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Abstract - In this paper, we process the energy and fuzzy Bipolar Pythagorean graphs with Laplacian energy (FBPGs). Besides,
we determine the lower and upper limits for the energy and Laplacian energy of FBPGs.

Index Terms - Energy(E), Pythagorean fuzzy graphs (PFGs); Laplacian energy(LE), Pythagorean fuzzy set(PFS).

INTRODUCTION

Yager as of late [19,20] presented the idea of the PFS as a speculation of intuitionistic fuzzy set(IFS) [3] to deal with perplexing
inaccuracy and vulnerability in sensible decision-making issues. The beginning of PFS by Yager [20]. The idea of Pythagorean
fuzzy number (PFN) and numerical type of PFS was presented by Xu and Zhang [21]. In the meantime, they introduced a series of
fundamental of PFNs and projected Pythagorean fluffy aggregate operators. PFS, a clever class of the non-standard fuzzy set, has
a wide-ranging scope of uses in various area, for example, clinical analysis [13], Internet corporate security [14], the assistance
nature of homegrown aircrafts [21] also, the lead representative choice of the Bank [17].

Graph portrayals are the most part utilized for managing primary data, in various areas, for example, activities research,
organizations, frameworks examination, design acknowledgment, financial aspects and picture translation. In graph the idea of E
was presented by Gutman [4] due to its pertinence of specific atoms and discovered lower and upper limits for the energy of
graphs [5]. Afterward, Gutman and Zhou [6] characterized the Laplacian energy of a graph(LEG). The idea of fuzzy graph [7], in
view of fuzzy relations [22]. Rosenfeld [18] examined the idea of the fuzzy graph and fostered its construction. The energy of a
fuzzy graph was researched in [2] by Mathew and Anjali. The LEFG was characterized by Fayazi and Sharbaf [16]. Karunambigai
and Parvathi [12] summed up the idea of intuitionistic fuzzy graph (IFG). Afterward, strong IFGs is argued by Davvaz and Akram
[1]. Praba [15] characterized the energy of IFGs as an expansion of [2]. Rajeshwari, Murugesan and Venkatesh [8] summed up the
idea of LEBFG’s. As of late, Naz et al. [11] suggested the idea of PFGs, a speculation of the idea of Davvaz and Akram IFGs [1],
alongside its applications in decision making. The ideas of E and LEPFGs was explored by Muhammad Akram and Suera Naz
[10].

Energy of FBPG
Definition 2.1. Let G= (S, D) be the FBPG on a non-empty set Q, then S is the FBPG on Q and D is the BPF relation on Q such

that

uDW (xy) < min {uZ, (x usw )
u§, (xy)> max{uf (x), g, (y)}

ﬂB‘W( )> maxiul (x). 2, (y)f

b, () < min ! (x), ! (y)}
Definiton 2.2. Let G = (S, D) be the FBPG then the adjacency matrix AG)= la“J where
% :(‘USN (qiqi)”ugu (q‘qj)"uEN*N (q‘qj)’ﬂgJ (qiqj)), where 'u';/v <qiqj)and ’u'g/v (q‘qj) denotes the positive and
negative strength between G ang 9 ,‘ugu (qiqj) and ’ugu (qiqj) denotes the positive and negative non-membership

strength between G ang 4
Definition 2.3. In FBPG, the spectrum of connection matrix is indicated by the arrangement of eigenvalues.

AG)= (Alug, (evar ) Aluat, (i ) Al (0t ) ALt (@093)) 4 energy i cenored by

(e, (a0, D £l (00, ). o, 0 Dt (0= S Sl Sk S

E(G)

Example 2.1.
For FBPG the adjacency matrix is given by
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(0,0,0,0) (0.1,08,-0.1,-05) (0,0,0,0) (0.4,0.7,-05,-05) (0,0,0,0)
(0.1,08,-0.1-05) (0,0,0,0) (02,0.8,-0.2,-0.4) (0,0,0,0) (0,0,0,0)
AG)=|  (0,0,0,0) (02,0.8,-0.2,-0.4) (0,0,0,0) (03,06,-04-05) (0.5,04,-0.2,-04)
(0.4,0.7,-05,-0.5) 0,0,0,0) (0.3,0.6,-0.4,-0.5) (0,0,0,0 (0.5,0.5,-0.4,-0.5)

