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Abstract 

 

The viral load monitoring is very important in Anti Retroviral Therapy (ART). Viral load is the measurement of HIV from one ml 

of blood. In this paper the stochastic nature of viral load is studied and a model of Harris Discrete Uniform (HDU) distribution is 

fitted to the viral load. The characteristic of the Distribution is studied based on simulation. Here the viral replication is considered 

as a branching process. The factors influencing the viral load are considered as parameters of the distribution. The changes in the 

parameters are studied in this paper and from this, the relation among the viral load and parameters are elicited. A comparison 

between Marshall Olkin and Harris Uniform (MODU) Distribution is also done in this paper. The nature of Hazard function is also 

mentioned. 
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Introduction 

 

In early stages of HIV infection, rapid growth in viral load is visible. The target cells remain approximately constant level in the 

second phase of infection, ie., after starting the ART. The stochastic nature of early HIV infection is described in a series of 

models, each of which captures the aspects of HIV during the early stages of infection.  The description of the stochastic nature of 

HIV we will use the tools of stochastic models and especially at the part of simulation. Here in this paper, a basic viral growth 

model based on a time dependent branching process is used to describe the growth of HIV infected cells. The role of the immune 

response to HIV and HIV infected cells is used to describe the movement of the infection to a disease of infected CD4+ T. The 

aim of this paper is to illustrate modeling HIV growth in the infected cells using branching process model. The parameters for 

growth depend on the state and nature of the virus in the body. The body environment is decided through the overall health of the 

body of the individual. This affects the condition and rising of the immune system. Many other factors also play a role on the 

immune system. The necessity of using stochastic models to describe viral growth was suggested in a series of papers. The ability 

to answer questions in a context of randomness of the process makes a strong statement for using stochastic models—especially in 

at early stages of a viral infection. The diversity involved in the genetic heterogeneity in host is a strong weapon of HIV. This will 

allow the virus to overcome immunity of host and the effects of drugs and vaccines.  

 

In connection with HIV, Viral load is a measure of the amount or quantity of HIV present in one ml of Blood. This is used to 

monitor the effectiveness of therapy when a person is taking Anti Retroviral Therapy for HIV. During the period of therapy, the 

viral load will become un-detectable. At this time, the person become safe and also will not transmit HIV to others. An alternate 

measure for monitoring the well being of an HIV positive person is the CD4 Count. This indirectly measures the immunity of a 

person to fight against infections.  

 

The primary aim of ART is to inhibit the viral replication and reduce viral load. Most have assumed that ART is able to 

completely and indefinitely suppress all replication. In spite of taking all types of ART drugs, the virus will persist for decades and 

will be recrudescent when a positive environment arises at least in some individuals [1]. Cell to cell spread of virus during ART is 

inherent despite of the treatment. These spread of virus lead to death of CD4+ cells. Figure (1) shows the development of viruses 

during the period of ART.  Variability is the most powerful weapon of HIV, which allows the virus to overcome host immunity 

and the effects of drugs interventions. HIV variability is a consequence of at least three peculiar features: 1) the “error-prone” 

mechanism of virus 2) the rapid viral replication, and 3) the occurrence of recombination processes between two or more different 

HIV Viruses [2].  
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Figure 1. Residual replication during ART. 

 

The viral replication can be considered as a branching stochastic process that give rise to more objects of same types. The objects 

produced can then produce more and the system develops according to some probability [3,4]. Viral load monitoring remains the 

most reliable indicator of treatment response. Measurements of viral load changes during therapy analysis using statistic model of 

viral dynamics. Here we are fitting branching process model to data and a study on simulation of data has been done. The medical 

data is not available in these days we are depending on simulated data. Consider stochastic model for the interaction of HIV Virus 

and immune system in an HIV infected individual undergoing a combination therapeutic treatment. A stochastic process is defined 

by the probabilities, in which, different events happen within a small time interval.  

