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Abstract 

 

Nowadays, Wireless body sensor networks (WBSNs) 

have recently been increasingly used for remote 

healthcare monitoring, where base station or remote 

hospitals continuously receives the electrocardiogram 

(ECG) signals for storage and analysis. In the diagnostic 

point of view, more information are provided by 

multichannel ECG (MECG) than single channel ECG. 

The major challenging task in WBSN is to transmit the 

signal of MECG without compromising on energy 

consumption. Therefore, effective compression of data is 

required, where simultaneous compression and data can 

be recovered with minimal loss of diagnostic information 

can be carried out by Compressed Sensing (CS). In 

addition, CS has emerged as a new signal receiving 

technology that can increase time for monitoring, reduce 

costs of equipment and power consumption. This paper 

proposes a low-ranking CS-based method for efficient 

data collection and signal reconstruction (SR) in the low-

energy WBSN. In addition, we used Kroneker's sparse 

bases for the usage of spatio-temporal correlations (STC) 

in MECG signals and its compression. The scarcity limit 

is represented by the minimization of the l1 norm, where 

an efficient optimization algorithm called Emperor 

Penguin Colony (EPC) is developed to reconstruct 

MECG signals that more efficiently solve the resulting 

optimization problem. Simulation experiments confirm 

that the EPC-based algorithm provides higher recovery 

accuracy with less required transmissions and less 

computational complexity, when compared with existing 

recovery methods. 

 

 

Keywords: Compressed Sensing; Electrocardiogram; 

Emperor Penguin Colony; Recovery Algorithm; Sparsity 
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1.Introduction 

 

Low-cost and high-quality monitoring system of 

WBSN-based ECG technologies are rapidly increasing in 

the upcoming days. However, one of the major challenges is 

the continuous and long-term ECG monitoring, since 

biosensors are battery powered [1-4]. Researches are 

conducted on current surveys [5-7] to prove that the above 

stated issues can be resolved by using the CS method [8-9] 

that uses the ultra-low coding complexity for compressing 

the node’s ECG, so that power consumption in wireless data 

transmission is reduced. Using the sparsity function of the 

considered signals, the CS performs signal acquisition and 

compression at the same time using a simple linear 

projection of the conventional signals. During this time, the 

unit of complex data compression can be saved and there is 

no need for high-frequency Nyquist sampling. On the other 

hand, complex optimization algorithm is used for recover 

the signal during decoding. Normally, powerful servers are 

used for performing the recovering operations, where 

WBSN is a critical case. There are limited memories, power 

and computing resources are presented in the bio-sensors, 

however, they must done long-term wireless communication 
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and detecting the signals. In contrast, the signals' analysis 

and reconstruction are normally performed at the data 

center, which is considered as extremely powerful. 

The qualities of signals in terms of reconstruction and 

compression ratio are determined by using the 

reconstruction algorithm in CS. There are two categories in 

the reconstruction algorithm that are adopted in the existing 

CS-based ECG schemes, where first one is signal sparsity 

includes orthogonal matching pursuit (OMP), basis pursuit 

(BP) and finally Bayesian CS [10-12]. BP is used as 

reconstruction algorithm in [13] for extending the biosensor 

lifetime and achieved competitive compression ratio. The 

author from [14] reviews the various reconstruction 

algorithms and suggests that OMP is best for monitoring the 

ECG signals for CS in WBSN due to its computational time 

and reconstruction accuracy[38]. The other algorithms use 

additional prior information and standard sparsity. Figure 1 

shows the model of WBSN. 

 
Figure 1: WBSN’s Model 

 

In the time domain analysis, the block-sparsity 

signals is exploited by using the reconstruction algorithm 

called block sparse Bayesian learning (BSBL), which was 

developed by the author Zhang et al. [15]. In the wavelet 

domain, ECG data signals has effective sparse 

representation, therefore, weighted l1 minimization (WLM) 

is used in the [16]. The decay characteristics of wavelet 

coefficients is incorporated between different levels in 

WLM, i.e. according to the wavelet decomposition levels, 

weight factors are choosen in the multisource. However, less 

reconstruction performance is achieved in this WLM, 

because more prior knowledge is required in terms of 

reconstruction quality and compression ratio. 

