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Abstract. Some theorems for simultaneous approximation by algebraic polynomials for continuous functions and its derivatives
are introduced. here we introduce a type of double weight modulus of smoothness, and prove a Jackson type estimate interims of
it for L,, double weighted simultaneous approximation for 0 < p < 1. For the prove of the main results we need a double
weighted Whitney theorem, we also prove it here, in addition to some properties of the double weighted modulus of smoothness
mentioned above.
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1. Introduction

1.1 Historical Review

Consider the function analysis one of the important topic in our daily life as he entered into various pure and applied
sciences, functional analysis has important applications in physicals, economics And it is concerned with the study of function
spaces, where we deal in this research with the space of the L, and study some theories and properties in this space we deal with
the study of approximations in the L, space with respect to the doubled weights for 0 < p < 1.

The following is a brief history of the simultaneous approximation.
The following two theorems on simultaneous approximation are known.

Theoreml.1. if f has r continuous differentiable function on [—1,1] and m is a natural number, then here exists an integer n,
depends on r and m s-t for any

n > n, there exists a polynomial P, of degree < n satisfies, for 0 < k < rand x € [-1,1]

s N O
) o (05

[f 9@ =P < c(m, r)(

For 0 <k <min{r—m+ 2,7}. The condition k <r—m+ 2 cannot be omitted. Theoreml.2. if f has r continuous
differentiable function on [—1,1], and m is natural. Then there exists an integer no depending on r and n s-t.

For any n =n, there is a polynomial B, of degree < n s-t.
— Tk —

|f(k)(x) - pn(k)(x)| <c(m,r) (%xz) o™ <f(r),%xz) w(@2)For0 <k <min{r—m+ 2,r}.Also k <r —m + 2 cannot
omitted. [1] 1951 Taman prove Theorem1.1 and Theoreml1.2 for k = 0 and m = 1 In 1955 Gel ford [2] Introduce a proof for
Theoreml.1, with % instead of A,(x) andm = 1. In 1962 Trigub [3] Prove that Theoreml.1 is valid in the case m = 1, and
remarked that the same proof is used for m = 2. In 1963 Brudnyi [4] Improved Timans result, he proved Theorem1.1 for k = 0
and m € N. In 1966 [5]Telyakovskii proved Theorem1.2 in case m =1 and k = 0 In 1967, Gopengauz [6] Proved Theorem1.1
in general. In 1975 Devore [7] Proved Theorem1.2 for m = 2 and r = 0. In 1983 Hinnemann and Gonska [8] Proved Theorem1.3
in the case m = 2, r = 0and k = 0 In 1985 they also proved in [9] Theoreml.2 fork =0m <r+2and 0 <k <r—m,m <
.In1985 yu [9]Proved that Theorem1.2 is not true in the case k = 0 and m = r + 3.In 1986. Li [10]And in 1989 Dahlhaus [11]
Settled Theorem1.2. here we proved a type of Theorem1.1 and 1.2 for k < r as a double weighted simultaneous L, approximation

using spline polynomial, with the aid of double weighted Whitney theorem. also we introduce some properties of the double
weighted modulus of smoothness.

1.2 Definitions and Preliminaries

(L p.0) space:- the space of all function that is ||f||,,,., < oo, define

I, @) = (IFQOIP w(du) P, 0<P <1

w: [-1,1] - R :- w is called doubling weight if there exists a constant (L) such that [, w(u)du <L [ w (u)du,l €
[—1,1].
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wE(f,t)pw:- is the doubling weight Ditizian Totik modulus of smoothness defined by w&(f,t) =
1
sup (8% o ()f ()] w(x)dx)?

|n|<t

Where the rth symmetric difference is

r—i Th rh
A} (f, x, [a, b]) Z( 1 f(X——+lh) lfx+_e[ab]

other wise
o(X)=V1—x% ,x €[-1,1][12], In our work we use c(p), means constant depending on p , c(p) is different from step to other.
4= @1 -(x)) 1< j < n[12].
T - {1,. Ul -1 ifZ'S.j <n
I ifj=1
1, :- the space of all polynomials of degree < n

}sincel =[-11land; € I,]; = |X;,X; — 1].[12]

P, :- the set of polynomials of degree < n and B, € m,
f(x) = o(g(x)) :- thismeans that g (x) # 0 for sufficiently large x and
lim fx) _o.
x= g(x)
—[a+AMb—a),b—AD—-a)].

