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Abstract 

 The aim of this paper is to introduce the concepts of 𝒩g# − 

homeomorphism and strongly 𝒩g# −  homeomorphism in 

Neutrosophic Topological Space. Further, the work 

establishes some of their related attributes.  
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1  Introduction 

 Smarandache [9] introduced the idea of Neutrosophic set, 

and in 2014 Salama et.al. [20] initiated further studies into 

Neutrosophic closed sets and Neutrosophic continuous 

functions. Recently Pious Missier et.al.[15],[16],[13] 

introduced the concept of 𝒩g# − closed sets, continuous and 

irresolute mappings, closed and open mappings in 

Neutrosophic Topological Spaces. In this paper, we introduce 

𝒩g# −  homeomorphism and strongly 𝒩g# − 

homeomorphism in Neutrosophic Topological Spaces and 

investigate their properties.  

 

2  Preliminaries 

 Definition 2.1 [9] 

A Neutrosophic set (𝒩S)    𝒜𝒩  is an object having the 

form 𝒜𝒩 = {〈x, μ𝒜𝒩
(x), σ𝒜𝒩

(x), γ𝒜𝒩
(x)〉: x ∈

𝒳} where μ𝒜𝒩
(x), σ𝒜𝒩

(x)  and γ𝒜𝒩
(x)  represent the 

degree of membership, degree of indeterminacy and the 

degree of non-membership respectively of each element x ∈
𝒳  to the set 𝒜𝒩 . A Neutrosophic set 𝒜𝒩 =
{〈x, μ𝒜𝒩

(x), σ𝒜𝒩
(x), γ𝒜𝒩

(x)〉: x ∈ 𝒳} can be identified as an 

ordered triple 〈μ𝒜𝒩
(x), σ𝒜𝒩

(x), γ𝒜𝒩
(x)〉 in ]−0,1 +[ on 𝒳.  

  

Definition 2.2 [20] A Neutrosophic topology (𝒩𝒯)  on a 

non-empty set 𝒳 is a family τ of Neutrosophic subsets in 𝒳 

satisfies the following axioms: 

  

    1.  𝟎𝒩 , 𝟏𝒩 ∈ τ  

    2.  RN1
∩ RN2

∈ τ for any RN1
, RN2

∈ τ  

    3.  ∪ RNi
∈ τ    ∀    RNi

: i ∈ I ⊆ τ  

  

Definition 2.3 [20] Let 𝒜𝒩  be a 𝒩S in 𝒩𝒯𝒮  X𝒩 . Then   

1.𝒩int(𝒜𝒩) =∪ {G: G is a 𝒩𝒪𝒮  in X𝒩  and G ⊆ 𝒜𝒩} is 

called a Neutrosophic interior of𝒜𝒩 .  

2. 𝒩cl(𝒜𝒩) =∩ {K: K  is a 𝒩𝒞𝒮  in X𝒩  and 𝒜𝒩 ⊆ K}  is 

called Neutrosophic closure of 𝒜𝒩 .  

   

Definition 2.4 [11] A Neutrosophic set 𝒜𝒩  of a 

𝒩𝒯𝒮 (𝒳, τ)  is called a neutrosophic 𝒩αgCS  if 

𝒩αcl(𝒜𝒩) ⊆ 𝒰𝒩 ,  whenever 𝒜𝒩 ⊆ 𝒰𝒩  and 𝒰𝒩  is a 

𝒩𝒪𝒮 in 𝒳. The complement of 𝒩αgCS is 𝒩αgOS.  

  

Definition 2.5 [15] A Neutrosophic set 𝒜𝒩  of a 

𝒩𝒯𝒮 (𝒳, τ) is called a Neutrosophic g# −closed (𝒩g#CS) 

if 𝒩cl(𝒜𝒩) ⊆ 𝒬𝒩  whenever 𝒜𝒩 ⊆ 𝒬𝒩  and 𝒬𝒩  is 

𝒩αgOS in 𝒳. The complement of 𝒩g#CS is 𝒩g#OS.  

  

Definition 2.6 [17] Let 𝒜𝒩  be a 𝒩S in 𝒩𝒯𝒮 𝒳. Then   

    1.  𝒩g#int(𝒜𝒩) =∪ {G: G is a 𝒩g#OS in 𝒳  and G ⊆
𝒜𝒩} is called a Neutrosophic g# − interior of 𝒜𝒩 .  

    2.  𝒩g#cl(𝒜𝒩) =∩ {K: K is a 𝒩g#CS in 𝒳 and 𝒜𝒩 ⊆
K} is called Neutrosophic g# − closure of 𝒜𝒩 .  

