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Abstract:  

Alzheimer's disease (AD) is a chronic neurodegenerative 

disease which accounts for 60–70% cases of dementia. 

Worldwide, around 50 million people are affected by 

dementia and every year nearly 10 million new cases are 

being reported. Major cause of AD is abnormal 

accumulation of amyloid beta in the brain cells which in 

turn forms neurofibrillary tangles that leads to failure of 

synaptic transmission and neuronal 

degeneration.  Deposition of amyloid beta is governed by 

various factors in which Receptor for advanced glycation 

end products (RAGE) plays a critical role in pathogenesis 

of AD. RAGE is a key pattern recognition receptor of the 

innate immune response and mediates diverse physiological 

and pathological effects through cellular signaling 

pathways leading to inflammatory reactions. In this 

context, the potential role of RAGE in cognitive impairment 

and as therapeutic target for AD is an interesting topic to 

review. In this essence, the contents emphasis on RAGE and 

its isoforms in human, pattern recognition of RAGE for 

diverse ligands, role of RAGE in AD through RAGE and 

amyloid beta interaction, involvement of RAGE activated 

signaling pathways in neuro-inflammation, role of sRAGE 

in Amyloid beta clearance, sRAGE as therapeutics for AD 

and development of RAGE inhibitors. This chapter 

overviews RAGE as potential therapeutic targets for 

Alzheimer’s disease.  
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INTRODUCTION 

 

Dementia is a root for progressive cognitive decline and is 

caused by various disease conditions such as Alzheimer’s 

disease (AD), Huntington's disease and multiple sclerosis etc. 

Dementia patients are facing vulnerable conditions in terms of 

physical and mental health which presents a serious challenge 

to the healthcare systems and requires early diagnosis and 

therapy. The incidence of dementia is mostly observed in aging 

populations over 65 years old. Alzheimer’s disease is the most 

common cause for AD (50-75%). The pattern of symptoms and 

biomarkers helps to identify Alzheimer’s disease. AD generates 

short-term memory decline, manifestation and repetitive 

questioning state in patients. Dementia affects essential 

functions which are memory function, executive ability, 

language ability, visuospatial ability, and personality and 

behavior conditions. The association of dementia with 

pathophysiological conditions observed in normal aging 

complicates the early identification and leads to overt cognitive 

decline which give rise to functional impairment. The 

biomarkers accustomed to AD are extracellular accumulated 

amyloid beta and intracellular tangles of hyperphosphorylated 

tau and affect synaptic function that leads to neuronal signal 

loss. Hippocampal atrophy in the medial temporal lobe also 

causes early symptoms in AD. The Receptor for Advanced 

Glycation Endproducts (RAGE) is a multi-ligand pattern 

recognition receptor that plays an important role in AD 

pathology. During aging oxidative stress increases in brain cells 

which lead to the formation of AGEs (Advanced glycation end-

products) around the brain cells. This AGE in turn activates 
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RAGE which leads to influx of Aβ from the blood to brain and 

causes subsequent inflammatory reactions. Amyloid peptides 

also bind to RAGE which is further eliciting an inflammatory 

response through the NF-κB (Nuclear factor kappa B) 

pathways. Therefore,RAGE plays a major role in AD pathology 

[1,2,3].  

 

FUNCTIONAL SIGNIFICANCE OF RAGE IN ADD 

 

