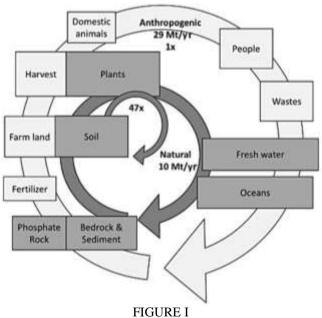
Phosphorus (V) Oxide Accelerated Determination in Phosphates with Monovalent NH⁴⁺, K⁺, Na⁺, H⁺ Cations

Mairam Abdullaeva¹, Musabek Duvanakulov², Aishakan Suiunbekova³, Dilbara Altybaeva³, Ibraim Polotov³, Abdisatar Karimov³, Mamatkadyr Iarmatov³, Bektur Ubaidilla uulu², Gulzhan Toktomuratova², Zhypargul Abdullaeva⁵*

¹Department of Chemistry and Chemical Technologies, Osh State University, Osh, Kyrgyzstan ²Department of Geology and Mineral Resources of Osh Technological University, Osh, Kyrgyzstan ³Department of Chemistry and Chemical Technologies, Osh State University ⁴Science and Research Department, Osh State University, Osh, Kyrgyzstan


Abstract. Results of accelerated gravimetric determination of phosphorus (V) P₂O₅ oxide content in monosubstituted potassium phosphate KH₂PO₄ without calcining the magnesium-ammonium phosphate precipitate at a high temperature of 950-1000 °C were presented. Application of this accelerated method for the determination of phosphorus pentoxide in phosphates simplifies the analysis method by eliminating the time-consuming and energy-intensive calcining operation.

Keywords: gravimetric method, phosphorus (V) oxide content, phosphates, precipitated form, calcination, drying, energy saving.

1. INTRODUCTION

Phosphorus element is an essential, non-replaceable substance in biological organisms and soils containing P pools required for plant growth, as raw materials containing phosphorus can provide a valuable base for mineral fertilizers new formulations [1, 2]. Mineral deposits considered as the major supply of phosphorus [3]. Phosphorus fertilizers are mineral substances, usually calcium or ammonium salts of phosphoric acid, provide agricultural crops with nutrient [4].

The anthropogenic phosphorus cycle resembles the natural as represented in Figure 1, except it uses only the higher concentration mineral phosphorus more intensively [5].

THE NATURAL AND ANTHROPOGENIC AGRICULTURAL PHOSPHORUS CYCLES (REPRESENTED FROM REF. [5]).

Several methods are used to determine phosphate concentration (measured as PO₄ and expressed as % P₂O₅) in fertilizers [6].

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering 5361

2. RESEARCH METHODS AND MATERIALS

In this work, results of gravimetric determination of phosphorus (V) oxide P_2O_5 content in monosubstituted potassium phosphate were shown, where the famous method for determination of phosphoric acid in Na₂HPO₄ ·12H₂O was analyzed. Calculation formulas according to GOST 26261-84 were determined.

3. **RESULTS AND DISCUSSIONS**

Results of gravimetric determination of phosphorus (V) oxide content in monosubstituted potassium phosphate

The main tasks in the production of phosphorus-containing fertilizers are to increase the volume of production, expand the range, and reduce the cost of the produced phosphorus fertilizers. In this regard, the determination of the content of phosphorus (V) oxide P_2O_5 in phosphates by saving energy by reducing the stage of precipitation calcination is relevant.