The human heart's electrical activity can be measured 

simultaneously with several biosensors [17]. In CS, even 

though, inter-channel correlation has been broadly 

considered [18], [19] none of the works examines the 

benefits of combining inter-channel correlation with multi-

priori of source in wavelet domain. Therefore, a structure of 

sliding data window is developed in this paper, where the 

STC of ECG signals are received by the sensors and current 

ECG signals are reconstructed by the fusion center, which is 

obtained from CS measurements. The following two points 

summarize the major contribution of the research article: 

 The accuracy of the reconstructed ECG signals are 

affected by the dependencies of both temporal and 

spatial extraction, therefore the paper uses the 

Kronecker sparse bases for improving the recovery 

performance effectively by using small number of 

CS measurements. 

 The sparsity constraint is solved by defining the 

optimization formula in the proposed 

reconstruction algorithm. Therefore, EPC based 

algorithm is developed in this research work to 

solve the issues of formulated cost optimization 

problem. 

This research article is developed as: Section 2 

provides the study of related works, where the 3rdSection 

briefly described the EPC-based methodology along with 

optimization problem formulation. Section 4 provides the 

simulation results of ECG-based technique with existing 

techniques. Finally, the scientific contribution with future 

work is presented in Section 5. 

 

2. Related works 

The dictionary atoms are updated by using 

Orthogonal Procrustes analysis that are used in the R-

singular value decomposition (R-SVD). While comparing 
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with the traditional methods such as OSDL, K-SVD, 

ILSDLA for dictionary updating, the R-SVD provides 

effectiveness and robustness on ECG and EEG data based 

that are verified by Grossi et al. [20]. 

According to the correlation between the channels 

of wavelets, a multi-lead ECG reconstruction method is 

designed by Zhang et al. [21]. This method minimized the 

information of weighted multi-source prior and the 

performance gain of the model is theoretically analyzed. 

From this result, it is proved that the designed model is 

robust in the SR from noisy environment. 

Rakshit et al. [22] proposed two CS-based ECG 

reconstruction algorithms that combined the advantages of a 

rhythmic-type vocabulary with a heterogeneous random 

sensory matrix, and also used a patient-based special over-

full vocabulary design that implemented the unknown 

signals recovery. Below CR, the complexity of the 

calculations has been significantly reduced 20% and 44%. 

All of the above methods use the sparsity of the post-

conversion ECG or add appropriate a priori information to 

recover the signal. Moreover, these methods are repetitive 

and have high complexity and computational time.  

In the different areas of auscultation, the collection 

and compression of CS at various intensity is parallely 

occurred in the multi-channel models that are developed by 

Cheng et al. [23]. The results of numerical experiments have 

shown that the model proposed in [23] can achieve a speed 

9-10 times faster than the BSBL algorithm, and at the same 

time obtain a better reconstruction quality. However, a 

comprehensive study of HS signal reception by CS with a 

common basis for fragmentation and reconstruction 

algorithms has not yet been carried out. 

In [24], joint-CS recovery algorithm based 

weighted mixed norm (WMNM) minimization algorithm is 

developed for the reconstruction of CS-MECG signals. The 

WMNM method increases the performance of recovery and 

significantly minimized the difference of RMS and 

improves the SNR. In [25], the authors use space-time 

correlations using a sparse approach of Bayesian learning 

based on basic space-time learning (STL-BL). The STL-BL 

has good SR quality with less computational load on the 

MECG signal encoder. However, it is difficult to recover the 

signal with the CS method due to dense. 

In [26], a combined STC sparse reconstruction 

based on a model with a training approach (STSRM-TA) 

was reported. According to the STSRM without vocabulary 

learning and sparse blocks, while comparing with 

optimization of learning, the STSRM-TA provides better 

improvement in the MECG signal’s reconstruction quality. 

The authors in [27] present a previous WMNM as PWMNM 

for recovering a JCS-MECG signal with the help of 

information of added priori and STC about the signal. 

PWMNM method improves recovery performance, lowers 

PRD, and improved SNR. 

 

3. Proposed Model 

In sliding window of data, the capable of reading, 

transmitting and sensing the ECG signals are carried out by 

N sensors in a single-fusion centre hop of WBAN with L as 

constant length. The size of the data window is described as 

, which should be  at time instant . 

This window is expressed in Eq. (1) that has sequential data 

readings of  sensors as  

                            

(1) 

Where, sensor (i.e. ) reads the data is denoted 

by at time instant . Consider that sparse 

approximation is presented in each sensor signal of 

dictionary , where . Then, 

measurement matrix  as 

sense the readings of 

sensor and it will be forwarded to the fusion center. 

At time instant , sensor’s original reading 

reconstruction is the major problem in the fusion center end, 

which can be solved by the minimization problem shown in 

Eq. (2): 

                                 

(2) 

The NP- hard problem is the  minimization, many 

researchers tries various combination of optimization 

algorithms for solving the norm . In general, norm  is 

used to replace the norm . The quadratic penalty term is 

used to convert the unconstrained form from the constrained 

norm, which is shown in Eq. (3). 

