
Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

242

ISSN: 0974-5823 Vol. 7 No. 1 January, 2022

International Journal of Mechanical Engineering

Single Cycle 32-bit RISC-V ISA Implementation

and Verification

Hyogeun An1, Sudong Kang2, Dennis A. N. Gookyi3, Guard Kanda4, Kwangki Ryoo*5

 Department of Information and Communication Engineering, Hanbat National University, Daejeon, 34158, South Korea

Abstract.

Background/Objectives: This paper provides an insight into the internal verification of a 32-bit single cycle processor

that implements the Reduced Instruction Set Computer Five Instruction Set Architecture.

Methods/Statistical analysis: This paper accesses the internal operation and information of a RISC-V 32-bit single

cycle processor using a Field Programmable Gate Array board. The internal components such as the register file, the

Program Counter, the instruction memory, and the data memory are displayed on peripherals such seven-segment

display, text LCD, dot matrix, and LEDs. The hardware structures were realized using Verilog Hardware Description

Language and synthesized using Xilinx Integrated Synthesis Environment 14.3 that incorporates ISE Simulator for

simulation purposes.

Findings: With the recent trend of increasing demand and scope in the market for Internet of Things ubiquitous

platforms, low-cost System-on-Chip devices are currently been deployed as sensors. Processor cores that implement

the RISC-V ISA are suitable for low-cost SoCs due to their use of minimal hardware resources. The RISC-V ISA is

fairly new but is taking over the open-source market and it is therefore important for hardware designers in the

computer architecture field to understand the architecture of the ISA. This paper outlines the steps in implementing a

single cycle 32-bit RISC-V ISA using Verilog HDL. The uniqueness of this work is in the verification of each

instruction in the ISA. The verification is achieved using an FPGA device with peripherals such as seven-segment

display, text LCD, dot matrix, keypad, and LEDs. These peripherals are used to display contents from the RISC-V

processor core such as the register file, PC, instruction memory, and data memory. This work is vital because it

enables researchers who are new to the RISC-V ISA quickly understand the internal operation of a processor core

during real world operation on an FPGA board.

Improvements/Applications: The synthesis report of the RISC-V single cycle processor core with the various

peripheral modules utilized 6834 Look-up-Tables at a maximum frequency of 64 MHz. This indicates that the core is

suitable for low-cost IoT SoC devices and can serve as tutorial material for the computer architecture course.

Keywords: RISC-V ISA, Single Cycle Processor, FPGA, IoT, SoC, Hardware Verification.

1. INTRODUCTION

The Central Processing Unit (CPU) is an electronic circuit designed specifically to execute instructions called programs. The

CPU executes many forms of instructions such as arithmetic and logic instructions as well as memory access instructions.

These instructions which are specific to each CPU vendor are collectively known as the ISA. The ISA describes a specific

instruction set that can be compiled by dedicated compilers and translated into machine codes. There are many systems in

today's society that require very large computations such as deep learning and image-based processing. Therefore, the demand

for embedded systems requiring low power, low cost, and high performance is also increasing. The paper in [1] gives an

example of a system that efficiently recognizes vehicle license plate using an embedded systems and AI. In addition, the

usability of IoT is gaining popularity and increasing user convenience based on its applicability in real life. Using the Lora

module, paper [2] designed a system that broadcasts kindergarten school bus location notifications to users on SMS or apps on

mobile devices. Among them, processors are indispensable components. But the commercially available ISAs belong to

companies such as Intel and AMD which include the x86 family of ISAs [3], [4]. These ISAs are patented and cannot be used

without license that cost a lot of money and thereby preventing researchers in academia and hobbyist from using them.

Moreover, the licenses prevent designers from implementing the ISAs but instead limits them to use the processor cores

provided by the companies. This prevents competition, innovation, and sometimes trust issues as companies could imbed

malicious circuitry in the processor for spying [5].

