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1.  Introduction 

Berzsenyi [5] in 1977 propounded the theory of Gaussian Fibonacci number. Afterwards, various researchers worked on this 

theory and gave new innovations in it. Consequently, various interesting results related to Gaussian Fibonacci and Gaussian Lucas 

polynomials were formulated. Asci and Gurel [1] gave the notions of Bivariate Gaussian Fibonacci and Bivariate Gaussian Lucas 

Polynomials and thereby discussed generating functions, Binet formulas, explicit formulas and Q matrix for these polynomials. 

On the other hand, Asci and Gurel [2] defined Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers and formulated some 

interesting results using these notions. Subsequently, Asci and Gurel [3] gave Gaussian Jacobsthal and Gaussian Jacobsthal Lucas 

polynomials and thereby discussed generating function, Binet formula, Explicit formulas and determinantal representations for 

these polynomials. Recently, Catarino and Morgado [4] generalized Jacobsthal and Jacobsthal Lucas polynomials by introducing 

the notions of h(x) – Jacobsthal and h(x) – Jacobsthal Lucas polynomials. In the same work [4], the authors have also discussed 

the properties of these polynomials and thereby provided generalization of the usual identities. 

In the present paper inspired by the work of Catarino and Morgado [4], we formulate p(x) – Gaussian Jacobsthal and p(x) – 

Gaussian Jacobsthal Lucas polynomials & prove certain results involving these polynomials. 

Next, we shall give some basic notions useful in our study. 

In 1996, Horadam [10] innovated Jacobsthal and the Jacobsthal Lucas sequences using the following recurrence formulae: 

    Jn  =  Jn−1 + 2Jn−2 , n ≥ 2              (1.1) 

where 𝐽0 = 0 and 𝐽1 = 1, and 

                                                 jn  =  jn−1 + 2jn−2 , n ≥ 2              (1.2) 

where 𝑗0 = 2 and 𝑗1 = 1. 

Horadam [11] also defined the notions of Jacobsthal and the Jacobsthal Lucas polynomial sequences as follows: 

                                                   Jn (x) =  Jn−1(x) + 2xJn−2 (x), n ≥ 2,            (1.3) 

where 𝐽0(𝑥) = 0 and 𝐽1(𝑥) = 1, 

and                                              jn (x) =  jn−1(x) + 2xjn−2 (𝑥), n ≥ 2,            (1.4) 

where 𝑗0(𝑥) = 2  and 𝑗1(𝑥) = 1. 

Afterwards, Asci and Gurel [2] defined the Gaussian Jacobsthal sequence and Gaussian Jacobsthal Lucas sequences as follows: 

                                                   GJn+1  =  𝐺Jn + 2GJn−1 , n ≥ 1,             (1.5) 

where 𝐺𝐽0 = 
𝒾

2
 and 𝐺𝐽1 = 1, 

and                                              Gjn+1  =  𝐺jn + 2Gjn−1 , n ≥ 1,             (1.6) 

where Gj0  =  2 - 
𝒾

2
   and Gj1  = 1 + 2𝒾. 
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It can be easily seen that GJn = Jn + 𝒾Jn−1 and Gjn = jn + 𝒾jn−1. 

Later, Asci and Gurel [3] formulated Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials by using the following 

recursion: 

   GJn+1 (x) =  𝐺Jn(x) + 2xGJn−1 (x), n ≥ 1,             (1.7) 

where 𝐺𝐽0(x) = 
𝒾

2
, 𝐺𝐽1(x) = 1, 

and                              Gjn+1 (x) =  𝐺jn(x) + 2xGjn−1 (x), n ≥ 1,            (1.8) 

where Gj0 (x)  =  2 - 
𝒾

2
   and Gj1 (x) = 1+2𝒾𝑥. 

Again, it can also be seen that GJn(x) = Jn(x) + 𝒾xJn−1(x) and Gjn(x) = jn(x) + 𝒾𝑥jn−1(x). 