                                          

(3) 

                                    

(4) 

Where, in this problem of minimization, the trade-

off between two various terms are controlled by the 

parameter called . The Eq. (1) can be rewritten as Eq. (5), 

where the sliding data window with L are used to attain the 

readings of data such as current (f) and prior  from 

the data. 

                     

(5)  

The matrix  is a low-rank, when the 

neighboring sensors’ information in a WBSN is correlated 

with each sensor’s information. Finally, the formation of 

reconstruction of original signal is carried out by low-rank 

features. The matrix rank reduction in a direct way is the 

considered as NP-hard problem, hence nuclear norm must 

be reduced for the matrix instead of focusing on minimizing 
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the matrix rank directly. Eq. (6) shows this conversion 

process.  

                          (6) 

Where, sum of matrix’s eigen values is equalized 

by the matrix of nuclear norm . Therefore, this norm 

can be minimized by considering the combinatorial 

optimization problem with sparsity constraint. In a single 

formulation, minimization of the nuclear norm by low-

rank constraint is described as follows: 

  (7) 

Where, weighting parameters is represented as  

and that are used to balance the trade-off between the 

sparsity constraint of the various data such as error square 

term, whole data of prior and data of present time with low-

rank. 

 

3.1. Simultaneous extraction of the STC 

In order to find how to use the dictionary for 

optimization problem in Eq. (7) and find out how to extract 

the sensor signal’s STC by using suitable dictionary  are 

find out by developing a mathematical way in this section. 

By referring Eq. (1), STC consists of data window  

with a window size. Hence, Eq. (1) can be described in the 

form of Eq. (8): 

                       (8) 

Accordingly,   can be expressed as follows: 

 

 

                                                        

(9) 

Similarly, to perform the sparse representation, i.e. 

temporal dictionary 

is used that has  rows, where the 

coefficient temporal transform of sensor is inclusive by 

. Hence  can be stated as 

 

 

                                                       

(10) 

The Kronecker sparse base [28-29] is used for 

extracting both dependencies and the spatio-temporal 

dictionaries [28-29]. Therefore, single formulation is 

obtained by merging the Eq. (9&10) to describe the  as 

follows: 

 

 

 
                                                     

(11) 

Where, window vector of data is represented as 

, product dictionary of STC of proposed 

Kronecker sparse base is described as 

, and the coefficient of joint 

transformation (JT) is depicted as 

. Moreover, the 

interpretation of JT is occurred as spatial coefficients 

representation ( ), in temporal basis . Hence, the 

optimization problem is described in Eq. (12) by substituting 

the Eq. (11) with (7): 

 (12) 

The excessive computation complexity is obtained 

by the non-smooth regularization of various norms with 

convex optimization problem, even though the constraints 

applied to the Eq. (12). Therefore, this research work applies 

the EPC algorithm to solve the above stated issue. 

 

3.2. Emperor Penguins Colony (EPC) Optimization 

algorithm 
Each penguin's cost and location are calculated. Penguins 

are priced against one another. Penguins will always choose 

a penguin with a low absorption cost (high heat intensity). 

The cost is influenced by the temperature and the length of 

the journey involved. During the attraction process, a brand-

new option will be reviewed, and the heat strength will be 

adjusted as necessary. The best answer is chosen after all 

others have been sorted. Heat radiation, association, and 

heat absorption are all subjected to a damping ratio. In 

algorithm 1, pseudo code for the EPC algorithm is 

described. The following are the rules that apply to this 

algorithm: 

 Every penguin in the original population radiates 

heat and is drawn to others with a similar thermal 

absorptivity. 

 All penguins are thought to have the same body 

surface area. 

 The influence of the earth's surface and atmosphere 

are not taken into account when the penguin absorbs all of 

the thermal radiation. 

 Penguin heat radiation is a straight line. 

 The attraction between two penguins is determined 

by the quantity of heat that separates them. Longer distances 

receive less heat, while shorter distances receive more heat. 

 There is a variation with a consistent distribution in 

the spiral movement of the penguins during the absorption 

process. 
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Heat radiation: 

The heat radiation transfer must be computed in 

order to determine the intensity and attractiveness of the 

heat. Each penguin's body surface area must be calculated in 

order to determine how much heat it radiates. 

