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Abstract 

In this paper, we concentrate some standard graph products to obtain the upper bounds for harmonic coinvariant. In addition, we 

obtain the exact value of harmonic invariant and its coinvariant for double graph of a given graph. 
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1 Introduction 

A chemical graph is a graph whose vertices denote atoms and edges denote bonds between those atoms of any underlying chemical 

structure. Topological indices are introduced to measure the characters of chemical molecules. A topological invariant for a 

(chemical) graph G is a numerical quantity invariant under automorphism of G and it does not depend on the labelling or pictorial 

representation of the graph. It has been used for examing quantitative structure-property relationship (QSPR) and quantitative 

structure-activity relationships (QSAR) extensively in which the biological activity or other properties of molecules are correlated 

with their chemical structures, see [1,2,5]. In the current chemical literature, a large number of graph-based structure descriptors 

(topological indices) have been put forward, that all depend only on the degrees of the vertices of the molecular graph. More details 

on vertex-degree-based topological indices and on their comparative study can be found in [6, 7, 8, 9, 3, and 4] 

 

     The first Zagreb invariant M1( ) is the equal to the sum of the squares of the degrees of the vertices, and the second Zagreb 

invariant M2( ) is the equal to the sum of the products of the degrees of pairs of adjacent vertices, that is,M1( )= 

M2( )= , where  is a degree of a 

vertex r in . 

     For a connected graph , the harmonic invariant H ( ) is defind as H( )= . Deng et al. [18] considered 

the relation between the harmonic invariant of a graph and its chromatic number. Zhong [11, 12, 13] gave the minimum and 

maximum values of the harmonic invariant for simple graphs, trees, unicyclic graphs and graphs and graphs with girth at least 

k(k≥3) and characterized the corresponding external graphs, respectively. Lv et al. [16, 17] established the relationship between the 

harmonic invariant of a graph and its matching number. Shwetha et al. [15] derived expression for the harmonic invariant of some 

operations of graphs. 

     The first and second Zagreb coindices were first introduced by Ashrafi et al. [20].  

They are defined as follows: ( ) = , 

 ( ) = . In this sequence, the harmonic coinvariant of  is defined  

as  ( ) = . 

     Since graph operation place important role to study the infinity graphs which  are derived from the smaller graphs, in this view, 

we obtain the upper bounds for the harmonic coindices of some graph operations such as edge corona product graph  and Mycielskian 

graph. Finally, the values of harmonic invariant and its coinvariant of double graph of a given graph are obtained. 
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2 Main Results 

     We denote by ∆ and δ the maximum vertex degrees of , respectively. The inverse degree invariant of , denoted by ID ( ) =

. 

Theorem 2.1.  Let  be a connected graph with n vertices and p pendent vertices. They  

 ( ) . 

Proof. Assume that  has exactly one pendent vertex, say x and y is its unique neighbour. Then 

 ( ) . 

     Now, we assume that p≥2. One can observe that each pair of pendent vertices contribute to  ( ) is 1. The total contribution of 

pendent vertices pairs to  ( ) is . Let x be a pendent vertex of G and y is its unique neighbour. Then for any non-pendent 

vertex z in , the contribution of vertex pairs {x, z} to  ( ) is . Since  for any non-pendent vertex z in

, we obtain  

 ( ) . 

This completes the proof. 

Lemma 2.2. [19] Let f be a convex function on the interval I and . Then 

 , with equality if and only if . 

2.1 Edge corona product: 

Hou and Shiu [1] introduced a kind of new graph operation, namely, edge corona product. Theedge corona product of and 

 is defined as the graph obtained by taking one copy of  and p copies of , and then joining two end vertices of the edge 

of to every vertex in the copy of . In [1], the adjacency spectrum and Laplacian spectrum of edge corona product of and 

were presented in terms of the spectrum and Laplacian spectrum of  and , respectively. 

 

Theorem 2.3: Let and be two graphs with vertices and edges, respectively.Then

 

Proof. Let be the  vertex in the copy of H,  and let 

Be the  in .Also let be the vertex in . 

By the definition of edge corona, for each vertex we have andfor every vertex in

 

. 

Now, we consider the following fourcases of nonadjacent vertex pairs in  

 

Case 1: The nonadjacent vertex pairs , and it is assumed that . 
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By Jensen’s inequality, we have with equality if and only if 

thus 

 

 

 

 

 

Case 2: The nonadjacent vertex pairs { , }, 1 ≤ k < s ≤  and it is assumed that E ( ). Thus 

= =  

= )  

= ) ( ) 

 

Case 3: The nonadjacent vertex pairs { , }, , 1 ≤ j ≤ , 1 ≤ k ≤ , and it is assumed that the edge , 

in  does not pass through ,  

 Note that each vertex   is adjacent to all vertices of  copies of , that is, each  is not adjacent to any vertex of 

 −   copies of . Hence 

=  

By Jensen’s inequality, we obtain ≤ +  with 

equality if and only if  .Thus 

≤ ) 

≤ ) 

= + + ) 

= +  ( -1) +  

Case 4: The nonadjacent vertex pairs { , }, 1 ≤ i < ℓ ≤  , 1 ≤ j, h ≤  

 =  



Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022) 

International Journal of Mechanical Engineering 

591 

=  

≤  

≤  

                                     = (2 )+ ) 

 

From the above four cases of nonadjacent vertex pair, we can obtain the hdesired result. This completes the proof. 

