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Abstract 

 Hydro magnetic Instability of visco-elastic Walter’s (modal B´) nanofluid layer heat from below is studied under the effect of 

rotation. The dispersion relation is obtained by using normal mode technique and perturbation method. The effects of the various 

physical parameters of the system namely modified diffusivity ratio, Lewis number, nanoparticle Rayleigh number, magnetic field 

and rotation on the stationary deportation have been discussed both analytically and graphically. The Lewis number, modified 

diffusivity ratio and nano particle Rayleigh number and rotation are found to have destabilizing effect whereas magnetic field has a 

stabilizing effect for stationary deportation. 
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 1. Introduction 

Chandrasekhar [1] has explained in detail the thermal instability of a Newtonian fluid under the assumptions of hydrodynamics and 

hydromagnetics. Bhatia and Steiner [2] have discussed the thermal impermanence of a Maxwellian visco-elastic fluid in the presence 

of a magnetic field. The thermohaline deportation in a layer of fluid heated from below has been studied by Veronis [3]. There are 

a number of applications of nanofluids in various industrial fields such as pharmaceutical, automotive, energy, oil fields. The term 

nanofluids was firstly discussed by Choi [4]. A nanofluid is a colloidal mixture of nano sized particles. It is experimentally proved 

that nanoparticles increases the thermal conductivity of fluids due to which nanofluids has developed considerable research interest. 

Sharma [5] has studied the thermal instability of a layer of visco-elastic fluid acted on by a uniform rotation and resulted that rotation 

has destabilizing effect as well as stabilizing effects under certain conditions. The effect of suspended particles and compressibility 

on thermal deportation in a Walter’s (modal B’) visco-elastic fluid in hydrodynamics have been observed by Sharma and Aggarwal 

[6]. S.Pundir, D.Kapil and R.Pundir [7] have studied effect of rotation on hydromagnetic instability of visco-elastic Rivlin-Ericksen 

nanofluid layer heated from below and resulted that rotation shows stabilizing effect on the fluid layer. The effect of rotation on 

thermal deportation in nanofluid layer saturating a Darcy-Brinkman porous medium has been observed by Chand and Rana [8]. 

Thermal instability of Walter’s (modal B’) visco-elastic nanofluid layer heated below under magnetic field has been studied by D. 

Kapil and S. Pundir [9] and investigated that magnetic field has stabilizing effect on the fluid layer. Yadav et al. [10] investigated 

the effect of magnetic field on the onset of nanofluid deportation and found that the volumetric fraction of nanoparticles, the Lewis 

number, the modified diffusivity and the density ratios have a stabilizing effect, while the magnetic field has stabilizing effect on 

the system. Thermal instability in a rotating porous layer saturated by a non- Newtonian nanofluid with thermal conductivity and 

viscosity variation have been by studied D. Yadav et al.[11]. R. Bhargava et al. [12] have studied the thermal instability in a nanofluid 

layer with a vertical magnetic field. 

 The objective of the present paper is to study hydromagnetic instability of visco-elastic Walter’s (modal B’) nanofluid layer heated 

from below under the effect of rotation. 

2. Mathematical Formulation 

Suppose the horizontal layers of Walter’s (modal B’) visco-elastic nanofluid of infinite length and thickness 𝑑∗ is bounded by 𝑧 = 0 

and  𝑧 = 𝑑∗ and heated from below. The fluid layer is acting in upward direction under gravity force g (0,0,-g). 𝑇0 and 𝜑0 are the 

temperature and volumetric fraction  of nano particles at 𝑧 = 0 and 𝑇1, 𝜑1 are temperature and volumetric fraction at 𝑧 = 𝑑∗ 

respectively. Thermo physical properties are constant for the analytical formulation.  

