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Abstract

The aim of this paper is to introduce the concepts of N'g# —
homeomorphism and strongly Ng* — homeomorphism in
Neutrosophic  Topological Space. Further, the work
establishes some of their related attributes.
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1

Smarandache [9] introduced the idea of Neutrosophic set,
and in 2014 Salama et.al. [20] initiated further studies into
Neutrosophic closed sets and Neutrosophic continuous
functions. Recently Pious Missier et.al.[15],[16],[13]
introduced the concept of 'g# — closed sets, continuous and
irresolute  mappings, closed and open mappings in
Neutrosophic Topological Spaces. In this paper, we introduce
Ng*—  homeomorphism  and  strongly = Ng¥ —
homeomorphism in Neutrosophic Topological Spaces and
investigate their properties.

Introduction

2 Preliminaries
Definition 2.1 [9]

A Neutrosophic set (IV'S) Ay is an object having the
form An = {{X tay (%), 04y, (%), Yor,y X)): X €
X} where g, (%),04,(x) and yg, (x) represent the
degree of membership, degree of indeterminacy and the
degree of non-membership respectively of each element x €
X to the set Ay . A Neutrosophic set Ay =
{(X% Moy, (¥), 6.4, (%), Yor,,, ()): X € X} can be identified as an
ordered triple (u4, (x),0.4,, (X), Y4, (X)) in 1-0,1+[ on X.
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Definition 2.2 [20] A Neutrosophic topology (WT) on a
non-empty set X is a family t of Neutrosophic subsets in X
satisfies the following axioms:

1. 0y, 1) €T

2. Ry, NRy, €T forany Ry ,Ry, €7
3. URNiET \v RNi:iEIgT

Definition 2.3 [20] Let A, bea NS in NTS X, Then
LNVint(Ay) =U{G:G is a NOS in X and G S Ay} is
called a Neutrosophic interior ofeA ..

2. Ncl(Ay) =n{K:K is a NCS in X, and A S K} is
called Neutrosophic closure of A, .

Definition 2.4 [11] A Neutrosophic set A, of a
NTS (X,T) is called a neutrosophic NagCS if
Nacl(Ay) € Uy, whenever Ay €Uy and Uy IS a
NOS in X. The complement of NagCS is NagOSs.

Definition 2.5 [15] A Neutrosophic set A, of a
NTS (X,7) is called a Neutrosophic g* —closed (Vg#*CS)
if Ncl(Ay) S Q) whenever Ax S Q) and Qp IS
Nag0S in X. The complement of g#CS is Mg”0s.

Definition 2.6 [17] Let A, bea NS in N¥TS X. Then

1. Ng#int(Ay) =U{G:G is a Ng#0S in X and G C
Ay} is called a Neutrosophic g* — interior of A,

2. Nghcl(Ay) =n{K:K isa Ng#CS in X and A, S
K} is called Neutrosophic g# — closure of A.

Definition 2.7 [16] A function fy-: (X, 1) — (Y, ) is said to
Vol. 6 No. 3(December, 2021)

International Journal of Mechanical Engineering

2801



be Ng* — continuous function if f3'(Vy) is a Ng* —
closed set of (X, T) for every neutrosophic closed set V,, of

Y. 0.

Definition 2.8 [16] A function fy: (X, 1) — (Y, Q) is said to
be Neutrosophic g” — irresolute function if f31(Vy) is a
Ng*CS of (X, ) forevery Ng#CS 7V, of (U,0).

Definition 2.9 [17] A Neutrosophic Topological space (X, T)
is called a Ty g” — space if every Ng#CS in (X, 1) is NCS
in (X, 7).

Definition 2.10 [18] Let (X,t) and (Y, be two
Neutrosophic topological spaces. A mapping fy: (X, 1) —
(Y,Q) is called Mg* — closed mapping (V'g#CM for short)
if £ (Ay) is NghCS in (Y,0) for every NCS A, of
(X, 7).

Definition 2.11 [18] Let (X,t) and (Y,Q) be two
Neutrosophic topological spaces. A mapping f: (X, 1) —
(Y,Q) is called Mg* — open mapping (Vg#OM for short) if
fr(Ay) is Ng¥0S in (Y,Q) for every NOS A, of
X, 1.

Definition 2.12 [13] Let (X,t) and (Y,{) be two
Neutrosophic Topological Spaces. A bijection fy: (X, 1) —
(Y, Q) is called Neutrosophic homeomorphism (VW — HOM
for short) if £, and f5* both are V' — continuous.