RAGE is a multi-ligand receptor which belongs to the 

Immunoglobulin superfamily having a molecular weight of 

35kDa and RAGE gene is located in chromosome 6. The full-

length RAGE consists of V domain with 23-116 amino acid 

residues, C1 domain with 124-221 amino acid residues, C2 

domain with 227-317 amino acid residues, transmembrane 

region with 343-363 amino acid residues and the cytoplasmic 

tail domain with 363-404 amino acid residues [4,5,6,7]. The V 

and C2 domains are composed of 8 strands linked through 6 

loops forming 2 β sheets attached by disulfide bonds 

respectively whereas the C2 domain folds as C-type 

immunoglobulin domain. The transmembrane domain contains 

the “GxxxG” motif which is essential for homodimerization of 

receptor and signal transduction [8,9]. The cytoplasmic tail has 

3 units such as membrane proximal domain (17 amino acids), 

central domain (17 amino acids) and unstructured C terminus 

[10]. These structural units are essential for mediating the 

interaction between RAGE and effector molecules. RAGE 

binds with a diverse range of ligands relevant to distinct 

pathological conditions such AD, cardiovascular disease and 

cancer. Binding of RAGE ligands mediates cellular signal 

transduction pathways namely MAPK (mitogen-activated 

protein kinase), NF-κB etc. RAGE expression is exhibited in 

various locations such as cerebral endothelial cells, astrocytes, 

neurons of the hippocampus, entorhinal cortex, and superior 

frontal gyrus. The escalation level of RAGE at the Blood Brain 

Barrier (BBB) leads to influx of Aβ into the brain. At the same 

time, in neurons it increases the activity of the Aβ producing β-

secretase enzyme (BACE1), which in turn induces Aβ 

accumulation, tau hyperphosphorylation and 

neuroinflammation. Accumulation of Aβ1−40 and Aβ1−42 

resulting in RAGE-mediated apoptosis in neurons [11,12,13]. 

Multiple isoforms of RAGE generated as a result of alternative 

splice variants of RAGE gene and proteolytic cleavage of f-

RAGE. These isoforms exhibit responsibility for a variety of 

pathophysiological processes depending on the interaction of 

ligands.  Eventually, all the isoforms exhibit similar affinity 

towards RAGE ligands. In order to understand the RAGE 

mediated signaling pathways, it is essential to understand the 

interaction and function of isoforms. Majorly, three isoforms of 

RAGE represented as a key player in mediating signaling 

pathways which are full-length RAGE (fRAGE), soluble 

RAGE (sRAGE) and Dominant Negative RAGE (DNRAGE). 

Aside from these three predominant types of RAGE, other 

forms of RAGE are also reported in the human brain which is 

RAGEB (intracellular modified RAGE), sRAGEB (C domain 

modified sRAGE), DNRAGEB (C domain modified 

DNRAGE) and NRAGE (N truncated RAGE). Elucidating the 

role of these isoforms helps to understand the functional 

perspective of signaling pathways in neuronal disorders (figure 

1) [2,14,15,16].

Figure 1: Structure and Isoforms 

of RAGE. Arrow mark indicates modifications in the domain (Created with BioRender.com) 

 

Full-length RAGE (fRAGE) 

Full-length RAGE is a direct mediator of pathophysiological 

pathways such as chemotaxis, apoptosis, proliferation and 
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inflammation. fRGAE consists of V domain, C1 and C2 

domain, transmembrane domain followed by intracellular 

cytoplasmic tail domain.  The intracellular cytoplasmic domain 

is essential for activating various signaling pathways such as 

NF-κB, MAPK etc [17,18,19,20]. Presence of fRAGE induces 

more accelerated and sustained signaling pathways than the 

other forms of RAGE. Since, DNRAGE and sRAGE are 

involved in decaying the binding of ligands towards fRAGE 

presumably involved in suppressing the effect of fRAGE 

mediating signaling. Therefore, sRAGE and DNRAGE gained 

an important role in study of inhibitors in various chronic 

neuronal diseases. Additionally, interaction of ligands with 

RAGE generates reactive oxidative species (ROS) which 

regulate the intracellular signaling pathways [21,22]. RAGE-

ligand interactions had shown cell specific effects. Therefore, 

the signal transduction pathway activation is solely dependent 

on the specific cell type.  