  

Definition 2.7 [16] A function f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ) is said to 
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be 𝒩g# −  continuous function if f𝒩
−1(𝒱𝒩)  is a 𝒩g# − 

closed set of (𝒳, τ) for every neutrosophic closed set 𝒱𝒩 of 

(𝒴, ζ).  

  

Definition 2.8 [16] A function f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ) is said to 

be Neutrosophic g# −  irresolute function if f𝒩
−1(𝒱𝒩)  is a 

𝒩g#CS of (𝒳, τ) for every 𝒩g#CS  𝒱𝒩  of (𝒴, ζ).  

  

Definition 2.9 [17] A Neutrosophic Topological space (𝒳, τ) 

is called a T𝒩g# − space if every 𝒩g#CS in (𝒳, τ) is 𝒩𝒞𝒮 

in (𝒳, τ). 

  

Definition 2.10 [18] Let (𝒳, τ)  and (𝒴, ζ)  be two 

Neutrosophic topological spaces. A mapping f𝒩: (𝒳, τ) ⟶
(𝒴, ζ) is called 𝒩g# − closed mapping (𝒩g#CM for short) 

if f𝒩(𝒜𝒩)  is 𝒩g#CS  in (𝒴, ζ)  for every 𝒩𝒞𝒮 𝒜𝒩  of 

(𝒳, τ).  

  

Definition 2.11 [18] Let (𝒳, τ)  and (𝒴, ζ)  be two 

Neutrosophic topological spaces. A mapping f𝒩: (𝒳, τ) ⟶
(𝒴, ζ) is called 𝒩g# − open mapping (𝒩g#OM for short) if 

f𝒩(𝒜𝒩)  is 𝒩g#OS  in (𝒴, ζ)  for every 𝒩𝒪𝒮 𝒜𝒩  of 

(𝒳, τ).  

  

Definition 2.12 [13] Let (𝒳, τ)  and (𝒴, ζ)  be two 

Neutrosophic Topological Spaces. A bijection f𝒩 : (𝒳, τ) ⟶
(𝒴, ζ) is called Neutrosophic homeomorphism (𝒩 − ℋ𝒪ℳ 

for short) if f𝒩 and f𝒩
−1 both are 𝒩 − continuous.  

 

3  Neutrosophic 𝐠#- Homeomorphism 

  

Definition 3.1 Let (𝒳, τ)  and (𝒴, ζ)  be two Neutrosophic 

Topological Spaces. A bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  is 

called Neutrosophic g# −  homeomorphism (𝒩g# − ℋ𝒪ℳ 

for short) if f𝒩 and f𝒩
−1 both are 𝒩g# − continuous.  

  

Theorem 3.2 Every 𝒩 − ℋ𝒪ℳ  is 𝒩g# − ℋ𝒪ℳ  but not 

conversely.  

Proof. Let f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ)  be a 𝒩 − ℋ𝒪ℳ,  then f𝒩 

and f𝒩
−1  both are 𝒩 −  continuous. Since every 𝒩 − 

continuous function is 𝒩g# − continuous, f𝒩  and f𝒩
−1  both 

are 𝒩g# − continuous. Hence f𝒩 is 𝒩g# − ℋ𝒪ℳ.  

  

Example 3.3 Let 𝒳 = {l, m}  and 𝒴 = {p, q}.  Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.3,0.4,0.6)〉, 〈m, (0.4,0.3,0.6)〉},  

ℳ𝒩2
= {〈p, (0.2,0.3,0.7)〉, 〈q, (0.3,0.2,0.7)〉}.  

Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
, 𝟏𝒩}  and (𝒴, ζ) =

{𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
, ℳ𝒩2

c , 𝟏𝒩}  are Neutrosophic 

topological spaces. Then τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩}  and ζ =

{𝟎𝒩 , ℳ𝒩1
, ℳ𝒩2

, 𝟏𝒩}  are 𝒩𝒯s  on 𝒳  and 𝒴  respectively. 

Define a bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  by f𝒩(l) = p  and 

f𝒩(m) = q.  Here 𝒩𝒞𝒮(𝒳) = {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩}, 𝒩𝒞𝒮(𝒴) =

{𝟎𝒩 , ℳ𝒩1
c , ℳ𝒩2

c , 𝟏𝒩} = 𝒩g#𝒞𝒮(𝒳) = 𝒩g#𝒞𝒮(𝒴).  Here 

f𝒩  is 𝒩g# − ℋ𝒪ℳ.  Now ℳ𝒩2
c  is a 𝒩𝒞𝒮  in (𝒴, ζ)  but 

f𝒩
−1(ℳ𝒩2

c )  is not a 𝒩𝒞𝒮  in (𝒳, τ).  Therefore f𝒩  is not 

𝒩 − continuous and hence f𝒩 is not 𝒩 − ℋ𝒪ℳ.  