 

On the other hand, Catarino and  Morgado [4] gave the following notions of h(x) – Jacobsthal and h(x) – Jacobsthal Lucas 

polynomials: 

                                       Jh,n+1 (x) =  Jh,n(x) + h(x)Jh,n−1 (x), n ≥ 1,            (1.9) 

where Jh,0(x) = 0 and Jh,1(𝑥) = 1, 

and                                 jh,n+1 (x) =  jh,n(x) + h(x)jh,n−1 (x), n ≥ 1,                     (1.10) 

where jh,0(x) = 2 and jh,1(𝑥) = 1. 

 

Now we define our notions as follows: 

 

Let us assume p(x) be a polynomial with real coefficients and n ≥ 1 any integer. 

Definition 1.1. The p(x) - Gaussian Jacobsthal polynomial sequence  {GJp,n(x)}𝑛=0
∞  is defined by the following recurrence 

relation: 

    GJp,n+1 (x) = GJp,n (x) + p(x) GJp,n−1 (x),           (1.11) 

where n ≥ 1,  p is non – negative integer and the sequence {GJp,n(x)}𝑛=0
∞  is along with the following initial conditions: 

  GJp,0 (x)  =  
𝒾

2
  and   GJp,1 (x) = 1. 

Definition 1.2. The p(x) - Gaussian Jacobsthal Lucas polynomial sequence {Gjp,n(x)}𝑛=0
∞  is

 
defined by the following recurrence 

relation: 

   Gjp,n+1 (x) = Gjp,n (x) + p(x). Gjp,n−1 (x),           (1.12) 

where n ≥ 1, p is non – negative integer and the sequence {Gjp,n(x)}𝑛=0
∞  is along with the following initial conditions: 

  Gjp,0 (x)  =  2 - 
𝒾

2
           and   Gjp,1 (x) = 1 + 𝒾 𝑝(𝑥). 

Next, we give few numbers of terms of these sequences in the following tables: 

p(x) - Gaussian Jacobsthal Polynomials: 

n 𝐆𝐉𝐩,𝐧  

0 𝒾

2
 

1 1 

2 1+ 
𝒾

2
𝑝(𝑥) 

3 1+ 𝑝(x) + 
𝒾

2
𝑝(𝑥) 

4 1+2𝑝(𝑥) + 
𝒾

2
[𝑝(𝑥) + 𝑝2(𝑥)] 

5 1+ 3𝑝(𝑥)+ 𝑝2(𝑥) +
𝒾

2
 [𝑝(𝑥) + 2𝑝2(𝑥)] 

6 
1 + 4𝑝(𝑥) +  3𝑝2(𝑥) + 

𝒾

2
 [𝑝(𝑥) + 3𝑝2(𝑥)  + 𝑝3(𝑥)] 

⋮ ⋮ 
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p(x) - Gaussian Jacobsthal Lucas Polynomials: 

n 𝐆𝐣𝐩,𝐧  

0 2 - 
𝒾

2
 

1 1+𝒾𝑝(𝑥) 

2 1+ 2𝑝(x) + 
𝒾

2
𝑝(𝑥) 

3 1+3𝑝(𝑥) + 
𝒾

2
[𝑝(𝑥) +  2𝑝2(𝑥)] 

4 1+4𝑝(𝑥) + 2𝑝2(𝑥) +  
𝒾

2
[𝑝(𝑥) +  3𝑝2(𝑥)] 

5 
1 + 5𝑝(𝑥) +  5𝑝2(𝑥) + 

𝒾

2
 [𝑝(𝑥) + 4𝑝2(𝑥)  + 2 𝑝3(𝑥)] 

6 
1 + 6𝑝(𝑥) +  9𝑝2(𝑥) + 2𝑝3(𝑥) + 

𝒾

2
 [𝑝(𝑥) + 5𝑝2(𝑥)  + 5𝑝3(𝑥)] 

⋮ ⋮ 

It is interesting to note that on considering p(x) = 2x in (1.11) and (1.12), (1.11) reduces to (1.7) and (1.12) reduces to (1.8), 

respectively. 

In the next section, first we give some recursive properties of p(x) - Gaussian Jacobsthal and p(x) – Gaussian Jacobsthal Lucas 

polynomials and then obtain some important results. 