(0,0,0,0) (0,0,0,0 (05,0.4,-02,-04) (05,0.5,-0.4,-05) (0,0,0,0)

The spectrum and the energy of FBPG,
Spec(G) = {(0.9472, 1.5796, 0.8406, -1.1613), (-0.6531, -1.4591, 0.7264, 0.9605), (-0.5, -0.5545, 0.2702, 0.4957), (0.1531,

0.3815, -0.0942, -0.3470), (0.0528, 0.0525, -0.0618, 0.0521)}
E(G) = (2.3062, 4.0272, 1.9932, 3.0166)

Theorem 2.1. Let G be the undirected FBPG, then the eigenvalue of the connection matrix is indicated by
A, (@ LA, (0, ). Al o, ), A o)

SIa=03Ju|=035]=0 3]a|=0

) respectively then:

and =L
S -2 2t a0, ) St -2 Tut 0, 67 -2 Tt ey
i=1 1<i<j<n i= 1<i<j<n i=1 I<i<j<n and
an:ﬂiz = 21<Z<(ﬂgu (qiq i ))2

Proof. (i) Let G be the FBPG then A(G) is a square matrix that is equivalent to its transpose and sum of diagonal is zero, then

n n n n
2A4l=0.2 Jai| =02 5| =0 2|5 =0
i=1 i=1 i=1 and i=1

We can deduce the following from the properties sum of diagonal matrix:

tr(A(,u,;N (qiq,- ))2): IZ_nl:l'z
tr(A(ug, (00, ) )= 0+ (2, (@, )F + ot (e, 40,)F )

+ ((ﬂSN (qqu))2 +0+...+ ('”EF;W (qlqn))z)
bt (2, (0,00 + (42, (@,0,)F +..+0)

=2 Z(ﬂgw (qiqj))z

I<i<j<n

Where

2’12 2 Z(x“w (qq ))

I<i<j<n
Similarly

n

2l =2 Sl (@, ) X0 =2 ll @, 282 =2 (ut (a,)f

i=! I<i<j<n i=1 I<i<j<n and i=1 I<i<j<n

Theorem 2.2. Let G be the undirected FBPG with m vertices and the connection matrix

AG)= (A, (aa; ) Alud, (@, ), A, (0, ) Al (@ay)
(i)\/Z Z(ﬂDW (q a; )) +m(m — 1)‘det( Alus, (q a; )) ]; < E(ﬂgw (qiqj))g\/Zm Z(’u;w (qiqj))2

1<i<j<m I<i<j<m
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(ii)\/

2 Z ﬂgu (Qiq

I<i<j<m

,—))2 +m(m—1)‘det(A(,u,§U (qiqj))zln21 < E(ﬂgu (qiqj))ﬁ 2m Z(ﬂgu (qiqj))z

I<i<j<m

Y

m

o

2

I<i<j<

)F -+ mem—tjcer{ai, (0, )F ) Elus, [@a, )< jam (3, (00, )f

(iv)\/ 2

Proof.
(i)Upper Bound:

> (u, (g,

I<i<j<m

ENRN

2m Y (u (@,0,))

I<i<j<m

)) +m(m— 1)‘det(A (q q, )) ) SE(,u,';U (qiqj))s

With m entries, use the Cauchy-schwarz inequality.

In characteristic polynomial if

Replacing (3) in (2)

Replacing (4) in (1)

Therefore,

Lower bound:

Copyrights @Kalahari Journals

iw% Sl
(Zml:zj Z|/1| +2 > A4,

I<i<j<m
/1” 2
we compare the coefficients of

H(z A)=|AG) - Al|
Z’lllj - Z(/u;w (qiqj))2

I<i<j<m I<i<j<m

Zlﬂl =2 3 (uf, o))

I<i<j<m
AR
i=1

2n Z Y7,
E(ud, (0,0,))<

? (aa,)f

I<i<j<m

2m Z(ﬂ;N (qiq,- ))2

(E(/“gw (qiq,- ))2 = (ilﬂiljz
‘ZW +2 DA,

- 2L<;S(ny,3w (@,0,)f +m(m-DAm {22,

AM{z4llzeM iz [f1<i< j<m
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E(uf, (00,)2 [2 Xk, @a, ) +mm-1em {14,