The governing equation for visco-elastic Walter’s (modal B’) nanofluid 

∇𝒒𝑑 = 0                                                                                                                                                  (1) 

𝜌
𝑑𝒒𝑑

𝑑𝑡
= −∇p + ρg + (𝜇 − 𝜇′ 𝜕

𝜕𝑡
) ∇2𝒒𝑑 +  

𝜇𝑒

4𝜋
(𝑯∇)𝑯 + 2𝜌(𝒒𝑑 × Ω)                                                        (2) 
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where  
𝑑

𝑑𝑡
=  

𝜕

𝜕𝑡
+  (𝒒𝑑 . ∇ ) stands for convection derivative, 𝒒𝑑(u,v,w) is the velocity vector, p is the hydrostatic pressure, μ and μ′ 

are the viscosity and kinematic visco-elasticity respectively and g(0, 0, -g) is acceleration due to gravity, μe is the fluid magnetic 

permeability and H is the magnetic field and fluid is acted upon by a uniform rotation Ω(0,0, Ω).  The density 𝜌 of nanofluid can be 

written as 

𝜌 = 𝜑 𝜌𝑝 + (1 − 𝜑)𝜌𝑓                                                                                                                                    (3) 

where 𝜑 is the volume fraction of nano particles, 𝜌𝑝 and 𝜌𝑓 are the densities of nano particles and base fluid respectively.  

The equation of motion for visco-elastic Walter’s (modal B´) nanofluid is given as: 

𝜌
𝑑𝒒𝑑

𝑑𝑡
= −∇p + ( 𝜑 𝜌𝑝 + (1 − 𝜑){𝜌 (1 − 𝛼(𝑇 − 𝑇0))})g + (μ − μ′ ∂

∂t
) ∇2𝒒𝑑 +  

μe

4π
 ( 𝐇. ∇)𝐇 + 2𝜌(𝒒𝑑 × Ω)     (4) 

where 𝛼 is the coefficient of thermal expansion and μe is the fluid magnetic permeability. 

The continuity equation for the nano particles is 

𝜕𝜑

𝜕𝑡
+ 𝒒𝑑  ∇𝜑 =  𝐷𝐵  ∇2 𝜑 +

𝐷𝑇

𝑇1
∇2 𝑇                                                                                                               (5) 

where 𝐷𝐵  is the Brownian diffusion coefficient and 𝐷𝑇  is the Thermoporetic diffusion coefficient of the nano particles. 

The energy equation in nanofluid is 

𝜌𝑐  ( 
𝜕𝑇

𝜕𝑡
+ 𝒒𝑑  ∇𝑇) = 𝑘∇2T + (ρc)p( 𝐷𝐵∇𝜑. ∇𝑇 +  

𝐷𝑇

𝑇1
  ∇𝑇 . ∇𝑇)                                                                  (6) 

Where 𝜌𝑐 is the heat capacity of fluid, (ρc)p is the heat capacity of nano particles and k is the thermal conductivity. The Maxwell 

equation being 

𝜕𝑯

𝜕𝑡
+ ( 𝒒𝑑∇)𝑯 = (𝑯 ∇)𝒒𝑑 + 𝜂 ∇2𝐇                                                                                                             (7)  

∇𝐇 = 0                                                                                                                                                           (8)  

Where 𝜂 is the fluid electrical resistivity. 

Introducing non-dimensional variables as: 

(𝑥 ,, 𝑦 ,, 𝑧 ,) = ( 
𝑥,   𝑦,   𝑧

𝑑∗ ) , 

𝒒𝑑
,( 𝑢,, 𝑣 ,, 𝑤 , ) =  𝒒𝑑 ( 

𝑢,   𝑣,   𝑤

𝑘
 ) 𝑑∗ , 𝑡 , =

𝑡𝑘

𝑑∗2  ,  

𝑝, =
𝑝

𝜌𝑘2  𝑑∗2 , φ′= 
𝜑− 𝜑0

𝜑1−𝜑0
 , 

 T′= 
𝑇− 𝑇0

𝑇0−𝑇1
 ,  

where  
𝑘

𝜌𝑐
 = k is the thermal diffusivity of the fluid. 

Equations (1), (4), (5), (6), (7) and (8), in non-dimensional form can be written as: 

 ∇𝒒𝑑 = 0                                                                                                                                                        (9) 

1

𝑝𝑟1

𝜕𝒒𝑑

𝜕𝑡
= −∇p + (1 − nF)∇2𝒒𝑑 − Rmêz − Rnφêz − RaTêz + Q 

𝑝𝑟1

𝑝𝑟2

 ( 𝑯. ∇)𝑯 +
𝟐𝑑∗2

𝜌

𝝁
 (𝒒𝑑 × Ω)         (10)  

𝜕𝜑

𝜕𝑡
+ 𝒒𝑑∇𝜑 =  

1

𝐿𝑒
 ∇2 𝜑 +

𝑁𝐴

𝐿𝑒
∇2 𝑇                                 (11) 

