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Abstract.  

Background/Objectives: This paper provides an insight into the internal verification of a 32-bit single cycle processor 

that implements the Reduced Instruction Set Computer Five Instruction Set Architecture.  

Methods/Statistical analysis: This paper accesses the internal operation and information of a RISC-V 32-bit single 

cycle processor using a Field Programmable Gate Array board. The internal components such as the register file, the 

Program Counter, the instruction memory, and the data memory are displayed on peripherals such seven-segment 

display, text LCD, dot matrix, and LEDs. The hardware structures were realized using Verilog Hardware Description 

Language and synthesized using Xilinx Integrated Synthesis Environment 14.3 that incorporates ISE Simulator for 

simulation purposes. 

Findings: With the recent trend of increasing demand and scope in the market for Internet of Things ubiquitous 

platforms, low-cost System-on-Chip devices are currently been deployed as sensors. Processor cores that implement 

the RISC-V ISA are suitable for low-cost SoCs due to their use of minimal hardware resources. The RISC-V ISA is 

fairly new but is taking over the open-source market and it is therefore important for hardware designers in the 

computer architecture field to understand the architecture of the ISA. This paper outlines the steps in implementing a 

single cycle 32-bit RISC-V ISA using Verilog HDL. The uniqueness of this work is in the verification of each 

instruction in the ISA. The verification is achieved using an FPGA device with peripherals such as seven-segment 

display, text LCD, dot matrix, keypad, and LEDs. These peripherals are used to display contents from the RISC-V 

processor core such as the register file, PC, instruction memory, and data memory. This work is vital because it 

enables researchers who are new to the RISC-V ISA quickly understand the internal operation of a processor core 

during real world operation on an FPGA board. 

Improvements/Applications: The synthesis report of the RISC-V single cycle processor core with the various 

peripheral modules utilized 6834 Look-up-Tables at a maximum frequency of 64 MHz. This indicates that the core is 

suitable for low-cost IoT SoC devices and can serve as tutorial material for the computer architecture course. 
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1. INTRODUCTION 

The Central Processing Unit (CPU) is an electronic circuit designed specifically to execute instructions called programs. The 

CPU executes many forms of instructions such as arithmetic and logic instructions as well as memory access instructions. 

These instructions which are specific to each CPU vendor are collectively known as the ISA. The ISA describes a specific 

instruction set that can be compiled by dedicated compilers and translated into machine codes. There are many systems in 

today's society that require very large computations such as deep learning and image-based processing. Therefore, the demand 

for embedded systems requiring low power, low cost, and high performance is also increasing. The paper in [1] gives an 

example of a system that efficiently recognizes vehicle license plate using an embedded systems and AI. In addition, the 

usability of IoT is gaining popularity and increasing user convenience based on its applicability in real life. Using the Lora 

module, paper [2] designed a system that broadcasts kindergarten school bus location notifications to users on SMS or apps on 

mobile devices. Among them, processors are indispensable components. But the commercially available ISAs belong to 

companies such as Intel and AMD which include the x86 family of ISAs [3], [4]. These ISAs are patented and cannot be used 

without license that cost a lot of money and thereby preventing researchers in academia and hobbyist from using them. 

Moreover, the licenses prevent designers from implementing the ISAs but instead limits them to use the processor cores 

provided by the companies. This prevents competition, innovation, and sometimes trust issues as companies could imbed 

malicious circuitry in the processor for spying [5]. 

The licensing issue associated with commercial processor is solved by the design of a new ISA known as RISC-V [6], [7] 

by the computer architecture group in University of California, Berkeley. The RISC-V ISA is an open-source ISA available 

for implementation under the free Berkeley open-source license. The RISC-V project started in 2010 and has rapidly grown 

with their board of directors that come from companies such as NVIDIA and Google. There are a number of open-source 

processors that implement the RISC-V ISA which include Rocket [8], Berkeley Out of Order Machine (BOOM) [8], 

PICORV32 [9] and many more. These processors are complex with pipelined structures that achieve high throughput with low 
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hardware footprint [10]. These processors are therefore difficult to understand by researchers seeking information about the 

RISC-V ISA architecture. This paper therefore implements a 32-bit single cycle RISC-V ISA core with peripherals to monitor 

the internal operations of the processor. 