 

Review of Literature 

   

The process of viral production in the infected cell begins, when an infected cell is stimulated. As a result, so many viremia are 

released from an infected cell, each taking a piece of the cell membrane. The process of viremia production will be assumed to 

involve two independent processes, host cell death and batch release [5]. We can easily able to describe the pattern of the process 

when we consider the batch releasing process as a branching process [6]. A model that describes the relation among infected cells, 

number of viremia and healthy cells will explain the importance of viral load during ART [7]. The death rate, infectivity rate etc 

are explained in detail in the paper mentioned above. This death rate of viruses suggested from above mentioned two papers is 

taken for death rate calculation of this paper. These periods of development of virus and death rates are also considered here.  

 

The structure and cycle of viral replication is studied to get the nature and pattern of viral load and its decaying manner. The viral 

replication in each stage of HIV is different for different individuals. According to their age, health conditions and set point time 

the viral replication and its impacts are different [8,9]. Keeping all these matters in consideration, we developed a model by 

considering the nature of viral load as branching process. In [10] a MODU distribution approach to HIV -1 is done. In this paper 

we are trying to do a discrete uniform distribution approach using Harris approximation to viral load of HIV -1 [11,12, 13]. 

 

Modeling  

  

As stated earlier, the viral load is affected by many factors. If ‘ʎ’ indicates the  virons produced, ‘K’ is the number of generation 

before extinction of virons produced and ‘θ’ is the death rate of CD+4 cells, by studying the viral load pattern and CD+4 count life 

length, we can assume that the distribution as Harris Uniform Distribution (discussed in earlier paper). Let X follows the discrete 

uniform distribution with distribution function,    

 

F (x) = x/ʎ  

and  

𝐹̅(𝑥) = 1 − 𝐹(𝑥) = 1 −
𝑥

ʎ
, 𝑥 = 1,2,3 … . . ʎ 

The parameters discussed above are the total effect of viral load expansion. If the random variable ‘X’ indicates the viral load and 

f(x) is the probability mass function, 𝐹̅(𝑥) is the Survival function, then we can write the new distribution by substituting 𝐹̅(𝑥) to 

get a new Harris family of survival function by adding a new parameter ‘ʎ’, as 

 

H̅(x, ʎ, k)  = {
ʎ.𝐹𝑘(𝑥)

[1−(1−ʎ)(𝐹𝑘(𝑥))]
}

1/k

, k>0, 0<ʎ<∞ 
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Then by adding new parameter ‘θ’ and ‘k’, we get the new distribution function as follows 

𝐻(𝑥, 𝜃, 𝑘) = {
𝜃. (1 −

𝑥
ʎ

)
𝑘

1 − (1 − 𝜃) (1 −
𝑥
ʎ

)
𝑘}

1/𝑘

 , 𝑥 = 1,2,3, … ʎ, 0 < 𝜃 < ∞, 𝑘€𝑁   

 

𝐻(𝑥, 𝜃, 𝑘) =
𝜃

1
𝑘.(ʎ−𝑥)

{ ʎ𝑘−(1−𝜃)(ʎ−𝑥)𝑘}
1
𝑘

,  

 

𝑊ℎ𝑒𝑟𝑒 𝑥 = 1,2,3, … ʎ, 0 < 𝜃 < ∞, 𝑘€𝑁, N is set of positive integers.   
 

The probability Mass function of HDU distribution is given by  

 

h(ʎ, θ, k) = H̅(x, θ, k) − H̅((x − 1), θ, k) 
 

h(ʎ, θ, k) =
𝜃

1
𝑘. (ʎ − 𝑥 + 1)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥 + 1)𝑘}
1
𝑘

− 
𝜃

1
𝑘. (ʎ − 𝑥)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥)𝑘}
1
𝑘

, x = 1,2,3 … ʎ 

 

Possible values for θ, ʎ and k are simulated based on previous studies to get corresponding probabilities. The generated table can 

be used as reference table for the doctors or persons dealing with prolonged patients with HIV. 