Spline function : we define s to be a continuous piecewise polynomial of degree k, if it is in c[a,b] and if there exists points
{¢;,i = 0,1, ...,n}, satisfying the conditionsa = {; < {, < {3 << {, = b.
2.Auxiliary Results

In this section we introduce the results that we need in our main theorem.
LEMMA 2.1.

If f €L,,andr € Nfor0O < p < 1 we have the inequality

1 § r1
ol e < <@ [ [ 18ha(H " w0 COdxan
0 J-1

If s >0 ,and —1 + s + 216, then

sup f 18] fEOPw™dx

0shsé J-q1
< )3 [ 17 1AL £GP w(x)dxdh, Itis well known
RIG) = S () @l FO+ 1) = 87 ey ) then

p

T p
|AR fFOOIP < c(p.T)z:,= ( )and

a5 £ x )|p<c(”’)zllf
+f05

f AL OP wGodx

c(p,r) Zf f_“s
+f0 f_—lus
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L(t h) f(x +ih)

T

. iE=h) f(x)

P
dt dt

Az(t n f(x +ih)

dt ,x € [-1,1], t,h €0,6]

AT .
R f(x)

P
w (x)dxdt

Al(t —n f(x + ih)

w(x)dxdt ... (2)

AT
D) f(x)



i(t—h) so

In the right hand side of (2) , letu = x + ih,v =

5§ r—1+s
A
1
1(6 h) i
= f ST RIAD F )P w (w)dudy it is well known

P
w(x)dx dt

A} f(u) =(—D"A", (u+1v)

Assume u —rv = x, SO we get

0 —1+s+ih
f—i—hf—lﬂ'h |AL f ()P w(u)dudv
=
—7 (~ltstih
= f f |AL f(u — kv)|P w(u)dudv
0 1+ih

- [~ l4stih-rv
-7 183 £ ()P () dxdv
—1+ih
8§ ,—14+s5+16
SJ J |AT f () |P w (x)dxdt
0o J-1

t p—1+s+1r8
<[ [ I reor wedrd
0 YJ-1

Similarly for other integral in (2). So the inequality is proved.

LEMMA 2.2.

If f €L,,andr € Nfor0 < p < 1we have the inequality
Fa 0 o(f ), S c®To(fihT)

Proof.

By using the inequality proved in (lemmal)

0 o(f 8)puw < c(p)%f: f_11|AZzp(f)|pw(x)dxdh

By use definition of norm and modulus which is

If I, (D = (I @IP W(u)du)%. 0<P<1,and
we(f,t) = Sup 1856 .o

|n|<t

= |51Tp (|ay, o C )f(x)|w(x)dx)5, so we have
h|st

hj 1/p
o (f by 1), < c@IR] lsup f (fl |87 (o 1) | W(x)dx> dh

r|<tJo

n;l
< cp)h j 5up 8100l o
0

h|<st

n

2. Eh), <c<p>h-z [ o 850

]:

< O 7 sup (1850l v < W ol 1), then

j=1 @ q)(f j 1) S C(p)qu,(f, h}'_l)p'w
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LEMMA2.3. [14]

n-1 n-1 n-1

hf(x)—z Z Z AT (x + Vih 4 Voh + -+ Vo)

=0Vy= VR=0
(n—-r

- ALuf () = Z AD AR f x + vh)

V=0
Where A‘(,T) V= ., (n — 1)r, are given by the identity
(n-Dr

(A+t+t2 4+ 4tm ) = APV
v
V=0
LEMMA 2.4.