There is a famous method for the determination of phosphoric acid in $Na_2HPO_4 \cdot 12H_2O$ [7], where MgCl₂ acts on a $Na_2HPO_4 \cdot 12H_2O$ solution in the presence of NH₄OH and NH₄Cl:

$$Na_{2}HPO_{4} + MgCl_{2} + NH_{4}Cl + NH_{4}OH = \downarrow MgNH_{4}PO_{4} + 2NaCl + H_{2}O$$

White crystals of precipitate dried at temperature 45-50 °C [2]. The MgNH₄PO₄ precipitate was filtered off, washed, ignited and heated. When calcined, MgNH₄PO₄ decomposes, releasing water and ammonia, forming magnesium pyrophosphate MgP₂O₇[8]:

$$2 \operatorname{Mg} NH_4 PO_4 \xrightarrow{t=1000^{\circ}C} Mg_2 P_2 O_7 + H_2 O + \uparrow 2 NH_3$$

According to GOST 26261-84 [9], monosubstituted potassium phosphate K_2 HPO₄, was taken as a method of preparing its standard solution with a mass concentration of phosphorus (V) oxide P_2O_5 of 0.1 mg/ml. For this purpose, KH₂PO₄ sample (pure for analysis) with a mass of 0.1917+0.0015g was weight up. By multiplying 0.1917g by ten (KH₂PO₄ x 10 = 1.917g) 1.917g KH₂PO₄ was weight up as a sample, which contains 1.0g P₂O₅).

According to analytical chemistry literature [10, 11] it is known that in the quantitative analysis of phosphates and determination of the Mg^{2+} percentage, a reagent $Na_2HPO_4 \cdot 12H_2O$ is always used. We decided to replace it with more reference and standard reactive KH_2PO_4 (pure for analysis grade). After examining the analysis flow charts of chemical transformations, we noticed that molecular weights of the reagents KH_2PO_4 and $\downarrow MgNH_4PO_4$ are almost the same. Following are the chemical reactions in the weight determination of P_2O_5 content from KH_2PO_4 :

$$\overset{2\text{KH}_{2}\text{PO}_{4}+2\text{HCl}\rightarrow 2\text{H}_{3}\text{PO}_{4}+\text{MgCl}_{2}+\text{NH}_{4}\text{Cl}+\text{NH}_{4}\text{OH}\rightarrow 2\text{MgNH}_{4}\text{PO}_{4} }{\underset{\longrightarrow}{\overset{1000^{\circ}\text{C}}{\longrightarrow}}} (\text{Mg}_{2}\text{P}_{2}\text{O}_{7})\rightarrow \text{P}_{2}\text{O}_{5} }$$

142 conditional units mean that from two moles of H₃PO₄ one mole of P₂O₅ will form.

If compare molecular masses of $Mr(KH_2PO_4)=136$, $Mr(MgKH_2PO_4)=160$, $Mr(MgNH_4PO_4)=137$, they are almost similar but only differs with a small unit. If we will compare analytical factors for these two substances: KH_2PO_4 and precipitate $\downarrow MgNH_4PO_4$

$$F_1 = \frac{P_2 O_5}{2KH_2 P O_4} = \frac{142}{272} = 0.522 (52\% P_2 O_5)$$
 with

$$F_{2} = \frac{P_{2} O_{5}}{2KH_{2} P O_{4}} = \frac{142}{274} = 0.518 (51.8\% P_{2} O_{5}),$$

there is a difference of 0.02 units. It can be neglected, since errors as $\pm 1\%$ are allowed in weight analysis, within the limits of allowed errors.

If during the accelerated analysis, a sample KH₂PO₄ was taken in the amount of 1.92 g with a P₂O₅ content of 1.0 g [3], then with proper precipitation and drying of the precipitated form \downarrow MgNH₄PO₄ at t = 45-50 °C to constant weight, a precipitate should fall out of the 1.92 g KH₂PO₄ sample 1, 92g Mg with a P₂O₅ content of 1.0g.

$$2KH_2PO_4 \xrightarrow{MgCL_2+NH_4CL+NH_4OH} 2MgNH_4PO_4 \xrightarrow{t=1000°C} Mg_2P_2O_7 \rightarrow P_2O_5$$

272 c.u./142 c.u.=1.915 g KH₂PO₄ 196 c.u./142 c.u.=1.38 g H₃PO₄ 274 c.u./142 c.u.=1.929 g MgNH₄PO₄ 222 c.u./142 c.u.=1.56 g Mg₂P₂O₇ 272 c.u./142 c.u.=1.0 g P₂O₅

Copyrights @Kalahari Journals

It can be seen from the diagram that 1.38 g H₃PO₄ is formed from 1.915 g KH₂PO₄, from which 1.929 g of MgNH₄PO₄ is precipitated \rightarrow 1.56 g Mg₂P₂O₇ and 1.0 g P₂O₅.

