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Abstract:  

      In this paper, we consider new subclass of holomorphic mapping connected to lemniscate of Bernoulli. Also, an approach to the 

estimates of Fekete szeg  inequality for new subclass. 
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1  Introduction 

        Let  represent a class of entire holomorphic mapping , defined in the unit disc 

 . Thus the function  has the form    

 

  (1.1) 

 

  Let S denote the subclass of  consist of functions of the form (1.1) which are univalent. 

 

For two functions , the function  is said to be subordinate to  in , written , if there exists a 

schwarz function  with satisfying the properties =0 and  such that = . In particular, if the 

function  is univalent in , then we have the following equivalence  

 

  =  and ( )  ( ) 

 

 It is well known that the Fekete-Szegö inequality is an inequality for the coefficients of univalent analytic functions found by Fekete 

and Szegö [5], related to the Bieberbach conjecture.  

 

 Let P indicate the family of members consisting of , where  is the Caratheodory function [4] of the form  

 

  (1.2) 

 

 which are regular with  in . Several authors created the bounds for first two   coefficient  and . Indeed, 

for many results on Fekete-Szegö problems see [1],[2],[9],[10],[11],[12],[13]. 
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2  Definition  

                A member  of  is in the family *, consisting of regular mappings connected to lemniscate of Bernoulli  

 

  (2.1) 

  

It is noted from definition that the set q  lies in the region bounded by the right loop of the lemniscate of Bernoulli : ( +

) -2( - ) = 0. 

 

3  Preliminary Lemmas 

                  

We need the following lemmas to prove our results. 

Lemma 1. Let  have the series expansion of the form (1.2). Then  

 

  (3.1) 

 for some ,  and  

 

  (3.2) 

 

 for some , . 

 

Remark 1.In lemma 1, for the formula for , see [7],[8]. The formula for  is due to Libera and Zlotkiewicz [7]. 

 

Lemma 2. If  and has the series of the form (1.2), then  

 

  (3.3) 

   

  (3.4) 

   

  (3.5) 

 

 Remark 2. Inequalities (3.3) and (3.4) in the above can be found in [3],[8] and (3.5) is given by [6]. 

 

 

4  Main Results 

 

Theorem 1. If the function . Then,  

 

  (4.1) 

 where  

  (4.2) 
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 and  

  (4.3) 

 

Proof: If  then,  

 

  (4.4) 

 

 By simple calculation we get  

 

  

 

 Using (3.5) to the above equation and after simple calculations, we get  

 

                  

 

 Thus, we proved the result.  

5  Conclusion 

 In the present study, we have introduced and studied a new subclass of holomorphic mapping in the unit disc , which involves 

lemniscate of bernoulli. Moreover, we have derived the Fekete-szegö inequality for the subclass given. In future, we can come up 

with the third and fourth hankel determinant. 
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