Forany f € Ly, (a,b), then [[p,_y (I, < c@fllL,,-
Proof.
We suppose that Q is polynomial of degree < m — 1, Which interpolate f

At a set of m points in J, which is superset of the interpellation set for p,,_,(f) this immediately impellers that p,,_,(f) =
Pm—1(Q), now using that fact

lp = Qll.,,, < c@wn(f,b—a)y.,, wehave

Pm-1Plls,y = 1Pmea @l

< c@IQll,,, < c@If = Qll,,, <c@Ifll,,

< c@wp(f,b - a) +c@flly,, < c@Ifll,,,-

LEMMA 2.5. [13]

Letu,& € N besuchthaty > 7¢,andlet1 <j<n-—-1

be a fixed index. then there exists a polynomial T; (x) of degree < 4un such that the following inequalities hold for x € [-1,1] :
IT; () = X; ()] < e(uyw, and

7% ()| < c@ypih™ 1<k <&

1, if x=x
0, otherwise
LEMMA 2.6 (Markov). [14]

Letp € P, then ||p’||Lp'w[_1,1] < n?lIpllL,,, (-1

Where X; (x) = {

LEMMA 2.7.
Letn>0,0<qg <p <1
Then every polynomial Q € P, and every finite interval I;

Satisfy (|, f 1Q ()| W(x)dx)q < |, f Q)P W(x)dx)” <cP)5 |1 f 1Q(0)19 w(x)dx) .
Proof.
Letx, € ; suchthat |Q(x,) | = lIQll,,, (1;) Using( lemma 6)

lell,, , (1) < »* el ()

We find that there exists a constant c(p) = c(gq,n) > 0, Such that

1000~ 01 < Ik~ 0], (5) < e el (1)

|1|
If we set I ={X-X€I- [x —x,| < i }
! ' ) 2¢(p)
Then |14 ] 2= | | and for x € I, we have
Copyrights @Kalahari Journals Vol.7 No.2 (February, 2022)

International Journal of Mechanical Engineering
716



101, (1) < 1G] = 10@) = Q(x,)| < 1), Integrating we find
1 %

lQ()IP W(x)dx>
|IJ| I

IM%Aw32<
T

P
QP w(XMX) -
|1}'| Ij

< C(p)<

LEMMA 2.8.
Let reN,0<p<1
and let I be an arbitrary finite interval. Then for every polynomial

r

Q) = ) a(x—x0) x €1

v=0

1
1

Where 37 _ola, |[I]” < c( [1e@IP w(x)azx)E ..(1) where ¢ = c(p, 7).

Proof.

By translating the interval we can assume that x, = 0 and I = [0, b]

In view of lemma (7) we need to proof (1) for0 <p <1

The case 1=[0,b] and0 < p < 1 follows fromthecase I = [0,1[,0<p <1

by simple change of variables. Finally, the case I=[0,1], 0 < p < 1

follows from the fact that any two norms in(r + 1)th Dimensional space B, are equivalent.

LEMMA 2.9.
Let f € L, [a,b],0 <p < 1 then there exists a constant ¢ such that
1 b b
I = clipten S 5— || 1£G) = FOIIP w)dxdy
' —aJg Jg

2
b—a

b—-a ,b-§6
f f If(x+68) — f)IPw(x)dx ds < 2w; (f,b— a)pp - (1)

Where the constant ¢ can be taken as ¢ = ﬁf;f(d)dd when P = 1.