If we compare amount of 1.915g KH₂PO₄, which contains 52% P_2O_5 and the amount of 1.929g of MgNH₄PO₄ sludge containing 51.8% P_2O_5 , then difference in percentage will be:

52.0%/51.8%=0.2%

In permissible values for this $1.915g\approx 1.929g$ $KH_2PO_4 \quad MgNH_4PO_4$

The accuracy of accelerated method for determination of phosphorus (V) oxide P_2O_5 in phosphates confirmed by experimental results shown in Table 1.

TABLE I

Results of gravimetric determination of phosphorus (V) oxide content in monosubstituted potassium phosphate KH_2PO_4 without calcining magnesium-ammonium phosphate

No.	KH ₂ PO ₄ Sample (clean for analysis), in grams	MgNH ₄ P O ₄ dry weight, in grams	P ₂ O ₅ calculat ed weight in grams	Notes
1	0.48 g 25 ml	0.47 g f	0.24 g	f=0.52 MgNH4PO4 analytical factor
2	0.48 g 25 ml	0.48 g f	0.25 g	f =0.52 MgNH ₄ PO ₄
3	0.48 g 25 ml	0.5 g f	0.26 g	analytical factor f=0.52 MgNH4PO4
4	<u>0.48 g</u> 25 ml	0.48 g f	0.25 g	analytical factor f=0.52 MgNH4PO4
Σ	1.92 g KH ₂ PO ₄ (pure for analysis)	1.93 g f MgNH ₄ P O ₄	1.0 g P ₂ O ₅	analytical factor f=0.52 MgNH ₄ PO ₄ analytical factor

As experimental results showing from Table 1, from 1.92 g of KH₂PO₄ taken for analysis, 1.93 g of MgNH₄PO₄ precipitated with the same content of phosphorus oxide (V) = 1.0 g or in the percentage of phosphorus pentoxide P₂O₅ 52 %: $P_2O_5 = "a" \times f \times 100\% / G = 1.93 \times 0.52 \times 100\% / 1.92$

here, "a" is weight of dry magnesium-ammonium phosphate precipitate; G is weight of KH₂PO₄ for analysis.; f 0.52 analytical factor \downarrow 2MgNH₄PO₄ containing 52.2% P₂O₅.

In this regard, there is no necessity in calcining magnesium-ammonium phosphate at t = 950-1000 °C, i.e. sufficiently complete precipitation of magnesium-ammonium phosphate and drying it at t = 40-50 °C to constant weight.

Thus, in our proposed accelerated method for determining the content of phosphorus (V) oxide in phosphates, the calcination stage at t = 950-1000 °C is eliminated, it is enough to correctly precipitate and achieve the completeness of precipitation of magnesium-ammonium phosphate with further drying of resulting precipitate at a temperature not higher than 40-50 °C in order to prevent partial decomposition and weight loss of sediment due to the loss of ammonia.

Reduction in the stage of sludge calcination at 950-1000 °C gives a huge savings in electricity, time and labor costs.

Alternatively, it is possible to quickly determine the magnesium content (%) in its salts solutions, eliminating the stage of calcining the Mg precipitate. So, when analyzing crystalline magnesium Mg, a sample of 0.7-0.9 g is dissolved in 50-60 ml of water and the solution is acidified with 5 ml of 2N HCl, then add to it 15-20ml (7-10)% - solution and 10 ml 2 N solution. After that, solution was heated to 40-45 °C and magnesium is precipitated with 2.5% ammonia solution, proceeding as described in the determination of phosphoric acid.

The further analysis course is the same as in determination of phosphates by monovalent cations.