The objectives of this paper are as follows 

 The paper illustrates design and implementation of the control and datapath for a 32-bit single cycle RISC-V ISA core 

using Verilog HDL 

 Hardware controllers for peripherals such as seven-segment display, text LCD, dot matrix, LEDs, and keypad are added to 

monitor the internal activities of the processor core. This is done to provide an easy way to input instruction and observe 

the internal data of components such as the register file, PC, instruction memory, and data memory. 

 A verification platform is built and loaded onto an FPGA board for inputting instruction and observing the data in the 

internal architecture of the processor 

The rest of this paper is organized as follows: Section 2 discusses some related works, Section 3 gives an introduction to the 

RISC-V ISA, Section 4 illustrates the design and implementation of the 32-bit single cycle RISC-V ISA, Section 5 describe 

the verification module for testing the processor core, Section 6 present the hardware resource utilized by the processor core 

together with the peripheral modules while the conclusion of the paper is discussed in Section 7. 

2. RELATED WORK 

Since the introduction of the RISC-V ISA in the last decade, several processor cores have been proposed and implemented for 

different reasons. Most the processor cores are meant for academic use while a few others are commercial. The academic 

processor cores are designed with interfaces for easy integration into an SoC. This is good for advances hardware engineers to 

quickly assemble an SoC but very difficult for beginners to understand the working of the processor core. This section 

therefore explores RISC-V processor cores with input/output peripherals that enable a designer to gain understanding of the 

internal operation of the processor cores. 

The authors of [11] implemented the RISC-V ISA with instruction which include environment call, break, status 

registers, control, branch, memory, and arithmetic logic. A total of 38 instructions were simulated using ModelSim and 

Quartus-II simulators. This work only resulted to functional simulation without real hardware implementation on an FPGA 

board. This makes it difficult to know if the processor will work in the real world. 

The authors of [12] proposed an Integrated Machine Code Monitor (iMCM) and implemented together with a RISC-V 

processor on an FPGA. The iMCM monitors functions according to the verification method of the RISC-V processor. A total 

of 27 compressed RISC-V ISA instructions were monitored through simulations and FPGA evaluation. The verification of the 

processor instruction is through a terminal to displays only the memory related commands and the results of the program trace 

in hexadecimal values. This makes it difficult to understand the actual internal operations of the processor under evaluation. 

The work that comes close to this paper is proposed by [13]. The author of [13] proposed and implemented a fully 

synthesizable RISC-V processor core on an FPGA device to text LCD display port. A user inputs Assembly code which is 

converted to machine code and executed by the processor with the results displayed on the text LCD. The text LCD shown 

only current PC value and the results of executed RISC-V instruction. The work of [13] is extended with peripherals such as 

seven-segment display, LEDs, dot matrix, and keypad to form the basis of this paper. The displays show the internal content of 

the processor which include the PC, register file, instruction memory, and the data memory. These displayed values are shown 

for each RISC-V instruction which makes it easy to understand the internal operation of a typical RISC-V processor core. 

3. RISC-V ISA TECHNICAL SPECIFICATION  

The RISC-V ISA is a load-store ISA based on the principles of RISC. The load-store ISA format typically divide instructions 

into two groups which include memory access (where only store and load instructions have access to memory) and ALU 

operations (where the operands are in registers). The simplicity of the RISC-V ISA design makes it possible execute 

instructions in just one clock cycle. 

RISC-V has a base ISA which is referred to as RISC-V 32-bit Integer (RV32I) which is compulsory for any 

implementation. The RV32I instructions which include loads, stores, control flow, and integer computations. The RV32I 

instructions can be extended to include multiplication and division (RV32IM), atomic operations (RV32IA), single precision 

floating point (RV32IF), and double precision floating point (RV32ID). These extensions are optional to implement. It must 

be noted that the RISC-V ISA also allows for data widths of 64-bit and 128-bit as shown in Table 1 but this paper implements 

a data width of 32-bit. 