3 Neutrosophic g#- Homeomorphism

Definition 3.1 Let (X, 1) and (Y,{) be two Neutrosophic
Topological Spaces. A bijection fy: (X,t) — (Y,0Q) is
called Neutrosophic g# — homeomorphism (Ng# — HOM
for short) if f,- and f3 both are g# — continuous.

Theorem 3.2 Every N — HOM is Ng# — HOM but not
conversely.

Proof. Let fy: (X, t) — (Y,0) be a N —HOM, then f,
and fy' both are N — continuous. Since every N —
continuous function is Ng* — continuous, f;- and f3* both
are Vg* — continuous. Hence fy. is Ng# — HOM.

Example 3.3 Let X = {l,m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {(1,(0.3,0.4,0.6)), (m, (0.4,0.3,0.6))},
My, = {{p,(0.2,0.3,0.7)),{q, (0.3,0.2,0.7))}.

Now (X, T) = {ON'MNl'MNi'MNZ' 1]\/} and (y' Z) =
{05, My, M S, Moy, M5, 1} are Neutrosophic
topological spaces. Then T = {0y, My, 15} and (=
{0y, My, My, 15} are NTs on X and Y respectively.
Define a bijection fj: (X, t) — (Y,0 by f5(1) =p and
Copyrights @Kalahari Journals

fy(m) = q. Here NCS(X) = {0, My$, 1y}, NCS(Y) =
{0, M5, My, 1y} = Ng¥CS(X) = Ng*CS(Y).  Here
fyr is Ng* —HOM. Now M5 is a NCS in (Y,0) but
fN_l(MN;) is not a NCS in (X, T1). Therefore f) is not
N — continuous and hence fy isnot ;' — HOM.

Theorem 3.4 Every NR — HOM is N'g# — HOM but not
conversely.

Proof. Let fy: (X, 1) — (U,0) be a NR — HOM, then fy
and fy! both are N — continuous. Since every NR —

continuous function is Ng# — continuous, f,- and f3! both
are \V'g# — continuous. Hence fy is Ng# — HOM.

Theorem 3.5 Every Ng# — HOM is NG — HOM but not
conversely.

Proof. Let f: (X, 1) — (Y,Q) be a Ng# — HOM, then f
and fy! both are NMg” — continuous. Since every Ng# —
continuous function is G — continuous, f,- and f3! both
are VG — continuous. Hence fj; is NG — HOM.

Example 3.6 Let X ={l,m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {(1,(0.1,0.2,0.8)), (m, (0.2,0.3,0.8))},
My, = {(p, (0.2,03,0.7)),(q, (0.3,0.3,0.7))}.

Now (X, T) = {0y, My, My 5, M5, 15} and
(Y, = {0y, My, Miy5, M3, 15} are  Neutrosophic
topological spaces. Then T = {0y, My, 15} and (=
{05, My, 15} are NTs on X and Y respectively. Define
a bijection fy: (X, 1) = (Y,0) by f) (1) =p and f5(m) =
q. Here, NECS(X) = {0y, My S, 1y} =
Nghes(X),  WNCS(Y) = {0y, Myj, 1y}, Ng"CS(Y) =
{05, My S, MyS, 15} = NGES(Y) = NGES(X). Here fy
is NG—HOM. Now M, is a NCS in (Y,0) but
fN‘l(MNg) is not a Mg#CS in (X,1). Therefore f, is not
Ng* — continuous and hence f,- is not N'g# — HOM.

Theorem 3.7 Every Ng# — HOM is Nag — HOM but not
conversely.

Proof. Let fy: (X, 1) — (Y,Q) be a Ng# — HOM, then f,
and fy! both are g — continuous. Since every Ng# —
continuous function is NVag — continuous, f,- and f3* both
are Nag — continuous. Hence fj is Nag — HOM.

Example 3.8 Let X = {l,m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {{1,(0.2,0.3,0.7)),(m, (0.3,0.4,0.7))},
My, = {(p, (0.3,0.4,0.6)), (q, (0.4,0.5,0.6))}.