Proof.
Consider the function

b
00) = [ 1£60) - FOIP w ),y € la,b]
Cleary , there exists y, € [a, b] such that

D(y,) < ﬁf: ?(y)dy,and therefore setting ¢ = f(,)
We obtain

1
b—a

b b rb
f If (x) = clP w(x)dx < f If () = fFOIP wx)dxdy ... (2)

Also, we have

1= 21f 00 = FOIP w(@dxdy = [7 [L1f () = FO)I w@dydx + [2 [X1f(x) = fFO)IP w (x)dxdy
Substitutingy = x + dand y = x — § respectively in the last two integrals and changing respectively the order of integration we
get

I = f: Lb_xlf(x) — flx+ 8P w(x)dddx
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+fab f:_alf(x) —f(x—8)|? w(x)dddx

b-6

b— _
f f lf(x) — f(x + &P w(x)dxds
0 a

b—-a rb
+| FQ) = G — 8P w(x)dbdx

a+1

b-a pb-§
= Zf f lf(x+6) — f)IP w(x)dxds
0 a

This equality together with (2) implies (1).

LEMMA 2.10.

Letf € L,,,(a,b),0<p<1, andaw’, (fﬂ) =0
pw

Then there exists a polynomial Q € P._, suchthat f = Q almost everywhere in [a, b].
Proof.

We will prove the lemma by induction with respect to r, in the case r = 1 the lemma follows by (lemma 9). Suppose that lemma
hold true for some r > 1,

Without loss of generality we can assume that [a, b] = [0,1]. suppose that

1 1-(r+1)h
o (fig) = s [ IR wGdx = 0..(1)
r+1/pw ocne L Jo

TTr+1
First we shall prove that

fol—fhl—h |A£A}11f(x)|pw(x)dx — 0 . (2), h’l.h > 0 Irhl + h < 1

Indeed, if h, = ah and a = %with some integers m, n then by (lemma 3) we get

—_ _ — h h
|A(Tm)hA}lf(x)|pSval 1 ,,mz 1o, L’lr 1|A£A}1f(x+y1;+...+vrg)|p
n n
m-1m-1 m-1m-1 h h p
\'% Vv v
SZZ ...... ZZ A}r1+1f(x+Lh+...._+L+_)
n n n n
v1=0 vz vy v=0

Integrating with respect to x € [0, 1- (g) h], and using (1) we conclude that (2) holds true in the case considered. Suppose that
hy = ah, @ > 0, an irrational number. Choose a sequence {a;};2, of rational number. Such that ¢; > @ asi > oand 0 < a; < @
we have

1AL, A% FOOIS |Apn AR )|+ Zoco(D) (Uf (8 + Van + h) — f(x + v + R)|+|f (x + v,h) — f(x + v4,h)|}, and there fore

1—raih—h

1-rqh—h
sup [ 10l f@Pw @y <sup [ |a58 160l wGdx +
0 sa Jo

hsa;

c(r,p)w (f,r(a — a)h)p,.

= c(r,p)w(f,r(a —adh)p, . (3)

Where we have used that (2) holds true fore; a rational number since

w1 (f,(8)h)p .» — 0 asd — 0. (3) implies (2)

In view of (2) our induction hypothesis gives that for each h 0< h < 1, there exists a polynomial Q,, € p,_, such that A}, f(x) =
Q,,(x) foralmost all x € [0,1 — h],i.e f(x + h) — f(x) = Y Zia, (W)x" ......(4)

Almost everywhere in [0, 1 — k], we shall prove that each coefficient a,.(h) is continuous function of h € [0,1).

Let 0 < hy, h, < 1. We apple lemma (8) to the polynomial
r—1

D @) = ()" = fx+hy) = fx+hy)

v=0

for the interval I =[0,1 — h],h = max {hq, h,}. we obtain
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r—1
D @) = ar(h)lI1 = bl
v=0

1-h 1
< c(r, p) (—— sup f F G+ he) = FQx + h)IP w(x)dx)?