The licensing issue associated with commercial processor is solved by the design of a new ISA known as RISC-V [6], [7]

by the computer architecture group in University of California, Berkeley. The RISC-V ISA is an open-source ISA available

for implementation under the free Berkeley open-source license. The RISC-V project started in 2010 and has rapidly grown

with their board of directors that come from companies such as NVIDIA and Google. There are a number of open-source

processors that implement the RISC-V ISA which include Rocket [8], Berkeley Out of Order Machine (BOOM) [8],

PICORV32 [9] and many more. These processors are complex with pipelined structures that achieve high throughput with low

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

243

hardware footprint [10]. These processors are therefore difficult to understand by researchers seeking information about the

RISC-V ISA architecture. This paper therefore implements a 32-bit single cycle RISC-V ISA core with peripherals to monitor

the internal operations of the processor.

The objectives of this paper are as follows

 The paper illustrates design and implementation of the control and datapath for a 32-bit single cycle RISC-V ISA core

using Verilog HDL

 Hardware controllers for peripherals such as seven-segment display, text LCD, dot matrix, LEDs, and keypad are added to

monitor the internal activities of the processor core. This is done to provide an easy way to input instruction and observe

the internal data of components such as the register file, PC, instruction memory, and data memory.

 A verification platform is built and loaded onto an FPGA board for inputting instruction and observing the data in the

internal architecture of the processor

The rest of this paper is organized as follows: Section 2 discusses some related works, Section 3 gives an introduction to the

RISC-V ISA, Section 4 illustrates the design and implementation of the 32-bit single cycle RISC-V ISA, Section 5 describe

the verification module for testing the processor core, Section 6 present the hardware resource utilized by the processor core

together with the peripheral modules while the conclusion of the paper is discussed in Section 7.

2. RELATED WORK

Since the introduction of the RISC-V ISA in the last decade, several processor cores have been proposed and implemented for

different reasons. Most the processor cores are meant for academic use while a few others are commercial. The academic

processor cores are designed with interfaces for easy integration into an SoC. This is good for advances hardware engineers to

quickly assemble an SoC but very difficult for beginners to understand the working of the processor core. This section

therefore explores RISC-V processor cores with input/output peripherals that enable a designer to gain understanding of the

internal operation of the processor cores.

The authors of [11] implemented the RISC-V ISA with instruction which include environment call, break, status

registers, control, branch, memory, and arithmetic logic. A total of 38 instructions were simulated using ModelSim and

Quartus-II simulators. This work only resulted to functional simulation without real hardware implementation on an FPGA

board. This makes it difficult to know if the processor will work in the real world.

The authors of [12] proposed an Integrated Machine Code Monitor (iMCM) and implemented together with a RISC-V

processor on an FPGA. The iMCM monitors functions according to the verification method of the RISC-V processor. A total

of 27 compressed RISC-V ISA instructions were monitored through simulations and FPGA evaluation. The verification of the

processor instruction is through a terminal to displays only the memory related commands and the results of the program trace

in hexadecimal values. This makes it difficult to understand the actual internal operations of the processor under evaluation.

The work that comes close to this paper is proposed by [13]. The author of [13] proposed and implemented a fully

synthesizable RISC-V processor core on an FPGA device to text LCD display port. A user inputs Assembly code which is

converted to machine code and executed by the processor with the results displayed on the text LCD. The text LCD shown

only current PC value and the results of executed RISC-V instruction. The work of [13] is extended with peripherals such as

seven-segment display, LEDs, dot matrix, and keypad to form the basis of this paper. The displays show the internal content of

the processor which include the PC, register file, instruction memory, and the data memory. These displayed values are shown

for each RISC-V instruction which makes it easy to understand the internal operation of a typical RISC-V processor core.

3. RISC-V ISA TECHNICAL SPECIFICATION

The RISC-V ISA is a load-store ISA based on the principles of RISC. The load-store ISA format typically divide instructions

into two groups which include memory access (where only store and load instructions have access to memory) and ALU

operations (where the operands are in registers). The simplicity of the RISC-V ISA design makes it possible execute

instructions in just one clock cycle.