Table 1: Summary of RISC-V ISAs 

ISA Description 

RV32/64/128I Base Integer Instruction Set 

RV32/64/128M Extension for Integer Multiplication and Division Instructions 

RV32/64/128A Extension for Atomic Instructions 

RV32/64/128F Extension for Single-Precision Floating-Point Instructions 

RV32/64/128D Extension for Double-Precision Floating-Point Instructions 

 

There are a total of 32 registers used by the RISC-V ISA out of which 31 are general purposed registers (register x1 to 

x31) while one register (register x0) is hardware wired to a constant 0. In addition to the 32 registers, a special register is used 

to store the address of the current instruction known as the PC register. The width of the registers could be 32-bit, 64-bit, or 

128-bit depending on the implementation. 

The RISC-V ISA consists of six main instruction formats which include, R-type (register-register instructions), I-type (loads 

and jump-and-link instructions), S-type (store instructions), B-type (branch instructions), U-type (load-upper-immediate 
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instructions), and J-type (jump instructions). Figure 1 illustrates the various instruction format [14], [15] where funct stands 

for function, opcode stands for operation code, imm stands for immediate, rd stands for destination registers, rs1 stands for 

source register 1, and rs2 stands for source register 2. 

 

 
Figure 1. RISC-V 32-bit Instruction Format 

 

The RISC-V RV32I which is implemented in this paper consist of a total of 39 instructions. This paper implements 37 of the 

39 instructions which are illustrated in Figure 2. 

 

 
Figure 2. RISC-V RV32I Base Instruction Set 

 

4. RV32I ISA SINGLE CYCLE PROCESSOR HARDWARE ARCHITECTURE  
The hardware architecture for the RV32I ISA was designed by expanding on an architecture implemented in the RISC-V book 

[15]. The authors of [15] implemented a basic RISC-V hardware architecture capable of executing a total of seven instructions 

which include load doubleword (ld), store double word (sd), add, sub, and, or, and branch if equal (beq). This architecture was 

expanded to execute a total of 37 instructions and formed the basis of this work. Since the main objective of this work is to help 

researchers understand the inner workers of the RISC-V processor, the implementation of the RV32I ISA is simplified. The 

hardware architecture of the RV32I ISA implementation is shown in Figure 3. The architecture is a single cycle design which 

means it is capable of fetching, decoding, and executing the 37 RISC-V instructions in just a single cycle using components 

such as the PC, ALU, register file, instruction memory, data memory, and some basic logic gates. This section examines each 
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component of Figure 3. 

 

 

Figure 3. The Hardware Architecture of the RV32I ISA Design 

 

4.1.  PROGRAM COUNTER REGISTER 

The PC is a special register inside the processor that stores the address of the next processor instruction. The PC register in the 

RV32I ISA is has a data width of 32-bit. The instruction is the machine code which is in the instruction memory. Generally, in 

the design of a CPU, the PC is usually increased by 4 during the normal instruction execution. The increased by a factor 4 is 

because most CPUs are byte addressable. For simplicity of the memory design, this work increases the PC by a factor of 1 to 

fetch all 32-bit instruction in the instruction memory. When executing B-type (branch), U-type (load-upper-immediate), and J-

type (jump), the PC register stores the calculated value of the jump addresses. The output of the PC register is assigned to the 

instruction memory, register file, or the ALU depending on the type of instruction performed. Figure 4 shows a diagram of the 

PC register input/output signals. 

 

Figure 4. PC Register Input/Output Signals 

 

4.2.   ALU ARCHITECTURE 

The ALU is responsible for performing arithmetic and logical operations. The ALU is a fundamental basic block of every 

processor. The ALU cannot store data on its own, it must go through a register. The built-in ALU designed in this work has 

three 32-bit inputs and one 32-bit output. The inputs consist of a data from the PC (JAL instruction execution) and data from 

the instruction memory (R-type instruction from the register). A multiplexer is used to route the signals to the input of the 

ALU. The internal circuitry of the ALU can perform 10 operations which include AND, OR, ADD, SLL, XOR, SUB, SLT, 

SRL, SRA, and NOR. The output signal is assigned to the PC register, the data memory, and the Data Modification Module 

depending on the instruction type. Figure 5 shows the architecture of the ALU 
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.  