𝜕𝑇

𝜕𝑡
+ 𝒒𝑑  ∇𝑇 = ∇2T +

NB

𝐿𝑒
∇𝜑. ∇𝑇 +

𝑁𝐴𝑁𝑩

𝐿𝑒
 ∇𝑇 . ∇𝑇                                                                            (12)  

𝜕𝐻

𝜕𝑡
+ (𝒒𝑑  ∇)𝑯 = (𝑯 ∇)𝒒𝑑 +

𝑝𝑟1

𝑝𝑟2

 ∇2𝑯                                                                                                       (13)  

∇𝑯 = 0                                                                                                                                                       (14)  

[The dashes ( `) have been dropped for simplicity] 

Here non-dimensional parameters are: 

Lewis number 𝐿𝑒 =
𝑘

𝐷𝐵
 , Prandtl number 𝑝𝑟1

=
𝜇

𝜌𝑘
 , Magnetic Prandtl number 𝑝𝑟2

=
𝜇

𝜌𝜂
 , Rayleigh number Ra =

ρgα𝑑∗3

μk
( T0 − T1) ,Basic- density Rayleigh number Rm =

[ ρpφ0+ρ ( 1−φ0)]g 𝑑∗3

μk
 , Nano particle Rayleigh number Rn =
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( ρp−ρ)(φ1− φ0 )g 𝑑∗3

μk
 , Kinematic visco-elasticity parameter F=

μ′

𝜌𝑑∗2 , Modified diffusivity ratio 𝑁𝐴 =
𝐷𝑇

𝐷𝑩T1(𝜑1−𝜑0)
( T0 − T1), Modified 

particle density increment 𝑁𝑩 =
(𝜌𝑐)𝑝 (φ1− φ0 )

(𝜌𝑐)𝑓
 , Chandrasekhar number Q=

𝜇𝑒 𝐻0
2 𝑑∗2

4𝜋𝜈𝜌𝜂
 , Taylor number 𝑇𝐴 = (

𝟐𝑑∗2
Ω

𝝊
)

2

 

We assume that temperature and volumetric fraction of nano particles are constant on boundaries. Thus the dimensionless boundaries 

conditions are 

𝑤 =0, 𝑇 = 1, 𝜑 = 0  𝑎𝑡  𝑧 = 0                                                                                                                    (15)  

and   𝑤 =0, 𝑇 = 0, 𝜑 = 1  𝑎𝑡  𝑧 = 1                                                                                                              (16)  

 

2.1) Basic States and its solution 

The basic state of nanofluid is supposed to be time independent of time and can be written as 

 𝑞𝑑
′(𝑢, 𝑣, 𝑤) = 0, 𝑝′ = 𝑝(𝑧), 𝑇′ =  𝑇𝑏(𝑧), 𝜑′ =  𝜑𝑏(𝑧),  Equations (9) to (12) using boundary conditions (15) and (16) give 

solution as: 

𝑇𝑏 = 1 − 𝑧  and   𝜑𝑏 = 𝑧                                                                                            (17) 

 

2.2) Perturbation solution 

The stability of the system can be studied by introducing small perturbations to primary flow, and written as 

𝑞𝑑
′(𝑢, 𝑣, 𝑤) = 0 + 𝑞𝑑

′′ (𝑢, 𝑣, 𝑤),  𝑇′ =  𝑇𝑏 + 𝑇′′, 𝜑′ =  𝜑𝑏 + 𝜑′′,   𝑝′ = 𝑝𝑏 + 𝑝′′, with 𝑇𝑏 = 1 − 𝑧   and 𝜑𝑏 =z     (18)  

Using equation (18) in equation (9) to (12) and linearize by neglecting the product of the prime quantities, we obtain the following 

equations: 

∇𝒒𝑑 = 0                                                                                                     (19) 

1

𝑝𝑟1

𝜕𝑤

𝜕𝑡
êz = (1 − nF)êz

∂2𝑤

∂z2 − Rnφêz + RaTêz + Q 
𝑝𝑟1

𝑝𝑟2

 
∂𝐇

∂z
êz +

𝟐𝑑∗2
𝜌Ωwêz

𝝁
                                (20) 

𝜕𝜑

𝜕𝑡
+ 𝑤 =  

1

𝐿𝑒
 ∇2 𝜑 +

𝑁𝐴

𝐿𝑒
∇2 𝑇                                                                                                                     (21)  

𝜕𝑇

𝜕𝑡
− 𝑤 = ∇2T +

NB

𝐿𝑒
(

∂T

∂z
−

∂φ

∂z
) − 2

𝑁𝐴𝑁𝑩

𝐿𝑒
 
∂T

∂z
                                                                                               (22) 

𝜕𝑯

𝜕𝑡
=

𝜕𝑤

𝜕𝑧
êz +

𝑝𝑟1

𝑝𝑟2

 ∇2𝑯                                                                                                                                 (23)  

  ∇𝐇 = 0                                                                                                                     (24) 

The dashes (´´) have been dropped for simplicity. 

