 0.8275 0.8290 0.8303 0.8297 6.0x10-4 

11/16,11/16 0.6378 0.6409 0.6446 0.6426 2.0x10-3 

13/16,13/16 0.3736 0.3790 0.3838 0.3821 1.8x10-3 

15/16,15/16 0.1031 0.1113 0.1179 0.1155 2.4x10-3 
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6. CONCLUSION 

 

This paper illustrates the numerical solutions of third order fractional dispersive partial differential equations. The wavelet 

solutions obtained by Haar technique are promising in finding numerical solutions of fractional order problems arises in the 

field of science and engineering. The approximations are found for two dispersive fractional partial differential problems for 

different values of . These solutions converge fast to the exact solutions which can be observed in figures (a-c) and (d-g) for 

problem 1 and 2 respectively. Consequently, Haar wavelet algorithm gives efficient results and can be implemented to solve 

other fractional differential equations numerically. 
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