I<i<j<m
2

ol || el

I<i<j<m

w0\
=[H|zi| J

i=1

QU]
= [det(Alug, (@, ))15’
E(u; (6))2 \/ 2 3, (00, )f +mm-1)get((u, (0.0, )|

I<i<j<m

2

h \/2 KZJ;S/JQN (., )) +m(m- 1)\det( b (aa;)f ] <Euf, (qiq,-))S\/Zm > (uh, (o)

Likewise, we can demonstrate

(2 Tl 40, -l e )

I<i<j<m

3N
IA
m
P
=
CU'U
2
o
N
IA

Jz > (a0, )F +mm-ndet(a(u, (6.0, )

I<i<j<m

3N
IN
BLE
=
EUz
o
=
~
57 o "o
3
=
2UZ
o>
=

3N
IA
m
P
=
Oz
Es
o]
Nt
IA

(2 Tl 40, -l e )

I<i<j<m

Theorem 2.3. Let G be the undirected FBPG with m vertices and the connection matrix

AG)=(Alug, (0, ) Alud, (aa; ) Al (a; ) Al (@a;)) |,

<2 3 (uf (a,)f m<2 Yl (@a,)f m<2 3 (uh (a,)f <2 3 (ud (a0;)f
I<i<j<m I<i<j<m I<i<j<m and I<i<j<m 1 then
2 > (uh, (@) 2 2<Z<(ﬂ§N (0.9,)f
(i)E(ﬂ;W (qiqj)) s m + |(m-1) ZL_Z(”;N (qiqj)) i m

I<i<j<m

2 3 lut, (o, )f

(i) E(ue, (0,0,) < == + =012 ¥ (g, @q,)f -

I<i<j<m

{2 Z(ﬂ;u (qu))sz

Copyrights @Kalahari Journals Vol. 7 No. 1 (January, 2022)
International Journal of Mechanical Engineering
5061



2

2 Z(ﬂgm (qiqj))2 2 Z(ﬂgw (qiqj))z

(i) Elus, (@9, )< =" + [m=112 ¥ (ub, (aa,)f - ===

I<i<j<m

m

2

2 3 (ud (o, )f 2 (i (a0, )f
(iv)E(d (@9, )< =" - + -2 3 (gq,)f - =L

I<i<j<m

m

Laplacian Energy of Bipolar Pythagorean Fuzzy Graphs
Definition 3.1. In the FBPG the Laplacian matrix is defined as the difference between the degree and adjacency matrix,
denoted as LEBG) D(BG)-A(BG) Laplacian matrix of FBPG can be written as

L{g, (o hLlef, ()Ll (@ay),, L, @a,)

L(BG) =Ly, (v, hLler, (o, ) Lless, (a0 ) Ll (10, )

Definition 3.2. In FBPG, the spectrum of Laplacian matrix is denoted by the set of Laplacian eigenvalues.
For FBPG the Laplacian energy is denoted by

BG)= [Z:”%LZ:”@|’iZ:‘,|Zi|'iZ:‘,|pi|)

Where
2 3, (a9,) 2 > (4, (0,9,)) 2 > (uh, (@)
a; =, — I<i<j<m ﬁi :C;i _Isicjsm 7 =7, - <i<j<m
m ' m : m and
2 > (w3 ()
:g_ _ I<i<j<m
m

> >
Theorem 3.1. Let G be the FBPG, then the Laplacian matrix of G is denoted by L(BG). If vizy+l g é"” fi=Tin

and & Z it where i=1,2,...,m-1 are the eigenvalues of L('U'SN (q‘qi))’ ('UDU (q 9 )) (’UQN (q 9 )) and

L(,Ugu (q'qj )) respectively,

iv.—Z > uf, (aa, )24 =2 Zﬂnu(qq) Zf —2 Yub 09,)  D&-2 Zﬂou(qq)

i= I<i< j<m 1<i< j<m 1<i< j<m and =t 1<i< j<m

m

ZUIZ =2 Z(:”Dw (q,qj)) +Zdjgw(qich) %) Zgiz =2 Z('UD“ (qiqj)) +§djgu(qiqj) %)

i= I<i<j<m i=1 i=1 I<i<j<m

m

ZT-Z =2 Z(ﬂow (q q; ))2 +gd5%(qiqj)(q )

i= I<i<j<m

m

Zl‘,fiz =2 Z(ﬂgu (qiqj ))2 +Zml‘,djgu (qiqj)(q )