 

Comparison between MODU and HDU 

 

We can define a new survival function w.r.to MODU Prasanth and Sandhya (2014)  

𝑔(𝑥, ϒ) =  
ϒ𝐹̅𝑘(𝑥)

1 − ϒ ̅𝐹̅𝑘(𝑥)
, 𝑘 ≥ 1 

When k =1, this reduces to MO scheme 

𝑔(𝑥, ϒ) =  
ϒ𝐹̅ (𝑥)

1 − ϒ ̅𝐹̅ (𝑥)
 

 

Now if X follows HDU distribution, then its survival function is  

𝐻(𝑥, 𝜃, 𝑘) =
𝜃

1
𝑘 . (ʎ − 𝑥)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥)𝑘}
1
𝑘

 

When K=1, this survival function becomes 

 

𝑃(𝑋 > 𝑥)  =  
𝜃(ʎ − 𝑥)

ʎ − (1 − 𝜃). (ʎ − 𝑥)
 

 

which is the survival function of MODU (ʎ, θ) 

 

The hazard function (also called the force of mortality, instantaneous failure rate, instantaneous death rate, or age-specific failure 

rate) is a way to model data distribution in survival analysis. The hazard rate refers to the rate of death for an item of a given life 

time or age (x). The hazard function analyzes the likelihood that an item will survive to a certain point in time based on its survival 

to an earlier time (t).  

 

The Hazard function corresponding to the HDU(λ,θ,k) function is given by  

R(x) =  
h(x)

H̅(x)
 

𝑅(𝑥) =

𝜃
1
𝑘. (ʎ − 𝑥 + 1)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥 + 1)𝑘}
1
𝑘

− 
𝜃

1
𝑘. (ʎ − 𝑥)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥)𝑘}
1
𝑘

𝜃
1
𝑘. (ʎ − 𝑥)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥)𝑘}
1
𝑘
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𝑅(𝑥) =

𝜃
1
𝑘 . (ʎ − 𝑥 + 1)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥 + 1)𝑘}
1
𝑘

𝜃
1
𝑘. (ʎ − 𝑥)

{ ʎ𝑘 − (1 − 𝜃)(ʎ − 𝑥)𝑘}
1
𝑘

− 1 

 

R(x) =  [
(λ − x + 1)

(λ − x)
] . [

λk − (1 − θ)(λ − x)k

λk − (1 − θ)(λ − x + 1)k
]

1
k

− 1 

 

Analysis  

 

For different values of k, λ, θ, and x, the figures of probability mass function are drawn for comparison. The probabilities which 

are insignificant are kept as blank. Table 1 shows different probabilities for different values of x and λ. 

 

Table 1  Probabilities of X for different values of λ, K=2 and θ =0.24. 