In course of calculation, following was proceed from the proportion:

$$2M_{g}NH_{4}PO_{4} \rightarrow 2M_{g}$$

Copyrights @Kalahari Journals

Precipitated "a" is a sediment mass $\downarrow MgNH_4 PO_4$, dried at t = 45-50 °C with mass 1.93 g

 $F_{=} \frac{2Mg}{2MgNH_4 PO_4}; (F=analytical factor for 2Mg)$ $F_{=}\frac{24\cdot 2}{2\cdot 137} = \frac{48}{274} = 0.175$ is quantity of Mg²⁺=

"a" x f = (g)

% Mg="a"x 0.175 x 100% / G; where G is MgCl₂ \cdot 6H₂O

mass in g. "a" is MgNH₄PO₄ in precipitate form.

CONCLUSIONS

Thus, by replacing the reagent NaH₂PO₄ \cdot 12H₂O to reference and standard reagent KH₂PO₄ in the determination of Mg²⁺ amount in solutions it is possible to exclude the ignition stage of precipitate MgNH₄PO₄ by marking it as "a" for constant weight. Mg mass marked as "x"

$$Mg^{+2} = "a" \left(\frac{2Mg}{2MgNH_4 P O_4}\right) = \left(\frac{48}{274}\right) = "a" = ("a" = 0.175) \text{ in (g)}.$$

Magnesium content Mg = a x $0.175 \times 100\%$ / G, here $G = (\text{sample mass, in g}) MgCl_2 \cdot 6H_2O$ for analysis, and "a" is precipitate form of Mg dried at t = 40-45 °C to constant weight.

REFERENCES

Bindraban, P.S., Dimkpa, C.O., and Pandey, R. "Exploring phosphorus fertilizers and fertilization strategies for improved [1] human and environmental health." Biol Fertil Soils 56, 2020, pp. 299-317. https://doi.org/10.1007/s00374-019-01430-2

Jastrzębska, M., Kostrzewska, M. K., Saeid, A., and Jastrzębski, W. P. "Do New-Generation Recycled Phosphorus [2] Fertilizers Increase the Content of Potentially Toxic Elements in Soil and Plants?" Minerals, 11(9), 2021, pp. 999. http://dx.doi.org/10.3390/min11090999

[3] Samreen, S., and Kausar, S., Zhang, T. "Phosphorus Fertilizer: The Original and Commercial Sources, Phosphorus -Recovery and Recycling." IntechOpen, 2019, https://doi.org/10.5772/intechopen.82240

Bagnavets, N., Zhevnerov, A., Grigoryeva, M., and Pshenichkina, T. "Influence of phosphorus fertilizers of various [4] composition on the yield of tomato crops and control of their consumption by plants". IOP Conf. Ser.: Earth Environ. Sci. 937, 2021, pp. 022131. https://doi.org/10.1088/1755-1315/937/2/022131

Daneshgar, S., Callegari, A., Capodaglio, A., and Vaccari, D. "The Potential Phosphorus Crisis: Resource Conservation [5] and Possible Escape Technologies: A Review." Resources, 7(2), 2018, pp. 37. http://dx.doi.org/10.3390/resources7020037

International Fertilizer Industry Association (IFA). "Evaluation of Commonly Used Methods for the Analysis of Acid-[6] Soluble Phosphate in Internationally Traded Inorganic Fertilizers". 2014, pp. 1-21.

Alekseev, V. N. "Analytical chemistry course." Government Scientific and Technical Publishing House of Chemical [7] Literature. Moscow: 1955, 435 p.

[8] Klyuchnikov, N.G. "Inorganic synthesis." Moscow: Education, 1988, 239 p.

GOST 262261-84 Soils. "Methods for the determination of gross phosphorus and gross potassium." Publishing house of [9] standards, 1984, 11 p.

Loginov, N. Ya., Voskresensky, A.G., and Solodkin, I.S. "Analytical chemistry." Moscow: Education, 1979, 480 p. [10]

Popov, N.P., and Stolyarova, I.A. "Chemical analysis of rocks and minerals." Publishing house Nedra, Moscow, 1974. [11]