RISC-V has a base ISA which is referred to as RISC-V 32-bit Integer (RV32I) which is compulsory for any

implementation. The RV32I instructions which include loads, stores, control flow, and integer computations. The RV32I

instructions can be extended to include multiplication and division (RV32IM), atomic operations (RV32IA), single precision

floating point (RV32IF), and double precision floating point (RV32ID). These extensions are optional to implement. It must

be noted that the RISC-V ISA also allows for data widths of 64-bit and 128-bit as shown in Table 1 but this paper implements

a data width of 32-bit.

Table 1: Summary of RISC-V ISAs

ISA Description

RV32/64/128I Base Integer Instruction Set

RV32/64/128M Extension for Integer Multiplication and Division Instructions

RV32/64/128A Extension for Atomic Instructions

RV32/64/128F Extension for Single-Precision Floating-Point Instructions

RV32/64/128D Extension for Double-Precision Floating-Point Instructions

There are a total of 32 registers used by the RISC-V ISA out of which 31 are general purposed registers (register x1 to

x31) while one register (register x0) is hardware wired to a constant 0. In addition to the 32 registers, a special register is used

to store the address of the current instruction known as the PC register. The width of the registers could be 32-bit, 64-bit, or

128-bit depending on the implementation.

The RISC-V ISA consists of six main instruction formats which include, R-type (register-register instructions), I-type (loads

and jump-and-link instructions), S-type (store instructions), B-type (branch instructions), U-type (load-upper-immediate

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

244

instructions), and J-type (jump instructions). Figure 1 illustrates the various instruction format [14], [15] where funct stands

for function, opcode stands for operation code, imm stands for immediate, rd stands for destination registers, rs1 stands for

source register 1, and rs2 stands for source register 2.

Figure 1. RISC-V 32-bit Instruction Format

The RISC-V RV32I which is implemented in this paper consist of a total of 39 instructions. This paper implements 37 of the

39 instructions which are illustrated in Figure 2.

Figure 2. RISC-V RV32I Base Instruction Set

4. RV32I ISA SINGLE CYCLE PROCESSOR HARDWARE ARCHITECTURE
The hardware architecture for the RV32I ISA was designed by expanding on an architecture implemented in the RISC-V book

[15]. The authors of [15] implemented a basic RISC-V hardware architecture capable of executing a total of seven instructions

which include load doubleword (ld), store double word (sd), add, sub, and, or, and branch if equal (beq). This architecture was

expanded to execute a total of 37 instructions and formed the basis of this work. Since the main objective of this work is to help

researchers understand the inner workers of the RISC-V processor, the implementation of the RV32I ISA is simplified. The

hardware architecture of the RV32I ISA implementation is shown in Figure 3. The architecture is a single cycle design which

means it is capable of fetching, decoding, and executing the 37 RISC-V instructions in just a single cycle using components

such as the PC, ALU, register file, instruction memory, data memory, and some basic logic gates. This section examines each

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

245

component of Figure 3.

Figure 3. The Hardware Architecture of the RV32I ISA Design

4.1. PROGRAM COUNTER REGISTER

The PC is a special register inside the processor that stores the address of the next processor instruction. The PC register in the

RV32I ISA is has a data width of 32-bit. The instruction is the machine code which is in the instruction memory. Generally, in

the design of a CPU, the PC is usually increased by 4 during the normal instruction execution. The increased by a factor 4 is

because most CPUs are byte addressable. For simplicity of the memory design, this work increases the PC by a factor of 1 to

fetch all 32-bit instruction in the instruction memory. When executing B-type (branch), U-type (load-upper-immediate), and J-

type (jump), the PC register stores the calculated value of the jump addresses. The output of the PC register is assigned to the

instruction memory, register file, or the ALU depending on the type of instruction performed. Figure 4 shows a diagram of the

PC register input/output signals.