θ= 0.24     k = 2, θ= 0.24           

x\  λ 30 50 100 150 200 250 300 350 

10 0.031535 0.027612 0.021123 0.016982 0.014160 0.012128 0.010601 0.009412 

20 0.018911 0.016134 0.013552 0.011799 0.010417 0.009307 0.008400 0.007649 

30 0.016337 0.012028 0.009981 0.008980 0.008178 0.007498 0.006914 0.006408 

40   0.010312 0.007989 0.007252 0.006715 0.006257 0.005853 0.005494 

50   0.009799 0.006768 0.006107 0.005697 0.005362 0.005066 0.004800 

60     0.005982 0.005309 0.004958 0.004692 0.004463 0.004256 

70     0.005469 0.004731 0.004403 0.004176 0.003989 0.003822 

80     0.005143 0.004303 0.003975 0.003770 0.003609 0.003469 

90     0.004961 0.003981 0.003639 0.003443 0.003298 0.003177 

100     0.004899 0.003739 0.003372 0.003177 0.003042 0.002933 

110       0.003558 0.003157 0.002958 0.002827 0.002726 

120       0.003426 0.002983 0.002775 0.002646 0.002550 

130       0.003337 0.002842 0.002623 0.002492 0.002398 

140       0.003284 0.002729 0.002494 0.002359 0.002267 

150       0.003266 0.002639 0.002385 0.002245 0.002152 

160         0.002569 0.002294 0.002147 0.002052 

170         0.002516 0.002216 0.002061 0.001964 

180         0.002479 0.002152 0.001987 0.001886 

190         0.002457 0.002098 0.001923 0.001818 

200         0.002450 0.002054 0.001867 0.001757 

210           0.002020 0.001818 0.001703 

220           0.001993 0.001777 0.001655 

230           0.001975 0.001741 0.001613 

240           0.001964 0.001712 0.001575 

250           0.001960 0.001687 0.001542 

260             0.001668 0.001514 

270             0.001652 0.001489 

280             0.001642 0.001467 

290             0.001635 0.001449 

300             0.001633 0.001434 

310               0.001421 

320               0.001412 

330               0.001405 

340               0.001401 

350               0.001400 

*in above table, probabilities which are not significant are kept as blank. 
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Table 2 Gives different probabilities for k=3 

Figures 3, Figure 4 and Figure 6 clarifies the relation and variation among the X values and their probabilities 

  

Table 2.  Probabilities of X for different values of λ, K=3 and θ =0.24. 

θ= 0.24     k = 3, θ= 0.24           

x\  λ 30 50 100 150 200 250 300 350 

10 0.031097 0.025749 0.019576 0.016982 0.013561 0.011767 0.010393 0.009307 

20 0.022499 0.016679 0.012748 0.011799 0.009717 0.008749 0.007965 0.007312 

30 0.021534 0.013943 0.009845 0.00898 0.00764 0.006998 0.006474 0.00603 

40   0.013108 0.008341 0.007252 0.006367 0.005871 0.005477 0.005146 

50   0.012986 0.007491 0.006107 0.005522 0.005096 0.004771 0.004504 

60     0.007001 0.005309 0.004931 0.004537 0.00425 0.00402 

70     0.006729 0.004731 0.004503 0.00412 0.003853 0.003646 

80     0.006595 0.004303 0.004185 0.0038 0.003542 0.003349 

90     0.006546 0.003981 0.003946 0.003551 0.003295 0.003109 

100     0.004899 0.003739 0.003764 0.003354 0.003096 0.002913 

110       0.003558 0.003625 0.003196 0.002933 0.00275 

120       0.003426 0.00352 0.00307 0.002799 0.002614 

130       0.003337 0.003442 0.002968 0.002687 0.002499 

140       0.003284 0.003386 0.002887 0.002595 0.002402 

150       0.003266 0.003346 0.002822 0.002518 0.002319 

160         0.00332 0.002771 0.002453 0.002248 

170         0.003304 0.002731 0.0024 0.002188 

180         0.003295 0.0027 0.002355 0.002136 

190         0.003292 0.002677 0.002319 0.002092 

200         0.003292 0.002661 0.002289 0.002054 

210           0.002651 0.002266 0.002022 

220           0.002644 0.002247 0.001995 

230           0.002641 0.002233 0.001972 

240           0.00264 0.002222 0.001953 

250           0.002639 0.002214 0.001938 
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Figure 2 Plot of Probabilities for different values of x, λ, θ=0.24, k=2
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260             0.002209 0.001925 

270             0.002206 0.001915 

280             0.002204 0.001907 

290             0.002204 0.001902 

300             0.002204 0.001897 

310               0.001895 

320               0.001893 

330               0.001892 

340               0.001892 

350               0.001892 

*in above table, probabilities which are not significant are kept as blank. 
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Figure 5  λ=350, θ=0.24, k=3
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By analyzing the figures corresponding to different values of x, θ, λ and k the probabilities are   decreasing and approach to a 

consistent probability. 

 

    
The pictorial representation of probability mass function for simulated values of x, shows that the distribution is a bathtub shaped 

one, and the function indicates a decreasing failure rate at the value of x< λ and increasing failure rate for values of x>λ.  The 

values for x<10 and X>190 are outliers of X values, for λ =100.  

