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ABSTRACT: 

 

 In the present research, we take into account new subclass of holomorphic bi-univalent characteristic defined through 

Haradam Polynomial. We achieve Co-efficient estimate for the defined elegance. Also, we debate Fekete-Szegӧ inequality for 

feature belongs to those subclasses.  

 

1. Introduction and Preliminaries 

 

 Let  denote the class of analytic function  in the open unit disk  with a montel normalization 

 

 

A function  has the Taylor series expansion of the form 

 

                                          (1.1) 

 

In the Riemann mapping theorem, every simply connected domain  which is not the whole complex plane , can be mapped 

conformally onto the open unit disk. 

=  and  

 

The Koebe one-quarter theorem [5] ensures that the range of every function  contains the  

 disk  

 

It is well known that every function  has an inverse  defined by 

 

  

and 

 

  

 

 

  (1.2) 
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Let  and  be two analytic function in  , then  is said to be subordinate to , denoted by , if 

there exists a Schwarz function  which is analytic in  with  and  such that . 

 

A function  is said to be bi-univalent in  if both the function  and its  are univalent in . 

 

Let  denote the class of bi-univalent function in  given by(1.1) 

 

The object of the present paper is to introduce two new subclasses of the function class  employing the techniques used earlier by 

Srivastava et al.[10]. In order to derive our main results, the coefficient estimate problem involving the bound of 

  

 is still an open problem. 

 

The Horadam polynomial  are defined by  

 

  (1.3) 

 with = = ,  where e,b,p,and q are some real constants. 

 

The generating function of the Horadam polynomials  is given by Horadam [6]  

 

  =   

 

Definition 1 : Let . A function k  is in the class 

, if it is satisfying the following subordination conditions: 

 

  

  (1.4) 

 and  

  (1.5) 

  

2. Main Results 

  

Theorem 1:  Let  (    be of the form in equation(1.1).Then 

 

  (2.1) 

 and 

 

  (2.2)  
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 and for some , 

 

 

 where 

         (2.3) 

(2.4) 

 

 and 

 

 (2.5) 

  

Proof:  Let  and then there are two holomorphic functions  given by 

 

  (2.6) 

 and 

 

  (2.7) 

 

 with  and  such that 

 

  

 

and 

 

  

 

Or,equivalently, 
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  (2.8) 

  

  (2.9) 

 

Combining (2.6),(2.7),(2.8) and (2.9) yields 

 

  (2.10) 

  

  (2.11) 

 

It is clear that if  and , then 

 

  (2.12) 

 From (2.10) and (2.11), it follows that 

 

  (2.13) 

  

  (2.14) 

 Moreover, we have 

 

  (2.15) 

 and 

 

  (2.16) 
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 From(2.13) and (2.15), we get 

 

                                                                                                                  (2.17) 

  

By adding Equation (2.14) and (2.16) and then using Equation (2.17), we obtain 

 

 
                                                                       (2.18) 

For the purpose of brevity, we will utilize the notations given in Equations (2.3)-(2.5). Now, making use of the notations defined 

above and combining equations (2.15) and (2.18), we get 

 

  (2.19) 

  

  (2.20) 

 So that 

 

  (2.21) 

  

Where  and  are given by Equation (2.5) and (2.3)respectively. Similarly, upon subtracting 

Equation (2.16) from Equation (2.14) and then using equation (2.18), we get 

 

  (2.22) 

 

 Where  is defined by Equation (2.4). It follows from Equation (2.15) and (2.22)  

 

  (2.23) 

 

 

  (2.24) 
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  (2.25) 

 

Finally, for some , we obtain 

  

 (2.26) 

  

  

  

where 

 

  

 

We get, 

 

 

 

 

Remark 1:  Setting  in Theorem 1, we get the following corollary 

 

  

Corollary 1: Let (   be of the form in equation(1). Then 

 

  

 and 
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 where 

 

 

and 

=

 

  

3.  CONCLUSION: 

 In this paper, Fekete-Szegö disparity for a specific subclasses of bi-univalent capacity connected with altered Horadam 

polynomial were introduced. The consequence of this paper assists different specialists with finding Fourth Hankel determinant.  
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