Soluble RAGE (sRAGE) 

sRAGE consists of V domain, C1 and C2 domain similar to 

fRAGE but lacks transmembrane and cytoplasmic tail domain 

leading to release of sRAGE into the extracellular space. And 

also, there is a subtype of sRAGE that exists which are esRAGE 

and cRAGE. The sRAGE is generated from the pre-mRNA by 

alternative splicing is known as endogenous secretory RAGE 

(esRAGE) and the one which formed from the cleavage of 

extracellular domain of RAGE is known as cleaved RAGE 

(cRAGE) [2,14]. The sRAGE is a key player in decaying 

fRAGE mediated signaling pathways because sRAGE binds to 

the RAGE ligands prior to the fRAGE [1,23]. When sRAGE 

binds with early monomeric or soluble ligands, it further 

prevents the formation of insoluble complexes. Therefore, 

sRAGE amends the formation of insoluble aggregates of 

ligands and thereby prevents the efficacious activation of 

fRAGE signaling pathway [2,24,25,26]. 

Dominant Negative RAGE (DNRAGE) 

DNRAGE has a similar V type and C type domain as fRAGE 

but lacks an intracellular cytoplasmic tail domain. DNRAGE 

competes with fRAGE for binding with ligands to block the 

fRAGE mediating signal transduction due to lack of 

intracellular cytoplasmic tail domain. DNRAGE interaction 

with ligands prevents the initial binding of fRAGE with ligands. 

At the same time, accumulation of ligands on the surface of the 

cells further activates influx of more ligands which in turn 

causes aggregation of ligands and oxidative stress that promotes 

fRAGE activation [25,27].   

Structural feature of RAGE for diverse ligands 

RAGE interacted with a diverse variety of ligands with different 

size and symmetry. The rationale behind the multi-ligand 

recognition property of RAGE elucidated by negatively 

charged VC1 domain and ligand-driven multimodal 

dimerization [4,5]. Since RAGE interacted with acidic ligands 

and oligomerization had provided high stability between RAGE 

and ligand interaction. The basic (positive charge) nature of the 

V domain is provided by the presence of highly conserved 

Arginine and Lysine residues. At the same time, the C2 domain 

composed of large negative charge mediates the efficient 

binding of ligands on VC1 domain by repelling the negatively 

charged ligands towards VC1 domain.   Therefore, the 

conserved basic cavity exhibited by the RAGE receptor is 

essential for recognizing multi diverse ligands [4,5,8,35].  

 

ROLE OF RAGE LIGANDS IN AD 

 

Studies have been reported that RAGE is a multi-ligand 

receptor which binds with variety of ligands mainly advanced 

glycation end products (AGE), Aβ, HMGB1 (High mobility 

group box), S100 proteins (S100A12, S100B, S100A7, 

S100A8/A9 complex), Mac-1 (Macrophage-1 antigen) and 

Phosphatidylserine [28,29,30].  

AGE are the forms of modified proteins that are subjected to 

glycation and progressively involved in various modifications 

that in turn result in formation of insoluble cross links. Various 

types of AGE is reported such as Carboxymethyl-lysine (CML), 

Carboxyethyl-lysine (CEL), Pentosidine, glyoxal-lysine dimer 

(GOLD) and methylglyoxal-lysine dimer (MOLD). The rate of 

formation of AGE is altered by various environmental factors. 

Accumulation of AGE in intracellular and extracellular space 

recruits various neuronal related disorders. During aging, 

oxidative stress is elevated in brain cells which lead to the 

formation of AGE. This AGE in turn activates RAGE which 

mediates influx of Aβ from the blood to the brain and causes 

subsequent inflammatory reactions. RAGE-Aβ interactions 

induce NF-κB inflammatory response through signaling 

pathways [31,32,33,34]. 

AGEs are mostly located in pyramidal neurons. It is evident that 

AGEs concentration had increased in pyramidal neurons of the 

AD patients. As AD progress, the elevated level of AGE 

positive neurons leads to hyperphosphorylation of tau protein 

which finally causes neurofibrillary tangles (NFTs) and senile 

plaques [38,39]. AGEs-RAGE interaction leads to 

dephosphorylation of the Nuclear factor activated T-cells 

(NFAT-1) elevated a BACE1 expression. NFAT-1 is a crucial 

controller of BACE1 expression which in turn regulates the 

APP processing [40,41].Regulation of detoxifying mechanisms 

such as Glyoxalase 1 (GLO1) detoxifying pre-AGEs 

methylglyoxal (MG) is prominent activity to mitigate the AD 

pathogenesis. But essential enzyme cofactor glutathione 

depletion in AD patients down regulates the GLO1-AGE 

detoxifying system, thus mediating the elevated production 

AGEs [42,43,44,45]. 