 

While drawing graph for different values of λ and for different values of θ (ranging from 0.02 to 0.26), we are getting the same 

bathtub shaped curves and the outliers for λ values are as following 

 

λ = 50 outliers are X<5 and X> 95 

 

λ =100 outliers are X<10 and X> 190 

 

λ = 200 outliers are X<20 and X>380 

 

Here also we are getting the similar IFR and DFR that we have obtained in the graph for λ =100. 

 

At turning points of Figure 6, the probabilities at point X= (λ-x) is approximately equal to Probabilities at the point X=(x-λ). 

 

In Table 3, the turning points (Approximate Values of X) of bath tub curve at a decreasing point are given. 

  

Table 3  Turning Points and Standard Error for different values of θ at decreasing point of survival function. 

θ 0.02 0.06 0.1 0.14 0.18 0.2 0.22 0.24 0.26   

X 22 28 32 35 40 42 44 44.5 45 Mean =36.944 

(X=μ)2 223.32 79.99 24.44 3.78 9.34 25.56 49.79 57.09 64.9 Total = 538.22 

              SE 7.733206 Variance 59.803 

 Standard Error is SE =7.73 the Standard Error shows a less variation at the corner turning point of bathtub curve. 

 Now considering the hazard function,  R(x) =  [
(λ−x+1)

(λ−x)
] . [

λk−(1−θ)(λ−x)k

λk−(1−θ)(λ−x+1)k]

1

k
− 1 we arrive at following conclusions. 

 

Using the above mentioned hazard function, a table is created and comparison of hazard rate based on the graphs corresponding to 

them is explained.  
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Graph of probability mass function of h(λ,θ, k) for diffent vlaues of θ, x, 

λ=100, and  K=2
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Table 4  Hazard function for different values of k,λ,θ 

  k=2 λ =100     

θ 0.2 0.22 0.24 0.26 

X         

10 0.032572 0.031072 0.029703 0.02845 

20 0.026132 0.025439 0.024781 0.024156 

30 0.023828 0.023436 0.023057 0.022691 

40 0.023649 0.023404 0.023164 0.022929 

50 0.02519 0.025028 0.024868 0.024709 

60 0.02883 0.02872 0.028611 0.028502 

70 0.036061 0.035987 0.035914 0.035841 

80 0.051783 0.051737 0.051691 0.051645 

90 0.100933 0.100909 0.100886 0.100862 

220 0.060615 0.076446 0.103498 0.160343 

230 0.022869 0.025392 0.02854 0.032579 

240 0.012959 0.01394 0.015081 0.016427 

250 0.008525 0.00904 0.009622 0.010283 

260 0.006075 0.00639 0.00674 0.00713 

270 0.004554 0.004766 0.004998 0.005253 

280 0.003538 0.003689 0.003853 0.004033 

290 0.002822 0.002934 0.003057 0.003189 

300 0.002298 0.002385 0.002479 0.00258 

310 0.001903 0.001972 0.002046 0.002126 

320 0.001597 0.001653 0.001713 0.001778 

330 0.001357 0.001403 0.001452 0.001505 

340 0.001164 0.001203 0.001244 0.001288 

350 0.001008 0.00104 0.001075 0.001112 
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Figure 7 Graph of Hazard function for λ=100, k=2 and for different values 
of θ and x
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From the figures depicted above, the hazard rate shows an increasing tendency for smaller value of ‘X’ and also, from a specific 

value of x, the distribution shows a decreasing hazard rate.  

 

 

Conclusion 

The paper provides an idea about the distributional structure of viral growth of HIV during the period of ART. The pattern of viral 

load at different stages of HIV can be easily referred from the tables constructed in this paper. Also this paper will be a guide for 

further estimation in viral load.  The evidence of persistent replication in many HIV -1 infected individual on ART argues for 

development and evaluation of novel strategies in medical therapy that will fully suppress viral replication. A new development in 

technologies is essential to facilitate the detection and study of viral dynamics.   
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