Figure 5. ALU Architecture 

 

4.3.   REGISTER FILE ARCHITECTURE 

The RV32I ISA consist of a total of 32 32-bit registers for holding data. A register is a memory device that temporarily 

remembers the data that the processor needs to process the instruction. The registers are few but are directly connected to the 

ALU which makes the computation and storage of intermediate data very fast. The register file implemented in the work 

consist of five inputs and two outputs. The input labeled in a, in b, and in d each of 5-bit width select the register to write to or 

read from depending on the instruction type. Two multiplexors with select signals from the instruction are used to route data to 

selected registers. The internal architecture of the register file is made up 32x32 memory. The value of in a, in b determines the 

address of the 32-bit output ports outa, out b. The output signals are assigned to the Data Modification Module which in goes 

to the PC register depending on the type of instruction. Figure 6 shows the input/output logic of the register file implemented 

in this work. 

 
Figure 6. Register File Architecture 
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4.4. DATA MODIFICATION MODULE 

The Data Modification Module is responsible for the division of data into bytes, handling of signed and unsigned numbers, and 

some computation of values. Data Modification Module consist of seven inputs and three outputs. The three input labeled 

othercon, opcode, and imm serve as control signals for activating the Data Modification Module. The signal labeled otherina 

and otherinb are data from the register file and the signal labeled memdata is from data memory. The internal circuitry of the 

Data Modification Module consists of logic that converts 32-bit data into the signed format and logic that divides 32-bit data 

into 8-bit, 16-bit, and 24-bits. The output signals labeled otherouta and otheroutb are assigned to the ALU while the output 

signal labeled otherreg is assigned to the register file. Figure 7 shows the architecture of the Data Modification Module. 

 

 
 

Figure 7. Data Modification Module Architecture 

 
4.5.  INSTRUCTION MEMORY 

The instruction memory is responsible for storing 32-bit machine code (instructions). The instruction memory implemented in 

this work is made up of 32-bit data width with a depth of 512. This memory is read only and therefore only needs an address 

port to get access to a particular instruction. The PC output port provides the address of an instruction to be read from the 

instruction memory. The 32-bit instruction from the output of the instruction memory is assigned to modules such as the PC, 

register file, ALU, data memory, and Data Modification Module. The 32-bit output serve as control signal for activating the 

values modules depending on the type of instruction to execute. Figure 8 illustrates the input/output signal of the instruction 

memory. 

 

Figure 8. Instruction Memory Input/Output 

 

4.6. DATA MEMORY 

The data memory is responsible for storing data that is not instruction or machine code. This data is usually generated when the 

processor operational. This memory is a type of Random-Access Memory (RAM) in which data can be read and written. 

RISC-V is little endian which means that when storing data in memory, the Least Significant Byte (LSB) is stored first. The 

data memory consists of four inputs and one output. The 32-bit output of the instruction memory is assigned to the Data 

Modification. Figure 9 shows the input/output signals of the data memory. 
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Figure 9. Data Memory Input/Output 

 

4.7. GENERAL FLOW OF RISC-V ISA 

The typical operation of the RISC-V processor consists of five steps which include instruction fetch, decode, execute, memory 

access, and writeback. Figure 10 shows the flow of a typical RISC-V processor operation. In the information fetch stage, the 

PC output the address to the instruction memory which make available the 32-bit instruction or machine code. The decode 

stage group the instruction code and sent to the various modules as control signals. In the execute stage, the various modules 

which the ALU, register file, and Data Modification Module are used to perform the instruction. In the memory access stage, 

data is read or stored in the data memory depending on the type of instruction. The writeback stage stores value in the register 

file depending on the type of instruction. 

 

 
 

Figure 10. General Flow of RISC-V Instruction Execution 

 

5. HARDWARE VERIFICATION MODULE OF RISC-V PROCESSOR  

A verification module is proposed to observe the functionality of the RISC-V RV32I processor core. This module is important 

because it enables observers to easily understand the RISC-V ISA by observing real internal values when an instruction is 

operating. To observe the internal operation of the processor core, various peripherals are used to access real-time values from 

components such as registers, PC registers, data memory, and instruction memory during normal operation of the processor. 