Before we proceed, we shall consider the following characteristic equation: 

     𝑡2 − 𝑡 − 𝑝(𝑥) = 0.         (1.13) 

The characteristic roots of (1.13) are defined by 

                                𝑡 =
1 ± √1+4𝑝(𝑥)

2
. 

Let          α(𝑥) =
1+√1+4𝑝(𝑥)

2
              and          β(x) =

1−√1+4𝑝(𝑥)

2
, 

then, α(x)  +  β(x)  =  1,  α(x) β(x) =  − p(x) and       α(x)  −  β(x) = √1 + 4𝑝(𝑥). 

2. Mains Results 

In this section, we shall give our main results as follows: 

Some Properties 

Theorem 2.1.  The Generating function for 

(i) p(x) - Gaussian Jacobsthal polynomial is given as follows: 

 g(t, x) =  ∑ GJp,n(x)

∞

𝑛=0

𝑡𝑛 =
2𝑡 +  𝒾(1 − 𝑡)

2(1 − 𝑡 −  𝑝(𝑥) 𝑡2)
 

and 

(ii) p(x) -  Gaussian Jacobthal Lucas polynomial is given as follows: 

   h(t, x) =  ∑ Gjp,n(x)
∞
𝑛=0 𝑡𝑛  =

4−2𝑡+ 𝒾(𝑡−1+2 𝑡 𝑝(𝑥))

2(1−𝑡− 𝑝(𝑥) 𝑡2)
. 

Proof. (i) Let g(t,x) be the generating function of p(x) - Gaussian Jacobsthal polynomial sequence GJp,n (x), then 

g(t,x) – t g(t,x) − t2p(x) g(t,x) =  ∑ GJp,n(x)
∞
𝑛=0 𝑡𝑛 − ∑ GJp,n(x)

∞
𝑛=0 𝑡𝑛+1                −  

𝑝(𝑥) ∑ GJp,n(x)
∞
𝑛=0 𝑡𝑛+2 

  = GJp,0(x) + GJp,1(x).t − GJp,0(x) t 

                + ∑ 𝑡𝑛[GJp,n(x)
∞
𝑛=2  − GJp,n−1(x)− p(x)GJp,n−2(x)] 

      =  
𝒾

2
+ 𝑡 − 

𝒾

2
 t  

                                                  = t +
𝒾

2
 (1- t) 
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  = 
2t + 𝒾(1−t)

2
, 

which implies that g(t,x)  =  
2t + 𝒾(1−t)

2(1−t – p(x)𝑡2)
. 

(ii)  Let h(t,x) be the generalized function of p(x) - Gaussian Jacobsthal Lucas polynomial sequence Gjp,n (x) then 

h(t,x) – t h(t,x) – p(x) t2 h(t,x) =  ∑ Gjp,n(x)
∞
𝑛=0  𝑡𝑛 − ∑ Gjp,n(x)

∞
𝑛=0  𝑡𝑛+1                −  

𝑝(𝑥) ∑ Gjp,n(x)
∞
𝑛=0 𝑡𝑛+2 

     = Gjp,0(x) + Gjp,1(x) t − Gjp,0(x) t 

                + ∑ 𝑡𝑛[Gjp,n(x)
∞
𝑛=2  − Gjp,n−1(x)− p(x) Gjp,n−2(x)] 

     = 2− 
𝒾

2
 + (1+𝒾 𝑝(𝑥)) t – (2− 

𝒾

2
 )𝑡 

     = 2− 
𝒾

2
 + t+ 𝒾 𝑝(𝑥) 𝑡 – 2t+ 

𝒾

2
 𝑡 

                                                 = 2 − t +
𝒾

2
[2𝑡 𝑝(𝑥) − 1 + 𝑡], 

which implies, h(t,x) =  
4−2t+𝒾[2𝑡𝑝(𝑥)−1+𝑡] 

2(1−𝑡−𝑝(𝑥)𝑡2)
. 