Since 𝑅𝑚 is just a measure of basic static pressure gradient so it is not involved in these and subsequent equations. Now by operating 

Eq. (20) with êz.curl curl, we get: 

1

𝑝𝑟1

𝜕

𝜕𝑡
∇2𝑤 − (1 − nF)∇4𝑤 −

𝟐𝑑∗2
𝜌Ωw

𝝁
∇2𝑤 = Ra∇H

2 T − Rn∇H
2 φ − Q  

∂2𝑤

∂z2                                                              (25) 

where   ∇H
2  =   

∂2

∂x2 +
∂2

∂y2    is the two dimensional Laplacian operator on horizontal plane. 

 

3. Normal mode observation 

On analysing the disturbances in to normal modes and assuming that the perturbed quantities are of the form: 

 [w, T , φ ] = [𝑊(𝑧), 𝑇(𝑧), 𝜑(𝑧)] exp ( 𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡)                                                                      (26) 

Where 𝑘𝑥 and 𝑘𝑦 are wave numbers in x and y directions respectively, while n is growth rate of disturbances. 

Using eq. (26), eq.( 21),(22), and (25) become: 

 𝑊 − 
𝑁𝐴

𝐿𝑒
( 𝐷2 − 𝑎2)𝑇 − [

1

𝐿𝑒
( 𝐷2 − 𝑎2) − 𝑛] 𝜑 = 0                                                                             (27)  

𝑊 + [( 𝐷2 − 𝑎2) − 𝑛 +  
𝑁𝐵

𝐿𝑒
 𝐷 −

2𝑁𝐴𝑁𝐵

𝐿𝑒
 𝐷] 𝑇 −

𝑁𝐵

𝐿𝑒
𝐷𝜑 = 0                                                                      (28) 

[( 𝐷2 −   𝑎2)
𝑛

𝑝𝑟1

− (1 − 𝑛𝐹)( 𝐷2 − 𝑎2)2 + 𝑄𝐷2 − (
𝟐𝑑∗2

Ω

𝝊
) ( 𝐷2 −  𝑎2)]  𝑊 + 𝑎2𝑅𝑎 𝑇 − 𝑎2𝑅𝑛𝜑 = 0 ….  (29) 
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Where 𝐷 =
𝑑

𝑑𝑧
   and  𝑎 = √𝑘𝑥

2 + 𝑘𝑦
2  is the dimensionless the resultant wave number. The boundary conditions of the problem in 

view of normal mode are written as 

𝑊 = 0, 𝐷2𝑊 = 0, 𝑇 = 0, 𝜑 = 0 at 𝑧 = 0 and 𝑊 = 0, 𝐷2𝑊 = 0, 𝑇 = 0, 𝜑 = 0 at 𝑧 = 1                       (30) 

 

4. Linear Stability Observation 

Consider the solution in the form 𝑤 , 𝑇 , 𝜑 is given as: 

𝑤 = 𝑤0 sin 𝜋𝑧 , 𝑇 =  𝑇0 sin 𝜋𝑧 , 𝜑 =  𝜑0 sin 𝜋𝑧       

Equations (27),(28) and (29) reduced as 

[
𝑛

𝑝𝑟1

𝐽 + (1 − 𝑛𝐹)𝐽2 + 𝑄(𝐽 − 𝑎2) − √𝑇𝑨 𝐽] 𝑤0 − 𝑎2𝑅𝑎𝑇0 + 𝑎2𝑅𝑛𝜑0 = 0                                                 (31) 

𝑤0 +  
𝑁𝐴

𝐿𝑒
𝐽𝑇0 + [

1

𝐿𝑒
𝐽 + 𝑛] 𝜑0 = 0                                                                                                                 (32) 