I<i<j<m

Proof. If L(G) be the Laplacian matrix on G, then

iZml:ui:tr Zdz (aa,) Zy%(qq )

I<i<j<m
Therefore,
Zé =2 ¥ uf (a0;) Zr —2 Yub ag,) Y& -2 Yul (aa, )
I<i<j<m I<i<j<m and i=1 I<i<j<m
By the definition of Laplacian matrix and by trace properties of matrix, we have
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olet, o, )= 30t

(L, (00, )F )= 07 o @)+, (@) +.+ a2, (@10, )

((ué’w(qqu)) A%, (g (02)+- +(uDW(qlqm)))

bt (2, (@000 + (5, (@,3,) ) ot d? (@, )
=2 3 (uf, (a0, F + 0% |
I<i<j<m i=1

Zuiz =2 Z('UEPM (qiqj))2 +Zd5p (q_qv)(q )
Therefore, =t 1<i<j<m i oy (9

igiz =2 Z(’LIEF;U (q'q'))2 +Zm:d2 (0a;)

Similarly, = Isi<jsm
=2 Yl (ag, )) DXFRNICY

i= I<i<j<m
Zmléz =2 Z(’ugu (qiqj)) +id;2zé‘u (q.qj)(q )
i=1 I<i<j<m i=1

>
Theorem 3.2. Let G be the FBPG, then the Laplacian matrix of G is denoted by L(BG). If v 20, +1 é’ C:'+1 Ti 2 Tia

and S é:'+1where i=1,2,...m-1 are the eigenvalues of (’UDN (qq )) (’uDU (qq )) (,qu (qq )) and
L(,u gu (qiqi)) respectively, then

Zilai:o’iﬂizo'zrlllizo dilpizo
N 0 18 2 Z('u';’w( )) 2
Dol =2 Z(M;N (qiqi)) +EZ d,,[;N(qiqj)(qi)— =<Jm

i=1 1<i<j<m i1

m

iz_ml:ﬂiZZZ Z( ( ))+

I<i<j<m

r\>|H

< i<j<
Zl: dﬂgu (qiqj)(qi)_ :

I<i<j<m

ng =2 Z(ﬂtNxN (qiqj))z +%Zm:

I<i<j<m i=1

{ 2 2l (qq,))}z
d .

iz=1:pi2 =2 Z(,UBIU (qiqj)) + 1;{%% ) 1<i<j<m

I<i<j<m
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Example 3.1.
From example 2.1

(0515-06-1)  (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(00,000  (0316-03-09)  (0,00,0) (0,0,0,0) (0,0,0,0)
DG)=|  (0,0,0,0) 00,00  (118-08-13)  (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (00,00  (1218-13-15  (0,0,0,0)
(0,000 (0,0,0,0) (0,0,0,0) (0,000  (109-06-09)
[ (0515-06-1) (-0.1-080.1,05) (0,0,0,0) (-04,-07,0505  (0,0,0,0)
(-01-08,0105) (0.316-03-09) (-0.2,-080204)  (0,0,00) (0,0,0,0)

LG)=| (0,000  (-02-080204) (L18-08-1.3) (-0.3-06,04,05 (-0.5-0.4,0.2,04)
(-04-0.7,0.5,0.5) (0,0,0,0) (-03-06,04,05) (L2,18-13-15) (~0.5-05,04,05)
(0,0,0,0) (0,0,0,0) (-05-04,02,04) (-05-0504,05) (1,09,-06-0.9)

AL(G) = {(0,0,-1.4205,-2.2117),(0.3432,0.8344,-0.9110,-1.597),(0.5, 1.6197, -0.7382,-1.1721),(1.4568, 2.0160,-0.3810;-
0.6188),(1.7,3.1299,-0.1494,0)}
EL(G)= (4, 7.6, 3.6046, 5.5996)

CONCLUSION

A PFS method is effective for displaying issues of vulnerability, indeterminacy and conflicting data where humanoid
information is fundamental and humanoid assessment required. PF models give more accuracy, adaptability and similarity to
the framework when contrasted with the traditional, fuzzy. A PFG can portray the vulnerability of a wide range of
organizations. We presented the ideas of E and LE of FBPGs conditions and examined their properties. We calculated upper
and lower limits for a FBPG’s energy and Laplacian energy.
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