 

The following interesting result is a generalization of Binet Formula & can be obtained easily by using mathematical induction: 

Theorem 2.2.  For n ≥ 0, 

(i) GJk,n(x)   =   
αn(x)−β

n(x)

α(x)−β(x)
 +  𝒾

p(x)

2
 
αn−1(x)−β

n−1(x)

α(x)−β(x)
; 

(ii) 𝐺𝑗𝑘,𝑛(𝑥)  = 𝛼𝑛(𝑥) + 𝛽𝑛(𝑥) + 𝒾
p(x)

2
 (𝛼𝑛−1(𝑥) + 𝛽𝑛−1(𝑥)). 

Theorem 2.3. Let 𝑀𝑛(𝑥) denote the n× 𝑛 tridiagonal matrix as 

  𝑀𝑛(𝑥) = 

[
 
 
 
 

1

−
p(x)

2

0
⋮
0

    

𝒾
1

−1
⋮
0

     

0
𝑝(𝑥)

1
⋮
0

     

⋯
⋱
⋱
⋱
−1

     

0
⋮
0

𝑝(𝑥)
1

 

]
 
 
 
 

, n  ≥ 1 

  and let 𝑀0(𝑥) = 
𝒾

2
. 

Then, det 𝑀𝑛(𝑥) = GJp,n(x) , n  ≥ 1 

Proof.  We shall prove the result by using mathematical induction on n. 

For n = 1 and n = 2, it is easy to obtain that 

det 𝑀1(𝑥) = 1 = GJp,1(x) 

and   det 𝑀2(𝑥) = 1 + 
𝒾

2
𝑝(𝑥) = GJp,2(x). 

Assume that the result is true for n − 1 and n − 2, that is 

det 𝑀𝑛−1(𝑥) = GJp,n−1(x) 

and   det 𝑀𝑛−2(𝑥) = GJp,n−2(x). 

Now, we shall prove that the result for n 

For,   det 𝑀𝑛(𝑥) = det 𝑀𝑛−1(𝑥) + p(𝑥)det 𝑀𝑛−2(𝑥)  

     = GJp,n−1(x) + p(𝑥)GJk,n−2(x) 

     = 𝐺𝐽𝑝,𝑛(𝑥). 

Theorem 2.4. Let 𝐴𝑛(𝑥) denote the n× 𝑛 tridiagonal matrix as 

                          𝐴𝑛(𝑥) = 

[
 
 
 
 
 2 −

𝒾

2

1
0
⋮
0

    

𝑝(𝑥)

4
− 1

𝒾.𝑝(𝑥)

2

−1
⋮
0

     

0
𝑝(𝑥)

1
⋮
0

     

⋯
⋱
⋱
⋱
−1

     

0
⋮
0

𝑝(𝑥)
1

 

]
 
 
 
 
 

 , n
 
≥ 1. 
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 Then, det 𝐴𝑛(𝑥) = GJp,n−1(x), n  ≥ 0. 

Proof. We shall prove the result by using mathematical induction on n. 

For n = 1 and n = 2, it is easy to obtain that 

                                               det 𝐴1(𝑥) = 2 − 
𝒾

2
 = Gjp,0(x) 

                          and               det 𝐴2(𝑥) = 1+ p(x) 𝒾 = Gjp,1(x). 

Assume that the result is true for n − 1 and n – 2, that is  

                                                 det 𝐴𝑛−1(𝑥) = Gjp,n−2(x) 

and                   det 𝐴𝑛−2(𝑥) = Gjp,n−3(x). 

Now, we shall prove that the theorem for n. 

For,                                           det 𝐴𝑛(𝑥) = det 𝐴𝑛−1(𝑥) + 𝑝(𝑥) det 𝐴𝑛−2(𝑥)  

                                                                  = Gjp,n−1(x) + 𝑝(𝑥) Gjp,n−2(x) 

                                                                   = 𝐺𝑗𝑝,𝑛(𝑥). 

Now, we introduce the matrices Q(x), P and R that plays the role of the Q-Matrix of Fibonacci numbers. Let Q(x), P and R 

denotes the 2 × 2 matrices defined as 

Q(x) = [
1 𝑝(𝑥)
1 0

], P = [
1 + 𝒾

𝑝(𝑥)

2
1

1
𝒾

2

], R = [
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾p(x)

1 + 𝒾𝑝(𝑥) 2 −
𝒾

2

]. 