𝑤0 − (𝐽 + 𝑛)𝑇0 = 0                                                                                                                                   (33) 

From equation (32) & (33), we get 

[(𝐽 + 𝑛) +
𝑁𝐴

𝐿𝑒
𝐽] 𝑇0 + (

1

𝐿𝑒
𝐽 + 𝑛) 𝜑0 = 0                                                                                                        (34) 

From equation (31),(33) & (34), we get 

𝑅𝑎 =
1

𝑎2  [{(1 − 𝑛𝐹)𝐽 +
𝑛

𝑝𝑟1

} 𝐽 + 𝑄(𝐽 − 𝑎2) − √𝑇𝑨 𝐽](𝐽 + 𝑛) −
{(𝐽  +  𝑛) +  

𝑁𝑎
𝐿𝑒

  𝐽}

1

𝐿𝑒
  𝐽 + 𝑛

 𝑅𝑛                                 (35) 

where  𝐽 = 𝜋2 +  𝑎2  

For neutral stability, the real part of n is zero. Hence, on putting 𝑛 = 𝑖 𝜔 , (𝜔  is the real and dimensionless frequency of 

oscillation) in eq.(35), we get: 

𝑅𝑎 =  ∆1 + 𝑖 𝜔 ∆2                                                                                                                    (36)  

where  

∆1=  
𝐽

𝑎2  [𝐽2 + 𝑄(𝐽 − 𝑎2) −
𝜔2

𝑝𝑟1

+ 𝜔2𝐹𝐽 − √𝑇𝑨 𝐽] −
1

{(
 𝐽

𝐿𝑒
)

2
+ 𝜔2}

 [
𝐽2

𝐿𝑒
2  (𝐿𝑒 + 𝑁𝑎) + 𝜔2] 𝑅𝑛                       (37) 

and imaginary part 

∆2=   
1

𝑎2 [{1 − 𝐽𝐹 + 
1

𝑝𝑟1

} 𝐽2 + 𝑄(𝐽 − 𝑎2) − √𝑇𝑨 𝐽] −
[ 

𝐽 

𝐿𝑒 
 − 𝐽 (1+

𝑁𝐴
𝐿𝑒

)]

{(
 𝐽

𝐿𝑒
)

2
+ 𝜔2}

 𝑅𝑛                                                                (38) 

𝑅𝑎  will be real since it is a physical quantity Hence, it  follow from Eq.(36) that either 𝜔 = 0 (exchange of  stability, steady state ) 

or ∆2= 0 ( 𝜔 ≠ 0  overstability or oscillatory onset). 

 

5. Stationary Deportation 

When the stability occurs in as stationary convection, the marginal state will be characterized by 𝜔 = 0. the Eq.(38) reduces as: 

(𝑅𝑎)𝑠 =  
(𝜋2+ 𝑎2)

𝑎2  [(𝜋2 + 𝑎2)2 + 𝜋2𝑄 − √𝑇𝑨(𝜋2 +  𝑎2) ] − (𝐿𝑒 + 𝑁𝐴)𝑅𝑛                                            (39) 

Here 𝑅𝑎 is independent of both the prandtl numbers and the parameters containing the Brownian effects and the thermophoretic 

effects and presented in the thermal energy equation and the conversation equation for nano particles. 

Take 𝑥 =
𝑎2

𝜋2  in Eq. (39), then we have  

(𝑅𝑎)𝑠 =
𝜋2(1+𝑥)

𝑥
 [𝜋2(1 +  𝑥)2 + 𝑄 − √𝑇𝑨(1 +  𝑥)] − (𝐿𝑒 +  𝑁𝐴)𝑅𝑛                                                         (40)   

To study the effects of Lewis number Le, modified diffusivity ratio NA, and nano particles Rayleigh number Rn , magnetic field and 

rotation on stationary convection. We examine the nature of 

∂Ra

∂Le
 ,

∂Ra

∂NA
,

∂Ra

∂Rn
,

∂Ra

∂Q
,

∂Ra

∂T𝐴
 , analytically. 

From eq. (40) 

𝜕𝑅𝑎

𝜕𝐿𝑒
 < 0,

𝜕𝑅𝑎

𝜕𝑁𝐴
 < 0,

𝜕𝑅𝑎

𝜕𝑅𝑛
< 0  ,   

𝜕𝑅𝑎

𝜕𝑄
 > 0,

𝜕𝑅𝑎

𝜕𝑇𝐴
< 0 
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It implies that for stationary convection Lewis number, modified diffusivity ratio, and nano particle Rayleigh number and rotation 

have destabilizing effect whenever magnetic field has stabilizing effect on the fluid layer. 

