International Journal of Mechanical Engineering

VERTEX EVEN MEAN LABELING OF SOME GRAPHS WITH PENDANT EDGES

P. Kavitha

Assistant Professor, PG and Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram-605 602, Tamilnadu, India.

B. Manimegalai

M.Sc Mathematics, PG and Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram-605 602, Tamil Nadu, India.

ABSTRACT

In this paper, we investigate vertex even mean labelling with pendant edges.we prove any cycle and complete graph is a vertex even mean labelling. Similar way of plotting and labelling methodology is called a vertex even mean labelling. Here Qm + Kn and K3+Cn is a graph we used for plotting in vertex even mean labelling.

Keywords: Mean labeling, Vertex even mean labeling, Join of Graphs.

INTRODUCTION

All graphs in this paper are finite, simple and undirected. V(G) represented vertex set and E(G) represent edge set. A vertex labelling is a function of V to aset of labels. A Graph with such a vertex labelling function is defined as vertex labelled graph. The concept of mean labelling was expelled and introduced in the work by Somasundaram and Ponraj [3]. Even mean labelling of some graph work was presented by the author Revathi N in her work[5]. With the above reference and analysis we tried and investigated the possibilities of even mean labelling with Qm+Kn and K3+Cn with pendant edges.

PRELIMINARIES

DEFINITION 2.1 MEAN LABELING OF GRAPH

A Graph G With (p, q) is a mean graph if there is injective function f from the vertices of G to $\{0, 1, 2, ...q\}$ such that when each edge uv is labeled with (f(u)+f(v))/2 if f(u) + f(v) is even and (f(u)+f(v)+1)/2 if f(u) + f(v) is odd then the ensuring edges are different.

DEFINITION 2.2 VERTEX EVEN MEAN LABELING

A Graph G with q edges to be an vertex even mean graph if there is an injective function f from the vertices of G to $\{2, 4, 6, \dots 2q\}$ such that the edge labels are given by f(u) + f(v)/2 are distinct. such a function is called a vertex mean labeling.

DEFINITION 2.3 JOIN OF GRAPHS

The join of graphs k_3 and C_n , $K_3 + C_n$ is obtained by joining a vertex of k_3 withevery vertex of C_n with an edge.

DEFINITION 2.4 PENDANT EDGE

An edge of a graph is said to be a pendant edge if and only if one of its vertices a pendant edge.

THEOREM 3.1:

MAIN RESULT

The graph obtained by adding 4 pendant edges to each vertex of k_n in the graph $Q_m + k_n$ admits vertex even mean labeling.

PROOF:

The order and size of the graph G obtained by adding 4 pendant edgesto each vertex of k n in the graph respectively.

Let v_1 and v_2 be the vertices of $Q_{m_i} u_j$ $(1 \le j \le n)$ be the vertices of k_n . Obviously it $u_{j,t}$ $(1 \le t \le 4n)$ will be the pendant vertices corresponding to u_{j_i} .

Define a vertex labeling function:

f: $(Q_m + k_n) \rightarrow \{2, 4, 6, \dots 2q\}$ by as follows

 $f(v_1) = 2f(v_2) = 4f(v_3) = 46$

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.4 (April, 2022)

f (v_n) = 6j + 10, j=7,8,9... 10 j - 4t, $t = 1, 1 \le j \le 4n$ 10 j - 2t + 2, $t = 2, 1 \le j \le 4n$ f (u_{jt})= { 10 j - t + 3, $t = 3, 1 \le j \le 4n$ 10 j - t + 6, $t = 4, 1 \le j \le 4n$

FIGURE 1

Clearly labels of the edges received by the mean of the labels on end vertices are all distinct. Hence the graph Q $_{\rm m}+$ k $_{\rm n}$ has vertex even mean labeling.

ILLUSTRATION 3.2

A graph obtained by adding 4 pendant edges to each vertex of the graph Q $_{\rm 6}+\,k_4$

FIGURE 2

This figure 2 shows the vertex even mean labeling of the graph Q $_{6}\!\!+$ k $_{4}\!\!.$

THEOREM 3.2

The graph $k_3 + C_n$ has n+1 vertex even mean labeling with 2 pendant edge **PROOF:**

The graph k $_3+C_n$ has n+1 vertices and 2n edges

Let v be a vertices of $k_{\,3}$ and $v_{\,1},\,v_{\,2},\,...,\,v_{\,n}$ be the vertices of the cycle.

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

FIGURE 3

The ordinary labeling of k $_3 + C_4$ is given in the above figure Define a vertex labeling f: v ($k_3 + C_n$) \rightarrow {2, 4, 6, ..., 2q} by follows as f(u) = 2 $f(v_j) = 4j, 1 \le j \le n$ if n is odd 4j, j = 1 $f(v_j) = \{2j + 4, j \text{ is even if } n \text{ is odd}\}$ q + 2j + 2, j is odd $10 \, j + 6t$ $,t\,=\,1,1\leq j\leq 2n$ $f(u) = \{$ jt

 $10j + 2t + 4, t = 2, 1 \le j \le 2n$

clearly labels of the edges received by the mean of the labels on end vertices areall distinct.

Hence the graph $k_3 + C_n$ has vertex even mean labeling with 2 pendant edges.

ILLUSTRATION 3.4:

A graph obtained by adding 2 pendant vertex edge to each vertex of the graphk₃ + C₆ and its vertex even mean labeling is given in the below figure .

FIGURE 4

This figure 4 shows that vertex even mean labeling $k_3 + C_6$ with 2 pendantedges.

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

CONCLUSION:

In this paper, we have obtained some graphs that are vertex even mean labelling with pendant edges. We attempt Graph operations on cycles and complete graph with Qm+Kn and K3+Cn.In future, we prove yet another labelling on similar graphs.

REFERNCES:

[1]. F. Harary, Graph theory, Reading, MA: Addison- Wesley ,1994.

- [2]. J.A. Gallian, A dynamical survey of graph labeling, The Electronic journal of Combinatorics, 17 (2014).
- [3]. R. Ponraj and S. Somasundaram, Mean labeling of graphs, NationalAcademy Science Letter 26(2003),210-213.
- [4]. K. Manickam and M. Marudai, odd mean labeling of graphs, Bulletin ofpure and Applied Sciences 25 E (1) (2006).
- [5]. S. Arockiaraj and B. S. Mahadevaswamy, Even vertex odd mean labeling of graphs obtained from graph operations, Int, Journal of Advance Research in Edu, Tech. and Management 3(1) (2015), 192.
- [6]. A. Sasikala and P. Oviya, vertex odd mean labeling of some graphs withpendant edges.