  

Theorem 3.4 Every 𝒩ℛ − ℋ𝒪ℳ is 𝒩g# − ℋ𝒪ℳ but not 

conversely.  

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩ℛ − ℋ𝒪ℳ, then f𝒩 

and f𝒩
−1  both are 𝒩 −  continuous. Since every 𝒩ℛ − 

continuous function is 𝒩g# − continuous, f𝒩  and f𝒩
−1  both 

are 𝒩g# − continuous. Hence f𝒩 is 𝒩g# − ℋ𝒪ℳ.  

   

Theorem 3.5 Every 𝒩g# − ℋ𝒪ℳ is 𝒩𝒢 − ℋ𝒪ℳ but not 

conversely.  

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩g# − ℋ𝒪ℳ, then f𝒩 

and f𝒩
−1  both are 𝒩g# −  continuous. Since every 𝒩g# − 

continuous function is 𝒩𝒢 − continuous, f𝒩  and f𝒩
−1  both 

are 𝒩𝒢 − continuous. Hence f𝒩 is 𝒩𝒢 − ℋ𝒪ℳ.  

   

Example 3.6 Let 𝒳 = {l, m}  and 𝒴 = {p, q}.  Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.1,0.2,0.8)〉, 〈m, (0.2,0.3,0.8)〉},  

ℳ𝒩2
= {〈p, (0.2,0.3,0.7)〉, 〈q, (0.3,0.3,0.7)〉}.  

         Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
c , 𝟏𝒩}  and 

(𝒴, ζ) = {𝟎𝒩 , ℳ𝒩2
, ℳ𝒩2

c , ℳ𝒩1
c , 𝟏𝒩}  are Neutrosophic 

topological spaces. Then τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩}  and ζ =

{𝟎𝒩 , ℳ𝒩2
, 𝟏𝒩} are 𝒩𝒯s on 𝒳  and 𝒴  respectively. Define 

a bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) by f𝒩(l) = p and f𝒩(m) =
q.  Here, 𝒩𝒞𝒮(𝒳) = {𝟎𝒩 , ℳ𝒩1

c , 𝟏𝒩} =

𝒩g#𝒞𝒮(𝒳),   𝒩𝒞𝒮(𝒴) = {𝟎𝒩 , ℳ𝒩2
c , 𝟏𝒩}, 𝒩g#𝒞𝒮(𝒴) =

{𝟎𝒩 , ℳ𝒩2
c , ℳ𝒩1

c , 𝟏𝒩} = 𝒩𝒢𝒞𝒮(𝒴) = 𝒩𝒢𝒞𝒮(𝒳).  Here f𝒩 

is 𝒩𝒢 − ℋ𝒪ℳ.  Now ℳ𝒩2
c  is a 𝒩𝒞𝒮  in (𝒴, ζ)  but 

f𝒩
−1(ℳ𝒩2

c ) is not a 𝒩g#CS in (𝒳, τ). Therefore f𝒩  is not 

𝒩g# − continuous and hence f𝒩 is not 𝒩g# − ℋ𝒪ℳ.  

  

Theorem 3.7 Every 𝒩g# − ℋ𝒪ℳ is 𝒩αg − ℋ𝒪ℳ but not 

conversely.  

Proof. Let f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩g# − ℋ𝒪ℳ, then f𝒩 

and f𝒩
−1  both are 𝒩g# −  continuous. Since every 𝒩g# − 

continuous function is 𝒩αg − continuous, f𝒩  and f𝒩
−1 both 

are 𝒩αg − continuous. Hence f𝒩 is 𝒩αg − ℋ𝒪ℳ.  

  

Example 3.8 Let 𝒳 = {l, m}  and 𝒴 = {p, q}.  Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.2,0.3,0.7)〉, 〈m, (0.3,0.4,0.7)〉},  

ℳ𝒩2
= {〈p, (0.3,0.4,0.6)〉, 〈q, (0.4,0.5,0.6)〉}.  