 

RAGE AND AMYLOID PATHOLOGY 

 

Amyloid Beta (Aβ) is a crucial player in mediating 

pathogenesis of AD. Aβ is toxic to neuronal cells which has the 

ability to generate reactive oxygen species and causes 

accumulation of lipid peroxides and hydrogen peroxides. It is a 

potent inducer of the transcription factor NF-κB in primary 

neurons and astrocytes. Chemotactic nature of Aβ causes 

migration of microglia which leads to an increased 

accumulation of microglial cells surrounding the amyloid 

plaques. Both the monomeric and complex forms of Aβ interact 
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with fRAGE. Finally, Aβ interaction potentiates the secretion 

of the cytokines Interleukin (IL)-6, IL-8 and IL-1b-activated 

human astrocytoma cells and leads to neuronal damage 

[4,5,32].   

Failure in the RAGE receptor function tends to imbalance the 

production and clearance of Aβ peptides inside the brain. 

RAGE is a key player in generating neurotoxicity. RAGE 

interaction with Aβ oligomers activates proinflammatory 

responses, ROS activation which causes amyloid pathological 

change followed by neuronal cell death (figure 2) [36,37].  

RAGE is a critical player in AD as follows; i) RAGE increase 

the formation of Aβ and neurofibrillary tubes (tau 

hyperphosphorylation). ii) Activates microglia and astrocytes 

into inflammatory states which tend to develop cellular stress. 

iii) Enhanced neurodegeneration leads to cognitive impairment. 

iv) This process continues as a cyclic process and leads to 

progression of AD [46,47,48,49,50,51,52].  

RAGE and Aβ clearance 

RAGE is a transporter responsible for mediating influx of Aβ 

inside the brain whereas efflux of Aβ is controlled by LRP-1 

and P-glycoprotein transporters. It has been demonstrated that 

AD affected brain samples had shown elevated expression of 

RAGE receptors and decreased level of LRP1 receptors [37]. 

Up-regulation of RAGE and downregulation of LRP1 receptors 

leads to re-entry of circulating Aβ peptides into the brain. 

Further activation of β and γ secretases in turn leads to Aβ 

generation [36].It is evident that Aβ accumulation distorts the 

BBB junction via Ca2+calcineurin pathway [53,54,55]. 

Abundant RAGE-Aβ interaction drives the RAGE-

DIAPH1 signaling pathway which is a prominent mediator for 

activating inflammation and cellular dysfunction [42,56].  

 

Role of oxidative stress in AD 

Interaction of RAGE-AGEs tends to elevate through levels of 

ROS which affects various antioxidant defense systems such as 

superoxide dismutase, catalase and glutathione related enzymes 

and also activates protein kinase C [57]. The presence of metal 

ions along with the AGES initiates the generation of ROS that 

affects the cellular processes. Peptidyl radicals and nitroxyl 

radicals are sources for oxidative stress [58,59]. 

RAGE: Signaling pathways in AD pathology 

Neuronal inflammation is a major reason for enhanced 

generation of Aβ and hyperphosphorylation of tau protein. 

Interaction of RAGE and Aβ induces various cellular signaling 

pathways [60]. RAGE-Aβ mediates the activation of 

CaMKKβ–AMPK (Ca2+/calmodulin dependent protein kinase 

kinase-beta- AMP-activated protein kinase) signaling pathway 

which causes chronic neuroinflammation, oxidative stress and 

tau hyperphosphorylation[51,61]as represented in figure 2. 