1—hpsza

< P pg @1 (fhlhy ~ oo

since w,(f,6) > 0as § » 0

It follows that a, (k) is continuous function of h € [0,1)

Applying now an arbitrary (r + 1)th difference A7*! to (4)

As function of h we obtain AT f(x + h) = X13(A  a, (h)) x”
Foralmostallx € (0,1 —h—(r+Dt)andt,h=0,h+ (r+ Dt <1
By the fact[ inf ||f —Qllyw = 1,f € Ly, (0,1)]

Q€Pp—1
It follows that for almost all x € [0,1 — (r + DDh,0< h < ﬁ
We have A7*1f(x) = 0, and there for since a,, (h) is continuous function of h we have AT*1a,(h) =0,0<h<1—(r+ 1)t,0 <
1
t<—,
r+1

v=01,..,r—1.

3. The Main Results
Here let us introduce our main theorems.
Theorem3.1.
The double weighted modulus of smoothness w” ,(f, §)p.«w . have the following
Properties forf € L, ,,, 0 <p < 1,7 =1, we have
(D f;ifé @ o(f,8)pw = 0.
Proof.
. r . -
lim w" o(f, 8) = lim |il|tzsodllAh¢(f)|| paw
1
14
=lim| sup (f |Azq,(f)|w(x)dx>
6201 n]<s \V1

|S,1L|tf§ fsl_rfé (JI Z(_l)r—i C) f(x —%+ ih) w(x)dx)5

sup ( tim i(—nf-i () (-2 +n) w(x)olx)5

|n|<s =

g ore-2oa

= |shl|q:5 (fI (=D (t) f (x — TZ—O + i0)| w(x)dx)%] = 0,since § - 0,

Then w"o(f, 8)pw — 0, then Lim 0" o(f,8)pw =0

1

D
w(x)dx)

(2) w"(f, 8)pwr isanondecreasing function of §.

Proof.
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Let 6, < 6,then

" o(f, 81)pu = sup (J;18he() ] (x)dx)P, and
h|<8,

W o(f,82)p,w = SUP (f |AZ¢(f)|W(x)dx>

h|<(52
Since §; < 6,

sup (J- |Az¢(f)|w(x)dx>p< sup <f |A{l¢(f)|w(x)dx>p
1 i

[n|<8y |n| <6,

thenw” o (f, 61)pw < 0" o(f, 02)p s SO 0" o(f, ), is @ NONdecreasing function of 4.
(3) w"o(af +Bg, 6w

< c@)(|alP @ o(f, 8)pw + IBIPO"4(g, 8)puw)-

Proof.

W o(af +BG, ) paw = |51|tp A7 o (@f) + Ao (B pw
h|<8

<) <|S1|m kol e+ 0 85050 w)

< <o) s ( f 1AL o (af)] w(x)dx) + sup < f A%, (ﬁg)|”w(x)dx)]

|n|<s [n]<s
< c@lelsup f A7 o (D dx) + 1817 sup f 1A%, o B[P (x)da]
< h|<6 I

< C(P)[Ial”'m'lp 8% (D] pw + 18I lStltP ||A2<p(g)||pw]
h|<6 ’

< c@)(lalPw” o(f, )puw + 1BIPW (g, )i )-

1
B o(f 1) p < @M P 0 o(f, )

r1+

And there for w” o(f,16) . < c(p,7)(A + 1)

Proof.

Pw" o(f, 8)pw 4 2 0.

By using lemma (3) we get
A$f+1) < nm\i"XAg) snV=0L.,(n-Dr+1)

Now

r—142
D
sup f 107 o FO) [P () dx
0

|n|<s
(n-Dr
Z (4 s ( f |8 o )] w0 (x)dx
h <8

< c(p,rInw” o(f,8)pw 0<h<6.

r—1+—

(B)iff €Ly, and wo(f,8),. = 0 (5 )then

F is a polynomial of degree r — 1 for almost all x € (a, b).