Figure 4. PC Register Input/Output Signals

4.2. ALU ARCHITECTURE

The ALU is responsible for performing arithmetic and logical operations. The ALU is a fundamental basic block of every

processor. The ALU cannot store data on its own, it must go through a register. The built-in ALU designed in this work has

three 32-bit inputs and one 32-bit output. The inputs consist of a data from the PC (JAL instruction execution) and data from

the instruction memory (R-type instruction from the register). A multiplexer is used to route the signals to the input of the

ALU. The internal circuitry of the ALU can perform 10 operations which include AND, OR, ADD, SLL, XOR, SUB, SLT,

SRL, SRA, and NOR. The output signal is assigned to the PC register, the data memory, and the Data Modification Module

depending on the instruction type. Figure 5 shows the architecture of the ALU

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

246

.

Figure 5. ALU Architecture

4.3. REGISTER FILE ARCHITECTURE

The RV32I ISA consist of a total of 32 32-bit registers for holding data. A register is a memory device that temporarily

remembers the data that the processor needs to process the instruction. The registers are few but are directly connected to the

ALU which makes the computation and storage of intermediate data very fast. The register file implemented in the work

consist of five inputs and two outputs. The input labeled in a, in b, and in d each of 5-bit width select the register to write to or

read from depending on the instruction type. Two multiplexors with select signals from the instruction are used to route data to

selected registers. The internal architecture of the register file is made up 32x32 memory. The value of in a, in b determines the

address of the 32-bit output ports outa, out b. The output signals are assigned to the Data Modification Module which in goes

to the PC register depending on the type of instruction. Figure 6 shows the input/output logic of the register file implemented

in this work.

Figure 6. Register File Architecture

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

247

4.4. DATA MODIFICATION MODULE

The Data Modification Module is responsible for the division of data into bytes, handling of signed and unsigned numbers, and

some computation of values. Data Modification Module consist of seven inputs and three outputs. The three input labeled

othercon, opcode, and imm serve as control signals for activating the Data Modification Module. The signal labeled otherina

and otherinb are data from the register file and the signal labeled memdata is from data memory. The internal circuitry of the

Data Modification Module consists of logic that converts 32-bit data into the signed format and logic that divides 32-bit data

into 8-bit, 16-bit, and 24-bits. The output signals labeled otherouta and otheroutb are assigned to the ALU while the output

signal labeled otherreg is assigned to the register file. Figure 7 shows the architecture of the Data Modification Module.

Figure 7. Data Modification Module Architecture

4.5. INSTRUCTION MEMORY

The instruction memory is responsible for storing 32-bit machine code (instructions). The instruction memory implemented in

this work is made up of 32-bit data width with a depth of 512. This memory is read only and therefore only needs an address

port to get access to a particular instruction. The PC output port provides the address of an instruction to be read from the

instruction memory. The 32-bit instruction from the output of the instruction memory is assigned to modules such as the PC,

register file, ALU, data memory, and Data Modification Module. The 32-bit output serve as control signal for activating the

values modules depending on the type of instruction to execute. Figure 8 illustrates the input/output signal of the instruction

memory.

Figure 8. Instruction Memory Input/Output

4.6. DATA MEMORY

The data memory is responsible for storing data that is not instruction or machine code. This data is usually generated when the

processor operational. This memory is a type of Random-Access Memory (RAM) in which data can be read and written.

RISC-V is little endian which means that when storing data in memory, the Least Significant Byte (LSB) is stored first. The

data memory consists of four inputs and one output. The 32-bit output of the instruction memory is assigned to the Data

Modification. Figure 9 shows the input/output signals of the data memory.