Now (X,T) = ON!MNl!MNi'MN;' 1N and (y, <) =
05, My, My5, My3, 15 are  Neutrosophic  topological

spaces. Then T = 0y, My, 15 and 7= 0y, My, 1, are
NTs on X and Y respectively. Define a bijection
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fy: (X, — (Y, by fy(1)=p and fj(m)=q. Here,
NCS(X) = {0y, My S, 1y} = Ng*eS(0), NCS(Y) =
{0, My, 13}, N8*CS (Y) = {0p, My g, My, 1} =
NogCS (Y), NagCS(X). Here f5 is Nag — HOM. Now
MyS is a NCS in (Y, Q) but £~ (MyS) is not a Ng*CS
in (X, 1). Therefore f, is not Mg* — continuous and hence
fyr isnot Ng# — HOM.

Theorem 3.9 Every Ng# — HOM is NGP — HOM but
not conversely.

Proof. Let fy: (X, 1) — (Y,Q) be a Ng# — HOM, then f
and f3! both are Ng# — continuous. Since every Ng# —

continuous function is G — continuous, ) and f5! both
are VGP — continuous. Hence fj is NGP — HOM.

Example 3.10 Let X = {I, m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {(1,(0.2,0.2,0.8)), (m, (0.2,0.3,0.8))},
My, = {(p, (0.3,03,0.7)),(q, (0.3,0.3,0.7))}.

Now (X, 1) = {0, My, My, My, 15} and (Y, 0) =
{05, My, M5, M5, 15} are Neutrosophic  topological
spaces. Then T = {0y, My, 15} and 7= {0y, My, 1}
are NTs on X and Y respectively. Define a bijection
frr: (X, 1) = (Y, 0) by fr(1) = p and

Ng*ES(X),  NES(Y) = {On, MyS, 1y},
Ng*CS(Y) = (O, My S, My S, 1y} = NGPES(Y) =
NGPCS(X). Here £ is NGP — HOM. Now MNE is a
NES in (Y,0) but fi, " (MyS) is not a Mg#CS in (X, D).
Therefore f, is not Mg” — continuous and hence f,, is not
Ngt —HoM.

Theorem 3.11 Every Ng# — HOM is NGS — HOM but
not conversely.

Proof. Let fy: (X, 1) — (Y,Q) be a Ng* — HOM, then f,
and f5! both are g — continuous. Since every Ng# —
continuous function is GS — continuous, f,- and f3! both
are VGS — continuous. Hence fj, is NGS — HOM.

Example 3.12 Let X = {I,m} and Y = {p, q}. Consider the
Neutrosophic sets

My, = {(1,(0.1,0.2,0.9)), (m, (0.1,0.3,0.8))},
My, = {(p, (0.3,03,0.7)),(q, (0.4,0.3,0.7))}.

Now (‘Xl T) = {ONI MNll‘MNE’MN;l 1N} and (y: () =
{05, My, My, M5, 15} are Neutrosophic  topological
spaces. Then T = {0y, My, 15} and 7= {0y, My, 1}
are N7s on X and Y respectively. Define a bijection
fp: (X, D) — (Y, 9 by fy() =p and fy(m) =q Here,
NCS(X) = {0y, My], 1y} =

Ngtes(x),  NES(Y) =

{ON'MNE' 1y}, Ng#C’S(’y) = {ON'MNE'MNE: 1y} =

NGSCS(Y) = NGSCS(X). Here fy is NGS — HOM.
Copyrights @Kalahari Journals

Now My$ is a NCS in (Y,0) but fy, " (MyS) is not a
Ng*—CS in (X,t). Therefore f, is not Ng* —
continuous and hence f,- is not N'g# — HOM.

Remark 3.13 The following diagram shows the relationships
of Ng#—HOM with some other Neutrosophic
homeomorphisms discussed in this section.

/
4 N deose

A HOM b ( MGN. IO
/ \

Figure 1

Here A—» B means A implies B and Here A—» B
means A not implies B

Remark 3.14 Composition of two N'g# — homeomorphism
mappings need not be a N'g# — homeomorphism.

Example3.15Let X = {I, m},Y = {u,v} and Z = {p,q}.
My, = {{1,(0.2,0.2,0.8)),(m, (0.3,0.3,0.7))
My, = {(p, (0.9,0.8,0.1)),(q, (0.8,0.9,0.2))}.