Proof.
From property (4) there follows immediately the following estimate

T—1+3 T—1+1
qu)(fﬁ 62)p,w/82 b < C(p'r)qu) f' 61)p,w/61 i '0 < 61 < 62
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1
r—1+—

If @ o(F, 8)p 0 = O (5 P)Then
W o (f,8)p e = 0,8 > 0

And according to lemma (10) we conclude that f € L, ,,, 0 <p < 1, and

. b—a
a)q,<f, ) =0
bw

Then there exists polynomial f € P._;. Such that f = Q almost everywhere in [a,b]

we conclude that f coincides with a polynomial of degree r — 1. note that we have for
0, x€(=1,0)
f@x) = {xH, x € (1,0)

1
The estimate w” o (f, ), = O (6““5)

We remark that there is no upper estimate of
qu) fﬁ 8)p,w By wr—l(f,; 6)p,w or ”f(r)”p’w When f, € Lp,w of f(r) € Lp,w

Respectively, in the case 0 < p < 1 Indeed, consider the function

0 x € [-1,0]
p(x) =1 e x x € [0, €]

1 x € [0,1]
Where € > 0

Is sufficiently small. It is readily seen that  w”, (¢, 6)p,. > 0, and

1
19zl = € >0 ase—0
This fact is central importance and will influence fundamentally our further discussion.
THEOREM 3.2.

Let f€ L,,(a,b),0 < p< 1,meN and let p,,_;(f)e myp_,. Interpolate f at m points in J, =[a+ A(b—a),b—A(b -
a) |where A < 1/2 is strictly positive constant, then

If = Pm-1Nls,,,, < c@m(fib = a)pw-

Proof.

Forany f € Ly, [a, b] using (lemma 4)we get
1Pm=1(Plley e < cOfllL,,

And let q,,_1 7,1 be any polynomial in ,,,_; such that

1f = Gm-sllipian) < COIORFD — Dy

Then taking into account that f — q,,,_; € Ly, (a,b)

We have

Wf = Pm-1(Oiy piap = If = Gm-1 = Pm-1 (F = Gm-2ll1,, 0]
< cNf = am-1lle, y1ap) + C@NPm-1(f = Gm-1l1,, ,1ab)
Since

Ipm—1 (Fllz, o tab) < COIFllLy a0

< cOIf = dm-1lli, lap) < @y (f,b = a)y.
COROLLARY 3.3.

As a corollary of theorem (2) we get the following result,

Letr € N and f = f(x) be such that ™~V and f € L, [a,b],0 < p < 1, then foreverym € N

A linear operator Qp,r—1 (f,[a,b]): L, ,»[a,b] = Tpyr_y
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lF® = ooy flablll, .%W
For n=0,1,2,..,r

THEOREM 34.

Letm,r € Nand f = f(x)suchthat f7 €L, ,[-11]

0 <p <1, thenforany n > m + r — 1 there exists a linear operator

Pn(f): Ly [-1,1] - m, such that

] < C(p)wm+r—n (f(n)

FO0-pP (0
I rk— k(X)

(1)

n

< C(p)w$+r—rk (f(rk)’ 1)
pw

For k=10,1,...,

Moreover, for k > m +r andanyintegerr~, 0 <r~ <r

r and any integer rk satisfyingk <rk <r

The following inequality holds

@ 5 (0, < @2, .

Proof.

We approximate f and its derivatives f®) by the spline L,, (f,x) and Lg‘) (f,x) given by

n-1

Ly (f,x) =Dn (f'x) + Z[pi(f'x) - p]'+1(f'x)] xf(x)

j=1

Where p;(f) = Qm+r—1(f,F;) is a polynomial of degree < m +r — 1
Now, the polynomial p,,(f, x) in fact, it is a linear operator

L, [a,b] » m, with c(p) = c(m, )] such that

n—-1

Pl = Palf )+ ) 30~y (DI T
j=1

Where T;(x) is defined in lemma 5 with§ =m +rand u = 7(m +r)

Satisfies (1) and (2) to justify the above claim we show that

FO) - L (f, %) _ _
5= ITk—k(rﬁlC) = C(p)w$+r rk(f(rk)'n 1)p.w
J paw
And
(k) (k)
Ly (f,x) —pn (f, %) _ _
e IR M G
J

pw

This will prove inequality (1)