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

248

Figure 9. Data Memory Input/Output

4.7. GENERAL FLOW OF RISC-V ISA

The typical operation of the RISC-V processor consists of five steps which include instruction fetch, decode, execute, memory

access, and writeback. Figure 10 shows the flow of a typical RISC-V processor operation. In the information fetch stage, the

PC output the address to the instruction memory which make available the 32-bit instruction or machine code. The decode

stage group the instruction code and sent to the various modules as control signals. In the execute stage, the various modules

which the ALU, register file, and Data Modification Module are used to perform the instruction. In the memory access stage,

data is read or stored in the data memory depending on the type of instruction. The writeback stage stores value in the register

file depending on the type of instruction.

Figure 10. General Flow of RISC-V Instruction Execution

5. HARDWARE VERIFICATION MODULE OF RISC-V PROCESSOR

A verification module is proposed to observe the functionality of the RISC-V RV32I processor core. This module is important

because it enables observers to easily understand the RISC-V ISA by observing real internal values when an instruction is

operating. To observe the internal operation of the processor core, various peripherals are used to access real-time values from

components such as registers, PC registers, data memory, and instruction memory during normal operation of the processor.

Figure 11 shows the various peripheral used to observe the internal operation of the RISC-V processor. The peripherals and

with their functionalities are shown in Table 1.

Figure 11. RISC-V Processor Verification Peripherals

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

249

Table 1: Functionalities of RISC-V Processor Verification Peripherals

Peripheral Functionality

(a) Push Button
USER SW1 button is used to increment of the PC by 1 while USER SW2 button is used to

increment the address of the instruction memory.

(b) Text LCD

First row 2-4 displays status. First row 8-15 display user value entered. The second row 2-5

display the current instruction. Second row 7-14 displays the current value in the instruction

memory.

(c) LEDs Eight LEDs are used to display the current PC value.

(d) 7-Segment Display The last two segments display the address of the instruction memory

(e) Dot Matrix
The Dot matrix is used to display data stored in the instruction memory, data memory and

register file.

(f) Keypad
The del button is used to delete an entered value. The ins button is used to insert an entered

value. Button 1 to 9 are used for entering the machine code.

(g) Dip Switch The first five are used to set the register and data memory address.

5.1. PROCESSOR VERIFICATION ON AN FPGA BOARD

The RV32I single cycle processor was verified on an FPGA board designed by HANBACK Electronics. The test board is

equipped with Virtex-4 XC4VLX80 FPGA device. The peripherals for observing the operation of the processor include, push

buttons, text LCD, LEDs, 7-segment display, dot matrix, keypad, and dip switch. Controller modules were designed for each

of the peripherals. Figure 12 shows the connections of the peripheral to the FPGA device. From the figure, the Test_module

consist of the various peripheral controllers which are also connected to the processor.

Figure 12. Connections of Peripheral to the FPGA Device

Figure 13 shows the flow chart for checking RISC-V processor instructions on the FPGA board. When the FPGA is

powered up, all registers and memory locations are initialized to zero. The user uses the keypad to insert a instruction that

starts with the Operation Code (OPCODE). The USER SW2 button is used to set the instruction address shown in seven

segments before entering the instruction data. The desired number of buttons are used to insert the instruction code. By

entering all the values of the instruction code, it is stored in FPGA instruction memory at the address previously specified.

The USER SW1 button is used to manually increase the value of the PC which is shown on the LED. The dip switch is used

to display values from the register file, instruction memory, and data memory on the dot matrix. Figure 14 illustrates the

output of ADD UPPER IMMEDIATE TO PC (AUIPC) instruction on the FPGA board.

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

250

Figure 13. RISC-V Processor Verification Flow Chart

Figure 14. Display of AUIPC RISC-V Instruction of an FPGA Board

5.2. HARDWARE SYNTHESIS RESULTS OF RISC-V VERIFICATION MODULE

The processor core together with the peripheral controllers was synthesized using Xilinx Virtex4 FPGA device which resulted

in 6834 LUTs at a maximum frequency of 64 MHz as shown in Table 2. Don et al. [13] designed a RISC-V processor with

Text LCD peripheral for verification. When this work is compared to that of [13], this work consumed more LUTs because of

the use of several peripheral controllers for the processor internal state verification than that of reference [13] but achieved

twice the frequency of reference [13].