                              

(13) 

Where, heat transfer is defined as that 

will be calculated for unit time (W), total surface area 0.56 

m2is denoted as A that are computed in the previous section. 

is the absolute temperature in Kelvin (K) and 35 degrees 

Celsius (°C) is equal to 308.15 K according to [30], 

emissivity of bird plumage is . The Stefan–Boltzmann 

constant is also known as  (5.6703×108 W/m2K4).  

Attractiveness: 

                       (14) 

Spiral movement: 

 

               (15) 

New position: 

Equation (15) is used to calculate the new position, 

and it is multiplied by the mutation factor and by a random 

vector, respectively, to arrive at the new position. The 

random vector's coefficient is tacked on in this fashion. 

There are three types of distributions for I uniform, normal, 

and Lévy. A Uniform distribution is utilized for distribution 

in the EPC algorithm [31]. The following is the EPC 

algorithm: 

Algorithm 1: EPC algorithm’s Pseudo code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The data window is moved to one step forward, 

when the signals are reconstructed and all parameters with 

variables are obtained after certain number of iterations, 

then the recovery algorithm is reworked again. For each 

initialization, global convergence can be provided by EPC 

and solves the problem of convex optimization that is 

defined in Eq. (12).  To better visualize the quality of the 

reconstruction of the EPC-based method, Table 1 shows the 

reconstructed signals with original signals from the PTB 

dataset. The whole x-axis determines the number of 

samples, and the whole y-axis determines the amplitude. 
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Table 1.Proposed Algorithm is used for reconstructing the PTB-MECG signals along with error signals. 

  
 

  
 

 

  

 

4. Results and Discussion 

The experiments are carried out in MATLAB 

(R2018a) on an HP computer equipped with an Intel i7 core 

3.40 GHz processor and 10 GB RAM. The EPC-based 

method is validated by using three available online 

databases such as PTB, MIT-BIH dataset collected from 

Beth Israel Hospital of Massachusetts Institute of 

Technology [32] and OSET fetal ECG [33]. The percentage 

difference between root mean square (PRD) is the important 

quality metrics to measure the reconstruction efficiency. The 

equation for PRD is given as below: 

                                                  

(16) 

Where, the original data is described as  and the 

reconstructed signal is defined as , respectively. We 

choose a binary perception matrix of random sparse for Φ, 

where only 0 are presents in each column except 4 entries in 

random locations. The Daubechies-6 wave ("db6") is used as 

a diluent Ψ for ECG signals. Here, the wave has a good 

results in terms ECG signal's sparse representation, hence 

we considered this wave for the study. After the 20th tests, 

the results provide average with different sparse binary 

sensor matrix realizations. The existing techniques called 

Simultaneous Orthogonal Matching Pursuit (SOMP) and 

Multichannel Basis Pursuit (MBP) are considered, where 

they are implemented with software used in [34-37].  

 

4.1. Performance of Proposed Method on PTB-ECG 

Database 

The subjects of 290 patients is used to collect the 

15-channel ECG signals for forming the PTB-ECG 

database, and each waveform is sampled at fs = 1 kHz with 

16-bit resolution in the <16.384 mV range. To assess the 

effectiveness of the EPC-based method, a database was built 

containing 10 ECG records such as s0014lrem to s0017lrem, 

s0027lrem to s0031lrem, s0020arem, s0021arem are present 

in every recording of our experiments. Several modern 

multichannel CS algorithms were selected for performance 

comparison, including SOMP, MBP [22], and tMSBL. 

According to CS algorithm, the fastest algorithm is SOMP, 

then MBP is a classical convex CS algorithm based on 

optimization with good and high recovery accuracy, and 

improved version of MSBL as tMSBL, respectively. Figure 

2 shows the averaged PRD results for different users with 

various number of measurements.  
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Fig. 2. Graphical Representation of average PRD for proposed algorithm with existing on PTB diagnostic ECG records. 

 

As shown in the above figure, the average PRD 

results in the proposed algorithm provides better 

performance than those of other existing algorithms. The 

average PRD value of the proposed algorithm is about 8.5% 

with the m = 94 (i.e. number of measurements). In order to 

achieve the same reconstruction quality, other algorithms 

must have the range with m = 192. From this we can 

conclude that the compression ratio is improved without 

minimizing the quality of reconstruction signals by the 

proposed EPC-based technique. In most of the situations, the 

validated result proved that the proposed method is better 

than the conventional techniques such as SOMP, MBP and 

tMSBL algorithms.  

4.2. Performance of Proposed Method on MIT-BIH ECG 

Database 

 

There are two-channel arrhythmia ECG data are 

presented in this dataset that are collected from 47 subjects. 