We known that L, (f,x) = p;(f,x) if x € I;, we write for every
k=0,.,randk <rk <r
FR@ -, 0|

)< c(p>z f,
<c(p) Z sup

|n|<s

hrk -k

)

<c(p) Z pk=lop sup

h<5

F®e) -, )|

hrk k

1

(f |f(k)(x) p](k)(f x)| w(x)dx)
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n
< C(p)z hjgrk_k)p sup ||f(k) _ p](k)||L
|n|<s P

j=1

n
< C(p)z h;rk—k)l’ wm+r—k(f(rk)’

j=1
By lemma 2 we get
< C(p) wgﬁr—rk(f(rk)’n—l)

pw

19,0 -p% (1,2)

since J, = e
7% @)

pw

b 1)p

n-1
= swp [ 1P [P0 - p K|
i =

|nl<s i

e (f,x) - p,(-’i)l(f O[T, + [ (f, 0)|) w () dx]

= sup f Ij(""")"(x)[ZIp}")(f. x) = PSR (F, 01X, () = T, ()
j j=1

|nl<s i

E23pY (F, 200 = I (F, 0| |T 0K "]) 4w (x)dix]

let |x}(x) T(x)| - (P# m-r+k+1 and |T(k v)(x)| _ hv k # m-r+k+1

<c@ s [ 1Y ApP P oD, ol
Jj j=1

|h|58 I

k-1

+ZIIP§")(f)—P§’i)1(f)II R QT o () dx

By lemma 6 we used}7_; ¢j <c,a >2.S0

Lsc@) ) M@ 8

[”p](f) p]+1(f)|| ]w(x)dx

<C(P)f 1% rk)p(x)z ”p](f) p]+1(f)|| '_kp 2 r(p] Par (x)dx

< c(p) Z}l:_% ”Pj(f) - Pj+1(f)||p h]._rkpw(x)dx flj (p]?j dx.

since hjp; < I;and ¢; < 1 and Ij(k_rk)p(p;p < c(p)h}k_rk)p<p;r+k_rk)p < c(p)hj(k_rk)p

And since
f,}. @jdx <c(a)h;Va=2.S0

n-1

J <@ ) Bl =i O,

j-1

1o = e ) 1 [ 0,0 = by (0 @i
j—1 T

o < c®) Y B [ 1160 - py 60w o dx
-1 fj

By using( lemma 2) and( lemma 4) we have

n-1

n-1

Jo <€) ) T POMT (L by ) < €)Y ™R, By 1Y,

j=1
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< C(p)wgwr—rk (f(rk)' n—l)p’w
So the proof (1) is complete.
In the same way forany r~,0<r~ <r

And k =m+r we write, we can estimate (2).

= 1P (0l
n-1m+r—1 p

! ~ k v v -v
< | peor h’[; Z ()0 =2 0Tl w
p

1 ~ n-1
<c® f P @ D o) = il , b0l | dx
_1 2,

pw 7

Ja S c@FTT O,
Thenl| 5,0 p (£, 2], , < c@afr (£, n)

Then the proof of theorem 1 is done.

pw

Conclusion

In conclusion, after we knew the norm, modulus and doubling weight Ditizion Totik modulus of smoothness, we were able to find
features and properties of the modulus For example in (lemma 2) we explained that

Z- 1 w;’(f' hj 'If)p.w = c(p)wg,(f, hj_l)nw

Either in (lemma 5) we have explained the relationship between the function norm and the polynomial which helped us to proof
(theorem 2)which relates the norm to (function with polynomial) and modulus like as

If = Pm-1(Nl,,,, < c@wn(fib = a)pu

Finally, we were able to proof a special case for the modulus as shown in ( lemma 9), such that the function is equal to polynomial
(f = Q) for each set whose measure is not equal to zero. And our research has several uses, the most important of which is image
processing.
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