Phosphorylation of ERK1/2 (extracellular signal regulated 

kinase 1/2) enhances binding of Aβ and increased levels of tau 

kinases [62,63,64]. RAGE mediated GSK-3 (Glycogen 

synthase kinase 3) signaling pathway induces the 

hyperphosphorylation of tau protein [11,45,65]. RAGE 

mediated NF-κB signaling pathway induces the release of 

cytokines which leads to oxidative stress and 

inflammation[66,67,68].  

 

 

679 



 

Copyrights @Kalahari Journals  Vol. 6 No. 3 (October-December, 2021) 

                                                                                         International Journal of Mechanical Engineering  

 

1 

 
Figure 2: Pathological process in AD mediated by RAGE-Aβ interaction (Created with BioRender.com). 

Interaction between sRAGE and Aβ 
sRAGE had an inhibitory effect on fRAGE signaling pathways. 

Elevated aggregation of Aβ leads to formation of highly cross 

linked complex structures. It is evident that fRAGE mostly 

binds with highly cross-linked structures than the monomeric 

Aβ. Therefore, when sRAGE binds with the earliest stage of Aβ 

prior to the membrane bound RAGE, prevents the fRAGE 

activation and RAGE ligand generation [24]  which is  

represented in figure 3. Studies also reported that administration 

of sRAGE into the circulatory system increases peripheral 

nerve regeneration, prevents the Aβ crossing from blood and 

reduces the binding of AGEs to the endothelial cell surface 

[73,74,75]. Additionally, most of the sRAGE is generated by 

ADAM10 (A disintegrin and metalloproteinase 10) sheddase 

and polymorphism in ADAM10 might be responsible for lower 

concentration of sRAGE which leads to the progression of AD 

[76,77,78,79,80].  
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Figure 3: sRAGE as therapeutics for Aβ clearance in AD. Binding of sRAGE with monomeric Aβ prevents the formation of complex 

Aβ structures thereby preventing fRAGE interaction and proinflammatory signaling pathways. (Created with BioRender.com)  

 

 

DEVELOPMENT OF RAGE INHIBITORS 

 

Existing knowledge on the mechanism of RAGE-Aβ 

interaction in AD pathology paves way for development of 

RAGE antagonists for AD treatment. Various strategies have 

been developed for blocking the RAGE-Aβ interaction such as 

synthetic RAGE analogs and RAGE antibodies to decay the 

RAGE mediated inflammatory response [81]. Studies had 

proven that administration of anti-RAGE antibodies hampered 

the inflammatory signaling pathways leading to reduction in the 

cytokine expression and interruption in the RAGE up-

regulation. Anti-RAGE antibodies also prevent the Aβ 

mediated monocyte infiltration which induce pro-inflammatory 

responses and cause neurotoxicity in AD.  Even though anti-

RAGE antibodies seem to be beneficial, its permeability 

through blood brain barrier is still implausible [82, 83]. Hence, 

the development of synthetic RAGE inhibitors gained 

attractiveness. 

In the recent years, various synthetic RAGE inhibitors are 

developed in rapid pace such as 2-aminopyrimidine series of 

inhibitors, pyrazole-5-carboximide series of inhibitors, 6-

phenoxy-2-phenylbenzoxazole series of inhibitors, FPS-ZM1, 

[18F] RAGER and Matrine. The details of synthetic RAGE 

inhibitors are given in table 1.  

 

 

 

 

 

 

 

 

 

681 



 

Copyrights @Kalahari Journals  Vol. 6 No. 3 (October-December, 2021) 

                                                                                         International Journal of Mechanical Engineering  

 

1 

Table 1: Development of Synthetic inhibitors for RAGE 

 

Inhibitor 

classification 

Inhibitor  

 

Inhibitor name Inhibitor structure RAGE 

inhibitory 

activity 

Model system and 

method used for 

RAGE-drug  

interaction 

Therapeutic 

Effects 

References 

2-

aminopyrimidines 

analog series 

1 PF-04494700 or 

TTP488  

(3-[4-[2-butyl-1-[4-

(4-chlorophenoxy) 

phenyl] imidazol-

4yl] phenoxy]-N, N-

diethylpropan-1-

amine) 