 

6. Results and discussion 

Hydromagnetic Instability of visco-elastic Walter’s (modal B´) nanofluid layer heated from below under the effect of rotation is 

investigated under realistic boundary conditions. 

Figure 1 represents the variation of stationary Rayleigh number with Lewis number 𝐿𝑒  for different values of 𝑅𝑛 . The stationary 

Rayleigh number 𝑅𝑎 is plotted against Lewis number for fixed values of  𝑁𝐴 = 5, 𝑄 = 5, 𝐿𝑒 = 10 and 𝑅𝑛 = 10, 20, 30. The Rayleigh 

number decreases with increases in Lewis number, which shows that Lewis number has destabilizing effect on the stationary 

deportation. 

 

 

Fig.1: Variations of stationary Rayleigh number with Lewis number 

Figure 2 represents the variation of stationary Rayleigh number with Lewis number 𝐿𝑒  for different values of 𝑅𝑛 . The stationary 

Rayleigh number 𝑅𝑎 is plotted against Lewis number for fixed values of  𝑁𝐴 = 5, 𝑅𝑛 = 10, 𝐿𝑒 = 10 and 𝑇𝐴 = 10, 20, 30, 𝑄 =
5,10,15. The Rayleigh number decreases with increases in Lewis number which shows that Lewis number has destabilizing effect 

on the stationary deportation.  

    

Fig.2: Variations of stationary Rayleigh number with Lewis number 
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Figure 3 represents the variation of stationary Rayleigh number with modified diffusivity ratio number 𝑁𝐴 for different values of 𝑄 

. The stationary Rayleigh number 𝑅𝑎 is plotted against modified diffusivity ratio number for fixed values of  𝐿𝑒 = 5, 𝑅𝑛 = 10, 𝑁𝐴 =
10 and 𝑇𝐴 = 10, 20, 30, 𝑄 = 5,10,15. The Rayleigh number decreases with increases in modified diffusivity ratio number which 

shows that modified diffusivity ratio number has destabilizing effect on the stationary deportation.  

  

Fig.3: Variations of stationary Rayleigh number with modified diffusivity ratio number 
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Fig.5: Variations of stationary Rayleigh number with modified nanoparticle Rayleigh number 

Figure 6 represents the variation of stationary Rayleigh number with 𝑄 for different values of 𝑅𝑛 . The stationary Rayleigh number 

𝑅𝑎 is plotted against Q for fixed values of  𝑁𝐴 = 5, 𝑄 = 5, 𝐿𝑒 = 10 and 𝑅𝑛 = 5,10, 20 , 𝑇𝐴 = 10,20,30  The Rayleigh number 

increases with increases in Q, which shows that Q has stabilizing effect on the stationary deportation. 

 

Fig.6: Variations of stationary Rayleigh number with Q 
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with increases in 𝑇𝐴, which shows that 𝑇𝐴 has destabilizing effect on the stationary deportation. 
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Fig.7: Variations of stationary Rayleigh number with 𝑇𝐴 

Figure 8 represents the variation of stationary Rayleigh number with  for different values of 𝑇𝐴 . The stationary Rayleigh number 𝑅𝑎 

is plotted against 𝑇𝐴 for values of  𝑁𝐴 = 5, 𝑄 = 5, 𝐿𝑒 = 1,5,10 and 𝑅𝑛 = 5,10, 20 , 𝑇𝐴 = 1  The Rayleigh number decreases with 

increases in 𝑇𝐴, which shows that 𝑇𝐴 has destabilizing effect on the stationary deportation. 

 

Fig.8: Variations of stationary Rayleigh number with 𝑇𝐴 

 

 

 

7. CONCLUSIONS 

Hydromagnetic Instability of visco-elastic Walter’s (modal B´) nanofluid layer heated from below under the effect of rotation is 

investigated by using linear instability analysis. The main conclusions from the analysis of this paper are as follows: 

(1) For the stationary convection rotation has destabilizing effect on the system. 

(2) For the stationary convection magnetic field has stabilizing effect on the system. 

(3) Lewis number, modified diffusivity ratio and nano particle Rayleigh number have destabilizing effect on the stationary 

convection. 
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