 Now (𝒳, τ) = 𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
c , 𝟏𝒩  and (𝒴, ζ) =

𝟎𝒩 , ℳ𝒩2
, ℳ𝒩2

c , ℳ𝒩1
c , 𝟏𝒩  are Neutrosophic topological 

spaces. Then τ = 𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩  and ζ = 𝟎𝒩 , ℳ𝒩2

, 𝟏𝒩  are 

𝒩𝒯s  on 𝒳  and 𝒴  respectively. Define a bijection 
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f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  by f𝒩(l) = p  and f𝒩(m) = q.  Here, 

𝒩𝒞𝒮(𝒳) = {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩} = 𝒩g#𝒞𝒮(𝒳), 𝒩𝒞𝒮(𝒴) =

{𝟎𝒩 , ℳ𝒩2
c , 𝟏𝒩}, 𝒩g#𝒞𝒮(𝒴) = {𝟎𝒩 , ℳ𝒩2

c , ℳ𝒩1
c , 𝟏𝒩} =

𝒩αg𝒞𝒮(𝒴), 𝒩αg𝒞𝒮(𝒳).  Here f𝒩  is 𝒩αg − ℋ𝒪ℳ.  Now 

ℳ𝒩2
c  is a 𝒩𝒞𝒮  in (𝒴, ζ) but f𝒩

−1(ℳ𝒩2
c ) is not a 𝒩g#CS 

in (𝒳, τ). Therefore f𝒩 is not 𝒩g# − continuous and hence 

f𝒩 is not 𝒩g# − ℋ𝒪ℳ.  

  

Theorem 3.9 Every 𝒩g# − ℋ𝒪ℳ  is 𝒩𝒢𝒫 − ℋ𝒪ℳ  but 

not conversely.  

Proof. Let f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩g# − ℋ𝒪ℳ, then f𝒩 

and f𝒩
−1  both are 𝒩g# −  continuous. Since every 𝒩g# − 

continuous function is 𝒩𝒢𝒫 − continuous, f𝒩 and f𝒩
−1 both 

are 𝒩𝒢𝒫 − continuous. Hence f𝒩 is 𝒩𝒢𝒫 − ℋ𝒪ℳ.  

   

Example 3.10 Let 𝒳 = {l, m} and 𝒴 = {p, q}. Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.2,0.2,0.8)〉, 〈m, (0.2,0.3,0.8)〉},  

ℳ𝒩2
= {〈p, (0.3,0.3,0.7)〉, 〈q, (0.3,0.3,0.7)〉}.  

Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
c , 𝟏𝒩}  and (𝒴, ζ) =

{𝟎𝒩 , ℳ𝒩2
, ℳ𝒩2

c , ℳ𝒩1
c , 𝟏𝒩}  are Neutrosophic topological 

spaces. Then τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩}  and ζ = {𝟎𝒩 , ℳ𝒩2

, 𝟏𝒩} 

are 𝒩𝒯s  on 𝒳  and 𝒴  respectively. Define a bijection 

f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) by f𝒩(l) = p and  

f𝒩(m) = q.  Here 𝒩𝒞𝒮(𝒳)  =  {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩} =

  𝒩g#𝒞𝒮(𝒳),   𝒩𝒞𝒮(𝒴) =  {𝟎𝒩 , ℳ𝒩2
c , 𝟏𝒩},

𝒩g#𝒞𝒮(𝒴) = {𝟎𝒩 , ℳ𝒩2
c , ℳ𝒩1

c , 𝟏𝒩}  =  𝒩𝒢𝒫𝒞𝒮(𝒴) =

𝒩𝒢𝒫𝒞𝒮(𝒳).  Here f𝒩  is 𝒩𝒢𝒫 − ℋ𝒪ℳ.  Now ℳ𝒩2
c  is a 

𝒩𝒞𝒮  in (𝒴, ζ) but f𝒩
−1(ℳ𝒩2

c ) is not a 𝒩g#CS in (𝒳, τ). 

Therefore f𝒩 is not 𝒩g# − continuous and hence f𝒩 is not 

𝒩g# − ℋ𝒪ℳ.  

  

Theorem 3.11 Every 𝒩g# − ℋ𝒪ℳ  is 𝒩𝒢𝒮 − ℋ𝒪ℳ  but 

not conversely.  

Proof. Let f𝒩 : (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩g# − ℋ𝒪ℳ, then f𝒩 

and f𝒩
−1  both are 𝒩g# −  continuous. Since every 𝒩g# − 

continuous function is 𝒩𝒢𝒮 − continuous, f𝒩 and f𝒩
−1 both 

are 𝒩𝒢𝒮 − continuous. Hence f𝒩 is 𝒩𝒢𝒮 − ℋ𝒪ℳ.  

   

Example 3.12 Let 𝒳 = {l, m} and 𝒴 = {p, q}. Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.1,0.2,0.9)〉, 〈m, (0.1,0.3,0.8)〉},  

ℳ𝒩2
= {〈p, (0.3,0.3,0.7)〉, 〈q, (0.4,0.3,0.7)〉}.  

Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
c , 𝟏𝒩}  and (𝒴, ζ) =

{𝟎𝒩 , ℳ𝒩2
, ℳ𝒩2

c , ℳ𝒩1
c , 𝟏𝒩}  are Neutrosophic topological 

spaces. Then τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩}  and ζ = {𝟎𝒩 , ℳ𝒩2

, 𝟏𝒩} 

are 𝒩𝒯s  on 𝒳  and 𝒴  respectively. Define a bijection 

f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  by f𝒩(l) = p  and f𝒩(m) = q  Here,  

𝒩𝒞𝒮(𝒳)    = {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩} =

 𝒩g#𝒞𝒮(𝒳),   𝒩𝒞𝒮(𝒴)  =
 {𝟎𝒩 , ℳ𝒩2

c , 𝟏𝒩}, 𝒩g#𝒞𝒮(𝒴) =  {𝟎𝒩 , ℳ𝒩2
c , ℳ𝒩1

c , 𝟏𝒩} =

 𝒩𝒢𝒮𝒞𝒮(𝒴)  = 𝒩𝒢𝒮𝒞𝒮(𝒳).  Here f𝒩  is 𝒩𝒢𝒮 − ℋ𝒪ℳ. 

Now ℳ𝒩2
c  is a 𝒩𝒞𝒮  in (𝒴, ζ)  but f𝒩

−1(ℳ𝒩2
c )  is not a 

𝒩g# − CS  in (𝒳, τ).  Therefore f𝒩  is not 𝒩g# − 

continuous and hence f𝒩 is not 𝒩g# − ℋ𝒪ℳ.  

  

Remark 3.13 The following diagram shows the relationships 

of 𝒩g# − ℋ𝒪ℳ  with some other Neutrosophic 

homeomorphisms discussed in this section.  

 

 

   

Figure 1 

Here A →   B  means A implies B and Here A →   B 

means A not implies B 

 

Remark 3.14 Composition of two 𝒩g# − homeomorphism 

mappings need not be a 𝒩g# − homeomorphism.  

  

Example 3.15 Let 𝒳 = {l, m}, 𝒴 = {u, v} and 𝒵 = {p, q}.  

ℳ𝒩1
= {⟨𝑙, (0.2,0.2,0.8)⟩, ⟨𝑚, (0.3,0.3,0.7)⟩  

ℳ𝒩2
= {〈p, (0.9,0.8,0.1)〉, 〈q, (0.8,0.9,0.2)〉}.    

Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
, 𝟏𝒩}, (𝒴, ζ) =

{𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩} and (𝒵, η) = {𝟎𝒩 , ℳ𝒩2

, ℳ𝒩2
c , 𝟏𝒩} are 

Neutrosophic topological spaces. Then τ =
{𝟎𝒩 , ℳ𝒩1

, 𝟏𝒩}, ζ = {𝟎𝒩 , 𝟏𝒩} and η = {𝟎𝒩 , ℳ𝒩2
, 𝟏𝒩} are 

𝒩𝒯s on 𝒳, 𝒴 and 𝒵 respectively. Define a function 

f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) by f𝒩(l) = u and f𝒩(m) = v and 

define a function g𝒩 : (𝒴, ζ) ⟶ (𝒵, η) by g𝒩(u) = p and 

g𝒩(v) = q. Then f𝒩 and g𝒩  are 𝒩g# − ℋ𝒪ℳs. Now 

define a function (g𝒩 ∘ f𝒩): (𝒳, τ) ⟶ (𝒵, η) by f𝒩(l) = p 

and f𝒩(m) = q. Here ℳ𝒩1
c =

{〈l, (0.8,0.8,0.4)〉, 〈m, (0.7,0.8,0.2)〉} is a 𝒩𝒞𝒮 in (𝒳, τ). 
But (g𝒩 ∘ f𝒩)(ℳ𝒩1

c) = {〈p, (0.8,0.8,0.4)〉, 〈q, (0.7,0.8,0.2)〉} 

is not a 𝒩g#CS in (𝒵, η). Hence (g𝒩 ∘ f𝒩)−1 is not a 

𝒩g# − continuous map. Therefore (g𝒩 ∘ f𝒩) is not 𝒩g# −
ℋ𝒪ℳ. 

  

 

Theorem 3.16 Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  be a bijective 

mapping. If f𝒩  is 𝒩g# −  continuous then the following 

statements are equivalent:   

    1.  f𝒩 is a 𝒩g# − closed mapping.  

    2.  f𝒩 is a 𝒩g# − open mapping.  