 

 

Kd = 500 

nM 

 

Phase III clinical trial 

Participants with mild to 

moderate Alzheimer's 

disease 

Fluorescent polarization 

with sRAGE 

Mouse model of 

systemic amyloidosis 

Inhibition of RAGE-

Aβ interaction 

Reduction of 

inflammatory 

markers 

Cognitive function 

improvement 

84,85,86,87 

2 2,4-phenyl-

substituted thiazole 

derivatives of 2 

aminopyrimidines 

 

 

IC50 = 

1.21 μM 

 

Structure-Activity 

relationship study 

(SAR) 

Inhibition of Aβ 

influx through BBB 

Downregulation of 

NF-κB 

Blocking RAGE-Aβ 

interaction 

 

88 

3 4,6-Bis(4-

chlorophenyl)-N-(3-

(2-(diethylamino) 

ethoxy) phenyl)- 

pyrimidin-2-amine 

 

 

Kd = 102 

μM 

IC50 = 

16.4 μM 

 

Acute model study- 

mice model 

Surface plasmon 

Resonance (SPR) using 

human RAGE  

 

Inhibition of Aβ 

BBB entry   

Downregulation of 

NF-κB activation 

Improvement of 

cognitive function 

Inhibition of Aβ 

accumulation 

89,90 

4 4-(4-(2-

Cyclohexylethoxy) 

phenyl)-N-(3-(2-

(diethylamino) 

ethoxy)- phenyl)-6-

methylpyrimidin-2-

amine 

 

 

Percent 

inhibition 

= 49.6 ± 

4.4 

Acute animal model 

study- mice model 

Inhibition of Aβ-

RAGE binding 

Blocking of Aβ 

entry into BBB 

Downregulation of 

NF-κB of activation 

89 
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5 4,6-Bis(4-

chlorophenyl)-N-(2-

(2-(diethylamino) 

ethoxy) phenyl)- 

pyrimidin-2-amine 

 

 

IC50 = 4.6 

μM 

 

Acute animal model 

study- mice model 

SPR using human 

RAGE  

 

Inhibition of Aβ 

accumulation  

Inhibition of Aβ 

entry into BBB 

Downregulation of 

NF-κB activation  

89 

Pyrazole-5-

carboximide 

analog series 

6 N-(2-butoxy-4-(3-

(diethylamino) 

propoxy) phenyl)-3-

(4-(4- 

fluorophenoxy) 

phenyl)-1-methyl-

1H-pyrazole-5-

carboxamide) 

 

 

 

Kd = 43.4 

μM 

IC50 = 1.9 

μM 

SAR study 

mice model study 

SPR analysis 

 

Inhibition of Aβ-

RAGE binding 

Inhibition of Aβ 

entry into BBB 

89,90 

7 N-(2-(2-

(Diethylamino) 

ethoxy)-5-

methoxyphenyl)-

4,6- bis(4-

fluorophenyl) 

pyrimidine-2-

carboxamide) 

 

 

- ELISA on human 

RAGE- Aβ1-42 

Inhibition of Aβ-

RAGE binding  

Improved 

hydrophilicity and 

reduced cytotoxicity 

90 

8 4, 6-Bis(4-

chlorophenyl)-N-(3-

(2-

(3(dimethylamino) 

pyrrolidin-1-yl) 

ethoxy) phenyl) 

pyrimidin-2-amine) 

 

 

- Molecular docking 

study 

ELISA on human 

RAGE- Aβ1-42 

 

Inhibition of Aβ-

RAGE binding 

Improved analog 

binding efficiency 

92 
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6-phenoxy-2-

phenylbenzoxazole 

analog series 

9 4-(3-{4-[6-(4-

Chlorophenoxy)-

benzoxazol-2-yl]-

phenoxy}-propyl)-

piperazine-1-

carboxylic acid tert-

butyl ester) 

 