Now (X, 1) = {ONxMNyMNi:MNZ: 15}, (Y, 0 =

{0y, M3, 15} and (Z,m) = {05, My, M5, 15} are
Neutrosophic topological spaces. Then T =

{03, M, 13}, 0= {0y, 15} and n = {0y, My, 15} are
NTs on X,Y and Z respectively. Define a function

fo: (X, 1) = (Y,0 by (1) = u and f)(m) = v and
define a function g,: (Y,0) — (Z,n) by gu(u) = p and
gxn(v) = q. Then f and g, are Ng# — HOMs. Now
define a function (gy © f5): (X, 1) — (Z,m) by f5() =p
and f-(m) = q. Here My | =

{(1,(0.8,0.8,0.4)), (m, (0.7,0.8,0.2))} isa NCS in (X,1).
But (g © f) (My5) = {(p, (0.8,0.8,0.4)),(q, (0.7,0.8,0.2))}
isnota Ng#CS in (Z,7m). Hence (gy o f))~! isnota
Ng# — continuous map. Therefore (gj o fp) isnot Ng# —
HOM.

Theorem 3.16 Let f5:(X,t) — (Y,0) be a bijective
mapping. If f,- is Mg — continuous then the following
statements are equivalent:

1. fy isa Ng” — closed mapping.
2. f isa Ng# — open mapping.
3. fy is Ng” — homeomorphism.
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Proof. (1) = (2) Let us assume that f) be a bijective
mapping and Ng#CM. Hence f3! is NMg* — continuous.
Clearly every NVOS in (X,1) is Mg#0S in (Y,7). Hence
fy isa Ng* — open mapping.

(2) = (3) Let f) be a Ng*OM. Then fy! is Ng# —
continuous. Hence f,- and f3! both are Vg* — continuous
mappings. Therefore f,- is NMg# — homeomorphism.

(3) = (1) Let fy is NMg# — homeomorphism. Then f,
and (fy!) both are Ng* — continuous mappings. Since
every VCS in (X, 1) is Ng#CS in (Y,Q), fy is a Ng# —
closed mapping. Hence proved.

Theorem 3.17 Let fy: (X, 1) — (Y, be a Ng# — HOM.
Then fy is a M —HOM if (X,7) and (Y,Q) are T , g* —
spaces.

Proof. Let M, be a NCS in (Y,{). By hypothesis,
fyt (M) is Ng*CS in (X,1). Since (X,T) is T ,g*—
space, f31(My) is MCS in (X, ). Which implies f) is
N — continuuous. Since fy is Ng* —HOM, fit is
Ng# — continuous. Let P, be a NCS in (X,T1). By
hypothesis, (fy1) 1(Py) = fa(Py) is Ng#CS in (U, 0.
Since Y is T ,g* — space, fy(Py) is NCS in (Y,0).
Which implies f5! is & — continuuous. Hence fy is V —
HOM.

Neutrosophic Strongly g#- Homeomorphism

Definition 4.1 Let (X, 1) and (Y,{) be two Neutrosophic
topological spaces. A bijection fy: (X, 1) — (Y, Q) is called
strongly Neutrosophic g — homeomorphism ( strongly
Ng* —HoM for short) if f, and fy! both are Ng# —
irresolute functions.

Example 4.2 Let X = {l,m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {(1,(0.2,0.3,0.8)), (m, (0.3,0.3,0.7))}, Now (X,1) =
{ON’MNl'MNi' 1y} and (Y,0) = {ON»MN;:' 1y} are
Neutrosophic topological spaces. Then t = {0y, My, 15}
and (=1{0,,1,} are NTs on X and Y respectively.
Define a bijection fj: (X, t) — (Y,0) by f)() =p and
f)r(m) = q. Here Ng*CS(Y) = {0y, ]V[Ni, 15} =
Ng*eS(X). Here f) and f3! both are Ng” — irresolute.
Hence f, is strongly N'g# — HOM.

Theorem 4.3 Every strongly Ng# —HOM is Ng# —
HOM but not conversely.

Proof. Let f): (X, 1) — (Y,Q) be a strongly Ng# — HOM,
then f, and f;! both are Ng* — irresolute. Since every
Ng* — irresolute function is Ng* — continuous, f,- and
fy! both are Ng" — continuous. Hence fy is Ng" —
HOM.

Copyrights @Kalahari Journals

Example 4.4 Let X = {l,m} and Y = {p,q}. Consider the
Neutrosophic sets

My, = {(1,(0.2,0.2,0.8)),(m, (0.2,0.3,0.8))},
My, = {{p, (0.9,0.8,0.1)),(q, (0.8,0.8,0.1))}.