    3.  f𝒩 is 𝒩g# − homeomorphism.  
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Proof. (1) ⟹  (2)  Let us assume that f𝒩  be a bijective 

mapping and 𝒩g#CM.  Hence f𝒩
−1  is 𝒩g# −  continuous. 

Clearly every 𝒩𝒪𝒮  in (𝒳, τ)  is 𝒩g#OS  in (𝒴, ζ).  Hence 

f𝒩 is a 𝒩g# − open mapping. 

(2) ⟹  (3)  Let f𝒩  be a 𝒩g#OM.  Then f𝒩
−1  is 𝒩g# − 

continuous. Hence f𝒩  and f𝒩
−1  both are 𝒩g# − continuous 

mappings. Therefore f𝒩 is 𝒩g# − homeomorphism. 

(3) ⟹  (1)  Let f𝒩  is 𝒩g# −  homeomorphism. Then f𝒩 

and (f𝒩
−1)  both are 𝒩g# −  continuous mappings. Since 

every 𝒩𝒞𝒮  in (𝒳, τ) is 𝒩g#CS in (𝒴, ζ), f𝒩  is a 𝒩g# − 

closed mapping. Hence proved.  

   

Theorem 3.17 Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a 𝒩g# − ℋ𝒪ℳ. 
Then f𝒩 is a 𝒩 − ℋ𝒪ℳ if (𝒳, τ) and (𝒴, ζ) are T 𝒩

g# − 

spaces.  

Proof. Let ℳ𝒩  be a 𝒩𝒞𝒮  in (𝒴, ζ).  By hypothesis, 

f𝒩
−1(ℳ𝒩)  is 𝒩g#CS  in (𝒳, τ).  Since (𝒳, τ)  is T 𝒩

g# − 

space, f𝒩
−1(ℳ𝒩)  is 𝒩𝒞𝒮  in (𝒳, τ).  Which implies f𝒩  is 

𝒩 −  continuuous. Since f𝒩  is 𝒩g# − ℋ𝒪ℳ,  f𝒩
−1  is 

𝒩g# −  continuous. Let 𝒫𝒩  be a 𝒩𝒞𝒮  in (𝒳, τ).  By 

hypothesis, (f𝒩
−1)−1(𝒫𝒩 ) = f𝒩(𝒫𝒩)  is 𝒩g#CS  in (𝒴, ζ). 

Since 𝒴  is T 𝒩
g# −  space, f𝒩(𝒫𝒩 )  is 𝒩𝒞𝒮  in (𝒴, ζ). 

Which implies f𝒩
−1  is 𝒩 − continuuous. Hence f𝒩  is 𝒩 −

ℋ𝒪ℳ.  

   

 Neutrosophic Strongly 𝐠#- Homeomorphism 

  

Definition 4.1 Let (𝒳, τ)  and (𝒴, ζ)  be two Neutrosophic 

topological spaces. A bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) is called 

strongly Neutrosophic g# −  homeomorphism ( strongly 

𝒩g# − ℋ𝒪ℳ  for short) if f𝒩  and f𝒩
−1  both are 𝒩g# − 

irresolute functions.  

  

Example 4.2 Let 𝒳 = {l, m}  and 𝒴 = {p, q}.  Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.2,0.3,0.8)〉, 〈m, (0.3,0.3,0.7)〉},  Now (𝒳, τ) =

{𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , 𝟏𝒩}  and (𝒴, ζ) = {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩}  are 

Neutrosophic topological spaces. Then τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩} 

and ζ = {𝟎𝒩 , 𝟏𝒩}  are 𝒩𝒯s  on 𝒳  and 𝒴  respectively. 

Define a bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  by f𝒩(l) = p  and 

f𝒩(m) = q.  Here 𝒩g#𝒞𝒮(𝒴) = {𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩} =

𝒩g#𝒞𝒮(𝒳).  Here f𝒩  and f𝒩
−1  both are 𝒩g# −  irresolute. 

Hence f𝒩 is strongly 𝒩g# − ℋ𝒪ℳ.  

  

Theorem 4.3 Every strongly 𝒩g# − ℋ𝒪ℳ  is 𝒩g# −
ℋ𝒪ℳ but not conversely.  

 

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a strongly 𝒩g# − ℋ𝒪ℳ, 
then f𝒩  and f𝒩

−1  both are 𝒩g# −  irresolute. Since every 

𝒩g# −  irresolute function is 𝒩g# −  continuous, f𝒩  and 

f𝒩
−1  both are 𝒩g# −  continuous. Hence f𝒩  is 𝒩g# −

ℋ𝒪ℳ.  