Table 2: Synthesis Results and Comparison

Design Processor Type and Peripherals Area (LUTs) Frequency (MHz)

[13] RV32I Processor, Text LCD 5578 32

This Work
RV32I Processor, Text LCD, LEDs, Dip Switch, Push

Buttons, 7-Segment, Dot Matrix, Keypad
6834 64

6. HARDWARE VERIFICATION MODULE OF RISC-V PROCESSOR

This work provides an insight into the internal operation of a RISC-V RV32I processor using an FPGA device and

input/output peripherals. This work can serve as teaching material for the computer architecture course that will enable

students to understand the internal operation of a RISC-V processor core. In the future, a user-friendly desktop/web

application will be designed to serve as an interface to the FPGA and display the internal values of the RISC-V processor core.

7. REFERENCE

Copyrights @Kalahari Journals Vol. 7 No. 1(January, 2022)

International Journal of Mechanical Engineering

251

1. Ryu JW, Lee JH, An Efficient Vehicle License Plate Recognition System Based on Embedded Systems, Journal of Next-

generation Convergence Technology Association. 2021 Feb. 5(1) 22-27.

2. Ryu HG, Ryu KK, Kindergarten school bus notification service using IoT network, Journal of Next-generation

Convergence Technology Association. 2019 Mar. 3(1) 21-28.

3. Daniel D. Open hardware: Initial experience with synthesizable open cores [dissertation]. [Uppsala]: Uppsala Universitet;

2019.

4. Kim WY. "The Linux 'RISC-V' singularity in the CPU world has begun to break through," [Online], Retrieved 25

January, 2021. https://zdnet.co.kr/view/?no=20201201123035.

5. Swarup B, Michael SH, Mainak B, Seetharam N. Hardware trojans attacks: Threat analysis and countermeasures,

Proceedings of the IEEE. 2014 Aug; 102(8): 1229-1247.

6. Andrew W, Yunsup L, David P, Krste A. The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA.

Technical Report UCB/EECS-2011-62, EECS Department, University of California, Berkeley, May 2011.

7. Nari L. "SiFive to showcase RISC-V based PC in October," [Online], Retrieved 26 February, 2021.

http://www.thelec.net/news/articleView.html?idxno=1584.

8. Krste A, Rimas A, Jonathan B, Scott B, David B, Christopher C, Henry C, Daniel D, John H, Adam I, Sagar K, Ben K,

Donggyu K, John K. The Rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department, University

of California, Berkeley, Apr 2016.

9. Clifford W. "PICORV32 – A size-optimized RISC-V CPU," [Online], Retrieved 26 February, 2021.

https://github.com/cliffordwolf/picorv32.

10. Dennis ANG, Kwangki R. Selecting a synthesizable RISC-V processor core for low-cost hardware devices, Journal of

Information Processing Systems. 2019 Dec. 15(6), 1406-1421.

11. Lee JB, Simulation and synthesis of RISC-V processors, The Journal of the Institute of Internet, Broadcasting and

Communication. 2019 Feb. 19(1), 239-245.

12. Hiroaki K, Akinori K. An integrated machine code monitor for a RISC-V processor on an FPGA, Artificial Life

Robotics. 2020 Mar. 25, 427–433.

13. Don KD, Ayushi P, Virk SS, Sajal A, Tanuj S, Arit M, Kailash CR, Single cycle RISC-V micro architecture processor

and its FPGA prototype, Proceedings of 7th International Symposium on Embedded Computing and System Design.

2017 Dec. India.

14. Bucknell University Computer Science Department. "RISC-V instruction reference (green sheet)," [Online], Retrieved 26

February, 2021. http://csci206sp2020.courses.bucknell.edu/files/2020/01/riscv-card.pdf

15. David AP, John LH. Computer organization and design: The hardware/software interface, RISC-V 5th edn, Elsevier,

2017.