Figure 11 shows the various peripheral used to observe the internal operation of the RISC-V processor.  The peripherals and 

with their functionalities are shown in Table 1. 

 

Figure 11. RISC-V Processor Verification Peripherals 
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Table 1: Functionalities of RISC-V Processor Verification Peripherals 

Peripheral Functionality 

(a) Push Button 
USER SW1 button is used to increment of the PC by 1 while USER SW2 button is used to 

increment the address of the instruction memory. 

(b) Text LCD 

First row 2-4 displays status. First row 8-15 display user value entered. The second row 2-5 

display the current instruction. Second row 7-14 displays the current value in the instruction 

memory. 

(c) LEDs Eight LEDs are used to display the current PC value. 

(d) 7-Segment Display The last two segments display the address of the instruction memory 

(e) Dot Matrix 
The Dot matrix is used to display data stored in the instruction memory, data memory and 

register file. 

(f) Keypad 
The del button is used to delete an entered value. The ins button is used to insert an entered 

value. Button 1 to 9 are used for entering the machine code. 

(g) Dip Switch The first five are used to set the register and data memory address. 

5.1.  PROCESSOR VERIFICATION ON AN FPGA BOARD 

The RV32I single cycle processor was verified on an FPGA board designed by HANBACK Electronics. The test board is 

equipped with Virtex-4 XC4VLX80 FPGA device. The peripherals for observing the operation of the processor include, push 

buttons, text LCD, LEDs, 7-segment display, dot matrix, keypad, and dip switch. Controller modules were designed for each 

of the peripherals. Figure 12 shows the connections of the peripheral to the FPGA device. From the figure, the Test_module 

consist of the various peripheral controllers which are also connected to the processor. 

 
Figure 12. Connections of Peripheral to the FPGA Device 

Figure 13 shows the flow chart for checking RISC-V processor instructions on the FPGA board. When the FPGA is 

powered up, all registers and memory locations are initialized to zero. The user uses the keypad to insert a instruction that 

starts with the Operation Code (OPCODE). The USER SW2 button is used to set the instruction address shown in seven 

segments before entering the instruction data.  The desired number of buttons are used to insert the instruction code. By 

entering all the values of the instruction code, it is stored in FPGA instruction memory at the address previously specified. 

The USER SW1 button is used to manually increase the value of the PC which is shown on the LED. The dip switch is used 

to display values from the register file, instruction memory, and data memory on the dot matrix. Figure 14 illustrates the 

output of ADD UPPER IMMEDIATE TO PC (AUIPC) instruction on the FPGA board. 
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Figure 13. RISC-V Processor Verification Flow Chart 

 

 
 

Figure 14. Display of AUIPC RISC-V Instruction of an FPGA Board 

5.2. HARDWARE SYNTHESIS RESULTS OF RISC-V VERIFICATION MODULE 

The processor core together with the peripheral controllers was synthesized using Xilinx Virtex4 FPGA device which resulted 

in 6834 LUTs at a maximum frequency of 64 MHz as shown in Table 2. Don et al. [13] designed a RISC-V processor with 

Text LCD peripheral for verification. When this work is compared to that of [13], this work consumed more LUTs because of 

the use of several peripheral controllers for the processor internal state verification than that of reference [13] but achieved 

twice the frequency of reference [13]. 

Table 2: Synthesis Results and Comparison 

Design Processor Type and Peripherals Area (LUTs) Frequency (MHz) 

[13] RV32I Processor, Text LCD 5578 32 

This Work 
RV32I Processor, Text LCD, LEDs, Dip Switch, Push 

Buttons, 7-Segment, Dot Matrix, Keypad 
6834 64 

 

6. HARDWARE VERIFICATION MODULE OF RISC-V PROCESSOR  

This work provides an insight into the internal operation of a RISC-V RV32I processor using an FPGA device and 

input/output peripherals. This work can serve as teaching material for the computer architecture course that will enable 

students to understand the internal operation of a RISC-V processor core. In the future, a user-friendly desktop/web 

application will be designed to serve as an interface to the FPGA and display the internal values of the RISC-V processor core. 
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