  

Example 4.4 Let 𝒳 = {l, m}  and 𝒴 = {p, q}.  Consider the 

Neutrosophic sets  

ℳ𝒩1
= {〈l, (0.2,0.2,0.8)〉, 〈m, (0.2,0.3,0.8)〉},  

ℳ𝒩2
= {〈p, (0.9,0.8,0.1)〉, 〈q, (0.8,0.8,0.1)〉}.  

Now (𝒳, τ) = {𝟎𝒩 , ℳ𝒩1
, ℳ𝒩1

c , ℳ𝒩2
, 𝟏𝒩}  and (𝒴, ζ) =

{𝟎𝒩 , ℳ𝒩1
c , 𝟏𝒩}  are Neutrosophic topological spaces. Then 

τ = {𝟎𝒩 , ℳ𝒩1
, 𝟏𝒩} and ζ = {𝟎𝒩 , 𝟏𝒩} are 𝒩𝒯s  on 𝒳  and 

𝒴  respectively. Define a bijection f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  by 

f𝒩(l) = p  and f𝒩(m) = q.  Here, 𝒩𝒞𝒮(𝒳) =
{𝟎𝒩 , ℳ𝒩1

c , 𝟏𝒩} = 𝒩g#𝒞𝒮(𝒴), 𝒩𝒞𝒮(𝒴) = {𝟎𝒩 , ℳ𝒩2
c , 𝟏𝒩},

𝒩g#𝒞𝒮(𝒳) = {𝟎𝒩 , ℳ𝒩1
c , ℳ𝒩2

, 𝟏𝒩}.  Here f𝒩  is 𝒩g# −

ℋ𝒪ℳ.  Now ℳ𝒩2
 is a 𝒩g#CS  in (𝒳, τ)  but 

(f𝒩
−1)−1(ℳ𝒩2

) is not a 𝒩g#CS in (𝒴, ζ). Therefore f𝒩
−1 is 

not 𝒩g# − irresolute and hence f𝒩  is not strongly 𝒩g# −
ℋ𝒪ℳ.  

 

Theorem 4.5 Composition of two strongly 𝒩g# − 

homeomorphism mappings is again a strongly 𝒩g# − 

homeomorphism.  

 

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) and g𝒩 : (𝒴, ζ) ⟶ (𝒵, η) are 

strongly 𝒩g# − ℋ𝒪ℳs.  Let 𝒲𝒩  be a 𝒩g#CS  in (𝒵, η). 
Since g𝒩  is strongly 𝒩g# − ℋ𝒪ℳ, g 𝒩

−1 (𝒲𝒩)  is 𝒩g#CS 

in (𝒴, ζ).  Since f𝒩  is strongly 𝒩g# − ℋ𝒪ℳ, (g  𝒩
∘

f 𝒩
)(𝒲𝒩 ) = f 𝒩

−1(g 𝒩
−1 (𝒲𝒩))  is 𝒩g#CS  in (𝒳, τ). 

Therefore, (g𝒩 ∘ f𝒩) is 𝒩g# − irresolute. Now, Let 𝒲𝒩  be 

a 𝒩g#CS  in (𝒳, τ).  Since f𝒩  is strongly 𝒩g# − ℋ𝒪ℳ, 
f 𝒩

(𝒲𝒩) is 𝒩g#CS in (𝒴, ζ). Since g𝒩  is strongly 𝒩g# −

ℋ𝒪ℳ (g 𝒩
∘ f 𝒩

)(𝒲𝒩) = g  𝒩
(f 𝒩

(𝒲𝒩))  is 𝒩g#CS  in 

(𝒵, η). Hence, (g𝒩 ∘ f𝒩)−1  is 𝒩g# − irresolute. Therefore, 

(g𝒩 ∘ f𝒩) is strongly 𝒩g# − homeomorphism.  

   

Theorem 4.6 A mapping f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  is strongly 

𝒩g# − ℋ𝒪ℳ  then 𝒩g#cl(f𝒩
−1(𝒜𝒩)) ⊆ f𝒩

−1(𝒩cl(𝒜𝒩)) 

for each 𝒩𝒮 𝒜𝒩  in (𝒴, ζ).  