 

2.2 Mycielskian graph 

In a search for triangle-free graphs with arbitrarilylarge chromatic number, Mycielski [2] developed on a interesting graph 

transformation as follows: Let 𝒢 be a connected graph with vertex set V(𝒢) = {v1,v2,…,vn}. The Mycielskian graph 𝜇(𝒢) of 𝒢  

contains𝒢 itself as an isomorphic subgraph, together with n+1 additional vertices: a vertex ui corresponding to each vertex  vi of 𝒢, 

and another vertex w. Each vertex uiis connected by an edge to w, so that these vertices form a subgraph in the form of a star K1,n. 

Lemma 2.4:Let  𝒢be a connected graph on n vertices and m edges, Then for each i = 1,2,…,n, we have DG𝜇(𝒢)(vi) = 2DG(𝒢)(vi), 

DG𝜇(𝒢)(ui) = DG(𝒢)(vi)+1 and DG𝜇(𝒢)(w) = n.   

    By the definition of Mycielskian graph, for each edge vivjof, 𝒢 the Mycielskian graph include two edges ∉and Now we 

compute the upper bounds for harmonic coinvariant of Mycielskian graph. 

Theorem 2.5: Let 𝒢 be a graph on n vertices and m edges. Then 

(𝜇(𝒢)) ≤  

Proof: Let V(𝜇(𝒢)) = {v1,…,vn}and let V(𝜇(𝒢)) = {v1,…,vn,u1,…,un,w}. By the structure of Mycielskian graph, if ∉ , then

∉  and ∉ . 

Now we consider the following cases of nonadjacent vertex pairs in (𝒢). 

Case 1: The nonadjacent vertex pairs { } in (𝒢) 

 

,by Lemma 2.4 

                                             =  

Case 2:  The nonadjacent vertex pairs {ui, uj} in 𝜇 (𝒢). 

Case 2.1: uiuj∉ and vivj∉  

 
, 

,by Lemma 2.4. 

By Jensen’s inequality, we obtain  with equality if and only if

. Thus  

Case 2.2: uiuj∉ and vivj∊ . 
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by Lemma 2.4. 

     Apply Jensen’s inequality, we have =  

With equality if and if only if  =2. 

    If uiuj∉ , then there are m edges vivj∊ and nonadjacent vertex pair {VI, VJ} in as well as . 

By cases 2.1 and 2.2, we have the contribution of nonadjacent vertex pair of case 2 is given by 

C2 =  

     = . 

 

Case 3: The nonadjacent vertex pairs { , } in µ ( ) for each i = 1, 2, 

C3 =  

=  , by lemma 2.4 

                         ≤   )   , by Jensen’s inequality 

                                                  =  ( ) 

 

Case 4: The nonadjacent vertex pairs { , } in µ ( ). 

=  

 , by lemma 2.4 

                                                       ≤   +  

                                                      =  +  

Case 5: The nonadjacent vertex pairs {w, } in µ ( ) for each i = 1, 2, n.   

 

                                                    =  

 

                                              = . 

From the above five cases of nonadjacent vertex pairs, we can obtain the desired results. This completes the proof. 
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2.3 Double graph 

Let  be a graph with V ( ) = { }. The vertices of the double graph are given by the two sets X = {

} and Y = { }. Thus for each vertex ∈V ( ), there are two vertices  and  in V ( ). The double graph  

includes the initial edge set of each copies of, and for any edge ∈E ( ), two more edges  and  are added. For a given 

vertex v in , let  . 

Theorem 2.6. The harmonic invariant of the double graph   of a graph  is given by 

H ( ) = 8 IS I ( ).  

Proof. From the definition of double graph it is clear that = = , where ∈V ( ) and ∈V (

) are corresponding clone vertices of . Thus 

                        

 

                                           +  +  

                                   = 4  = 2 H ( ) 

Theorem 2.7.Let  be a connected graph with n vertices and m edges. Then 2  ( ) + .  

Proof. Let V ( ) = { }. Suppose that  and  are the corresponding clone vertices, in , of for each 

for any given vertex  in  and its clone vertices and  , there exists D ( ( (

by the definition of double graph. 

For ,  V( ), if   E( ), then   E( ) ,  E( ), ∉ E( ) and ∉ E( ). 

 So we need only to consider total contribution of the following three types of nonadjacent vertex pairs to calculate ( ). 

  Case 1: The nonadjacent vertex pairs { } and { }, Where ∉E( ). 

 

                                                     =  

                                                      =  

Case 2: The nonadjacent vertex pairs {  

 

 

Case 3: The nonadjacent vertex pairs{ } and { }, Where ∉E(𝒢). 

 For each n-1-D ), vertices in the set { }, among which every vertex together with  

compose a nonadjacent vertex  pairs of 𝒢*. The total contribution of these n-1-D  nonadjacent vertex to calculate (𝒢*) is 
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Hence 

 

Hence 

 

+ +  

                             =2  
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