 

40% 

inhibition 

at 4 μM 

 

AD mice model study 

Fluorescence resonance 

energy transfer (FRET) 

assay 

 

Blocks Aβ transport 

across the BBB  

Reduction of 

amyloid deposition 

Analogs are 

protective against 

cytotoxicity 

93 

 10 FPS-ZM1 

(N-Benzyl-N-

cyclohexyl-4-

chlorobenzamide) 

 

 

Ki for Aβ1-

40 = 25 nM 

Rat model study 

ELISA on human 

RAGE- Aβ1-42 RAGE- 

Aβ1-40 

 

Up-

regulatedantioxidant 

defense system 

Down-regulated 

AGE-mediated pro-

inflammatory 

cytokines 

Reduced Aβ1-40 and 

Aβ1-42 production 

and oxidative stress 

Improved cognitive 

function 

94,95 

 11 [18F] RAGER  

 
 

Kd = 15 

nM 

Molecular docking 

study 

Autoradiography 

 

Inhibition of Aβ-

RAGE binding 

96 

 12 Matrine  

 

 

Kd = 24 

mM 

AD mice model study 

ELISA on human 

RAGE- Aβ1-42 

 

Inhibits the Aβ42-

induced cytotoxicity 

Inhibition of 

aggregation of Aβ42 

Suppressed the 

Aβ/RAGE signaling 

pathway, 

proinflammatory 

cytokines and 

plaque formation 

Improved cognitive 

function 

97 
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2-aminopyrimidines series of inhibitors are derived from one of 

the RAGE ligand called argpyrimidine-1which is served as a 

template for the design of inhibitor. This argpyrimidine 1 has 

two essential moieties which are pyrimidine moiety and amino 

acid moiety (two parts – linker part and terminal polar part). 

The modification in these two moieties gave rise to a new class 

of aminopyrimidines of the RAGE antagonists (Inhibitor 1-5). 

These classes of inhibitors had pharmacophore composed of 

two aromatic groups, a pyrimidine central core and alkyl chain 

having protonable nitrogen [84-89]. Pyrazole-5-carboximide 

series of inhibitors are designed by introduction of 

electronegative substituent and modification of ethoxy moiety 

(Inhibitor 6-8) [90-92]. 6-phenoxy-2-phenylbenzoxazole series 

of inhibitors have three parts such as 6-phenoxy region, 2-

phenyl benzoxazole core and amino alkoxy region. In the 6-

phenoxy-2-phenylbenzoxazole class of inhibitors compounds 

with a (4-(alkoxycarbonyl) piperazin-1-yl) alkyloxy side chain 

had shown significant inhibition towards the RAGE–Aβ 

interactions [93]. [18F] RAGER is a first small molecule 

radiotracer which accumulates in areas of RAGE expression 

[96]. Matrine (Mat)  is derived from  Sophora flavescens Ait, a 

chinese herb medicine used to treat dementia. Matrine could 

inhibit Aβ42-induced cytotoxicity by preventing the Aβ42 

aggregation and reducing the Aβ-RAGE signaling pathway 

[97]. Even though various RAGE inhibitor synthetic small 

molecules are under trial, it could not interact with larger 

surface areas of the protein interface to block the protein-

protein interactions. Thereupon, peptides as an inhibitor gained 

essential attractiveness in therapeutics due to its advantages 

over small molecule antagonists [98]. 

 

CONCLUSION AND FUTURE ASPECTS 

 

RAGE-amyloid interactions plays a major role in 

pathophysiology of AD through neuroinflammation and 

amyloid mediated pathogenesis. Blocking this interaction by 

synthetic small molecule inhibitors, anti-RAGE antibodies and 

peptides antagonists are novel therapeutic strategy for AD. 

However as on date there are no RAGE inhibitors approved for 

clinical use mainly due to the limited bioavailability and 

permeability of the drug candidates through BBB. Future 

research on developing drug therapeutics with good 

bioavailability, permeability, maximum safety and efficacy is 

warranted. 
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