 

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a strongly 𝒩g# − ℋ𝒪ℳ 

and 𝒜𝒩  be a 𝒩𝒮  in (𝒴, ζ). Then 𝒩cl(𝒜𝒩) is a 𝒩𝒞𝒮 in 

(𝒳, τ). Since every 𝒩𝒞𝒮 is 𝒩g#CS, 𝒩cl(𝒜𝒩) is a 𝒩g#CS 

in (𝒴, ζ). Now by hypothesis, f𝒩
−1(𝒩cl(𝒜𝒩)) is 𝒩g#CS in 

(𝒳, τ).  Which implies that, 𝒩g#cl(f𝒩
−1(𝒩cl(𝒜𝒩))) =

f𝒩
−1(𝒩cl(𝒜𝒩)).  Here, 𝒩g#cl(f𝒩

−1(𝒜𝒩)) ⊆
𝒩g#cl(f𝒩

−1(𝒩cl(𝒜𝒩))) = f𝒩(𝒩cl(𝒜𝒩)).  Hence, 

𝒩g#cl(f𝒩
−1(𝒜𝒩)) ⊆ f𝒩

−1(𝒩cl(𝒜𝒩))  for each 𝒩𝒮 𝒜𝒩  in 

(𝒴, ζ).  

  

Theorem 4.7 A mapping f𝒩: (𝒳, τ) ⟶ (𝒴, ζ)  is strongly 

𝒩g# − ℋ𝒪ℳ  then 𝒩cl(f𝒩
−1(𝒜𝒩)) = f𝒩

−1(𝒩cl(𝒜𝒩))  for 

each 𝒩𝒮 𝒜𝒩  in (𝒴, ζ).  

 

Proof. Let f𝒩: (𝒳, τ) ⟶ (𝒴, ζ) be a strongly 𝒩g# − ℋ𝒪ℳ 

then f𝒩  is a 𝒩g# − irresolute mapping. And let 𝒜𝒩  be a 
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𝒩𝒮  in (𝒴, ζ). Then 𝒩cl(𝒜𝒩) is a 𝒩𝒞𝒮  in (𝒴, ζ). Since 

every 𝒩𝒞𝒮  is 𝒩g#CS, 𝒩cl(𝒜𝒩)  is a 𝒩g#CS  in (𝒴, ζ). 
Now by hypothesis, f𝒩

−1(𝒩cl(𝒜𝒩))  is 𝒩g#CS  in (𝒳, τ). 
Since f𝒩

−1((𝒜𝒩)) ⊆ f𝒩
−1(𝒩cl(𝒜𝒩)), 𝒩cl(f𝒩

−1((𝒜𝒩))) ⊆
𝒩cl(f𝒩

−1(𝒩cl(𝒜𝒩))) = f𝒩
−1(𝒩cl(𝒜𝒩)).  Therefore, 

𝒩cl(f𝒩
−1(𝒜𝒩)) ⊆ f𝒩

−1(𝒩cl(𝒜𝒩)).  Let f𝒩  be a strongly 

𝒩g# − ℋ𝒪ℳ then f𝒩
−1 is a 𝒩g# − irresolute mapping. Let 

us assume that f𝒩
−1(𝒜𝒩) be a 𝒩𝒮 in (𝒳, τ), Which implies 

that, 𝒩cl(f𝒩
−1(𝒜𝒩))  is 𝒩g#CS  in (𝒳, τ).  Hence 

𝒩g#cl(𝒩cl(f𝒩
−1(𝒜𝒩))) is a 𝒩g#CS in (𝒳, τ). This implies 

that, (f𝒩
−1)−1(𝒩g#cl(𝒩cl(f𝒩

−1(𝒜𝒩)))) =
f𝒩(𝒩cl(f𝒩

−1(𝒜𝒩)))  is a 𝒩g#CS  in (𝒴, ζ). This proves, 

𝒜𝒩 = (f𝒩
−1)−1(f 𝒩

−1(𝒜𝒩)) ⊆ (f 𝒩
−1)−1(𝒩cl(f𝒩

−1(𝒜𝒩))) =

f 𝒩
(𝒩cl(f𝒩

−1(𝒜𝒩)). Therefore, 𝒩cl(𝒜𝒩) ⊆

𝒩cl(f 𝒩
(𝒩cl(f𝒩

−1(𝒜𝒩)))) = f 𝒩
(𝒩cl(f𝒩

−1(𝒜𝒩))),  since 

f𝒩
−1  is 𝒩g# −  irresolute. Hence, f𝒩

−1(𝒩cl(𝒜𝒩)) ⊆
f𝒩

−1(f 𝒩
(𝒩cl(f𝒩

−1(𝒜𝒩)))) = 𝒩cl(f𝒩
−1(𝒜𝒩)).  That 

is, f𝒩
−1(𝒩cl(𝒜𝒩)) ⊆ 𝒩cl(f𝒩

−1(𝒜𝒩)).  Hence 

𝒩cl(f𝒩
−1(𝒜𝒩)) = f𝒩

−1(𝒩cl(𝒜𝒩))  for each 𝒩𝒮 𝒜𝒩  in 

(𝒴, ζ). 
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