Now (X, 1) = {On, M, My, My, 13} and (Y, 0) =
{0y, M7, 15} are Neutrosophic topological spaces. Then
T = {0y, My, 15} and 7= {0y, 1y} are NTs on X and
Y respectively. Define a bijection fj: (X, 1) — (Y,Q) by
fa(D)=p and far(m) = q. Here, WNCGS(X) =
{0y, M5, 1y} = Ng*CS(Y), NCS(Y) = {0, My, 1y},
NghCS(X) = {0, M5, My, 1y}, Here fy is Ngh—
HOM. Now My, is a Ng#CS in (X,1) but
(Fx " H)™H(My,) is nota Ng#CS in (Y, Q). Therefore f5' is
not Vg# — irresolute and hence fj is not strongly Ng* —
HOM.

Theorem 4.5 Composition of two strongly Ng# —
homeomorphism mappings is again a strongly Ng# —
homeomorphism.

Proof. Let fj: (X, 1) — (U,0) and gu: (Y,0) — (Z,n) are
strongly Ng# — HOMs. Let W, be a Ng#CS in (Z,7).
Since gy is strongly Ng* — HOM, gL (Wy) is Ng*CS
in (Y,9. Since fy is strongly Ng* —HOM,(g , °
fOWy) =g l(Wy)) is Ng*Cs in (X, 1).
Therefore, (g5 © fy) is Ng# — irresolute. Now, Let W), be
a NMg*CS in (X,1). Since f, is strongly Ng# — HOM,
f . (Wy) is Ng*CS in (Y,Q). Since g is strongly Ng* —
HOM (g . of ,JWy) =g . (f,(Wy)) is Ng*CS in
(Z,m). Hence, (gy o fy)~t is Mg” — irresolute. Therefore,
(g © fy) isstrongly NMg# — homeomorphism.

Theorem 4.6 A mapping fy: (X, 1) — (Y, is strongly
Ngt —HoM then Nghc(fl(An)) S 3 (Vcl(Ay))
foreach WS A, in (Y, 0).

Proof. Let fy: (X, 1) — (Y, Q) be a strongly Ng# — HOM
and Ay bea NS in (Y,0). Then Ncl(Ay) isa NCS in
(X, 7). Since every NCS is Ng#CS, Ncl(Ay) is a Ng#CS
in (Y,2). Now by hypothesis, f5*(Ncl(Ay)) is NgCS in
(X,7). Which implies that, Ng*cl(fy (Vcl(Ay))) =
FL (Wl (Ay)). Here, Ngtcl(fyt(Ay)) S
Nl (Vel(Ap))) = i (Nl (A)). Hence,
Nghc(ft (Ay)) € ft(Vcl(Ay)) for each NS Ay in
Y. 9.

Theorem 4.7 A mapping fy: (X, 1) — (Y,Q) is strongly
Ngt —HOM then Ncl(fil(Axn)) =yt (Wcl(Ay)) for
each VS Ay in (Y,0).

Proof. Let fy: (X, 1) — (Y, Q) be a strongly Ng# — HOM
then f, is a Ng# — irresolute mapping. And let A, be a
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NS in (Y,0). Then Ncl(Ay) is a NCS in (Y,7). Since
every NCS is Ng#CS, Ncl(Ay) is a Ng#CS in (Y,0).
Now by hypothesis, f3!(Ncl(Ay)) is MgCS in (X, 1).
Since 3 ((An)) S f5' (Wel(An)), Nel(fy ((An))) <
N(EF N (Ap))) = LV (Ap)). Therefore,
Nt (Ay)) € 31 (Vcl(Ay)). Let f) be a strongly
Ng* —HOM then f5! is a Ng* — irresolute mapping. Let
us assume that fy!(A,) be a NS in (X, 1), Which implies
that, Nc(fyl(Ay)) is Ng#CS in (X,t). Hence
Ng*c(Wel(ft(Ax))) is a Mg#CS in (X, T). This implies
that, (B WVl (3! (An))) =
far(Vc(fRt (Ax))) is a NMg#CS in (Y,Q). This proves,
Ay = (3D E 3 (An)) € ED) TVl (Ax))) =

f o (V5 (An)). Therefore, Ncl(Ay) €

N(f | (Nel(Fyt (An)))) = £, (Nel(F32(Ay))),  since
fyt is Ng* — irresolute. Hence, f3l(Wcl(Ay)) S
fr(f N(Ncl(f]\_fl(cfl]\f)))) = Ncl(fyt (Apx). That
is, fR(VCl(Ay)) € Nel(f2 (Ap)). Hence

N (Ax)) = 1 (WVcl(Ay)) for each NS Ay in
Y. 0.
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