At a sampling speed of fs = 360 Hz, each signal is taken and 

a resolution of 11 bits. The X ∈ R^ modelling ECG matrix is 

taken from 2 channels in each database entry for our 

simulations. Among other things, we evaluate the data entry 

"419" from the database for ventricular arrhythmias of the 

MIT-BIH (VFDB) which shows ventricular fibrillation 

(VF). The results of the reconstruction (superimposed on the 

original signal) are presented in Figure 3 for channel 1

. 

 
Fig.3. Therecord “419” of MIT-BIH database that are reconstructed by the proposed method. 

 

Here, Table 2 and Figure 4 presents the average PRD values for two channels for a fixed M = 192.  

 

Table 2: Validated Results of proposed methodology in terms of Average PRD (%)on MIT-BIH dataset 

Channel 
Methods 

Proposed MBP SOMP tMSBL 

1 4.62 5.00 5.04 7.33 

2 7.34 7.57 8.04 8.80 
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Fig. 4. Graphical Representation of average PRD for proposed algorithm with existing on MIT-BIH diagnostic ECG data. 

 

From above table and figure analysis, it is clearly 

stated that the SOMP, tMsBL and MBP achieved less PDR 

value than the proposed algorithm. 

 

4.3. Performance of Proposed Method on OSET FECG 

Database 

In order to validate the proposed method’s 

performance in worst case condition, the study uses the real 

time ECGs data. It has 8 channels and evaluates the OSET 

signal01 dataset, which are acquired at 1000 Hz and 

contains large baseline deviations and poor signals obscured 

by noise or intrinsic ECG. Here, the extraction of ECG 

matrix is carried out from those 8 channels during each 

recording of our experiments. For M = 128, the mean PRD 

of 8 abdominal images is shown in Figure 5,  where the 

proposed method clearly allows the database to be 

reconstructed with the least distortion for almost all 

channels. 

 

 
Fig. 5. Graphical Representation of average PRD for proposed algorithm with existing on OSET FECG. 

 

The proposed model reconstructed the dataset with 

the least distortion of all channels. However, in this dataset, 

MBP algorithm has less average PRDs than the existing 

algorithm called SOMP algorithm. Thus, the experimental 

results show that it is necessary to use inter-channel 

correlation, which can improve the performance of the 

reconstruction. Therefore, these results show that due to the 

inclusion of both inter-channel correlation and direct 

transmission of several sources in the domain of wavelet, the 

reconstruction quality of this OSET-FECG is significantly 

improved by EPC-based method with low rate of 

measurement.  

4.4. Analysis of CPU for proposed Reconstruction 

Algorithm over Existing Techniques 

In this section, CPU calculation time for both 

existing and proposed algorithms is compared to find out the 

complexity of the calculations. System configuration used: 

Intel i7 processor clocked at 3.40 GHz, 10 GB RAM on 

64Bit with Matlab R2018a platform. In this regard, the 

operating time of the projected algorithm is compared with 

SOMP, MBP and tMSBL for various compression rates. 

Table 3 provides the experimental results. 
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Table 3: Time of CPU (second) for the ECG SR algorithms on overall data sets at various compression ratios 

 Methods 2 3 4 5 6 7 8 

CPU 

Time 

(second) 

SOMP 0.615 0.569 0.512 0.486 0.451 0.364 0.325 

tMSBL 0.595 0.549 0.501 0.478 0.401 0.340 0.302 

MBP 0.610 0.445 0.323 0.275 0.252 0.226 0.212 

Proposed 0.215 0.145 0.112 0.098 0.086 0.073 0.061 

 

The operating times of the existing algorithms are 

partially close to each other, but the EPC-based algorithm 

works well even at less coefficient of compression. These 

results throughout the database show that the projected 

method has satisfactory computational complexity compared 

to classical algorithms. 

 

5. Conclusion 

 

This article discusses CS acquisition and JT of 

STC-MECG signals in the WBSN. The Kronecker sparse 

bases is used to exploit the relationships between space and 

time by designing the sequential frame data window for 

effectively returning the sensor signals positions to the 

windows of CS measurements. To obtain a more reliable 

and efficient SR, an EPC-based analytical solution was 

developed to efficiently solve the presented optimization 

problem by minimizing the l1 norm. Validated results 

confirm that our EPC algorithm provides a higher recovery 

accuracy, low computational costs and high PRD with fewer 

required transmissions, when compared to those with 

classical CS methods. However, the process of CS 

reconstruction takes time, which limits the use of CS in 

ECG monitoring systems. Hence, future work requires the 

development of a unique fast reconstruction algorithm 

according to deep learning with CS. 
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