Theorem 2.5. Let n ≥ 1, Then 

                                        Qn(x) P = [
GJp,n+2(x) GJp,n+1(x)

GJp,n+1(x) GJp,n(x)
] 

where GJp,n(x) is the nth p(x) - Gaussian Jacobsthal Polynomial. 

Proof. We shall prove the result by using mathematical induction on n. 

 For  n = 1, 

Q(x) P = [
1 𝑝(𝑥)
1 0

] [
1 +

𝒾

2
𝑝(𝑥) 1

1
𝒾

2

] 

           = [
1 + 𝑝(𝑥) +

𝒾

2
. 𝑝(𝑥) 1 +

𝒾

2
. 𝑝(𝑥)

1 +
𝒾

2
. 𝑝(𝑥) 1

] 

           = [
GJp,3(x) GJp,2(x)

GJp,2(x) GJp,1(x)
] 

Assume that the result holds for n = t, that is 

              [Q(x)].𝑡.P  = [
1 𝑝(𝑥)
1 0

]
𝑡

[
1 +

𝒾

2
𝑝(𝑥) 1

1
𝒾

2

] = [
GJp,t+2(x) GJp,t+1(x)

GJp,t+1(x) GJp,t(x)
] 

Now, we shall prove the theorem for n = t+1, we have 

                          [Q(x)]𝑡+1.p = [
1 𝑝(𝑥)
1 0

]
𝑡+1

[
1 +

𝒾

2
𝑝(𝑥) 1

1
𝒾

2

] 

                                  = [
1 𝑝(𝑥)
1 0

] [
1 𝑝(𝑥)
1 0

]
𝑡

[
1 +

𝒾

2
𝑝(𝑥) 1

1
𝒾

2

] 

                                 = [
1 𝑝(𝑥)
1 0

] [
GJp,t+2(x) GJp,t+1(x)

GJp,t+1(x) GJp,t(x)
] 

                                = [
GJp,t+3(x) GJp,t+2(x)

GJp,t+2(x) GJp,t+1(x)
] 
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Theorem 2.6. Let n ≥ 1, Then 

                                        Qn(x) R = [
Gjp,n+2(x) Gjp,n+1(x)

Gjp,n+1(x) Gjp,n(x)
] 

where Gjp,n(x) is the nth p(x) -  Gaussian Jacobsthal Lucas Polynomial. 

Proof. We shall prove the result by using mathematical induction on n. 

For n = 1, we have 

    Q(x) R  = [
1 p(x)
1 0

]. [
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾p(x)

1 + 𝒾𝑝(𝑥) 2 −
𝒾

2

] 

                 = [
1 + 2𝑝(𝑥) +

𝒾

2
𝑝(𝑥) + 𝑝(𝑥) +  𝒾𝑝2(𝑥) 1 + 𝒾𝑝(𝑥) + 2𝑝(𝑥) −

𝒾

2
p(x)

1 + 2𝑝(𝑥) +
𝒾

2
p(x) 1 + 𝒾𝑝(𝑥)

] 

                 = [
1 + 3𝑝(𝑥) +

𝒾

2
[𝑝(𝑥) +  2𝑝2(𝑥)] 1 + 2𝑝(𝑥) +

𝒾

2
p(x)

1 + 2𝑝(𝑥) +
𝒾

2
p(x) 1 + 𝒾𝑝(𝑥)

] 

     =  [
Gjp,3(x) Gjp,2(x)

Gjp,2(x) Gjp,1(x)
]. 

Assume that the theorem holds for n = t, that is 

[Q(x)]𝑡 R  =[
1 p(𝑥)
1 0

]
𝑡

 [
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾p(x)

1 + 𝒾𝑝(𝑥) 2 −
𝒾

2

] = [
Gjp,t+2(x) Gjp,t+1(x)

Gjp,t+1(x) Gjp,t(x)
]. 

Now, we shall prove that the theorem for n = t + 1,  

For, 

           [Q(x)]𝑡+1 R  =[
1 p(𝑥)
1 0

]
𝑡+1

 [
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾p(x)

1 + 𝒾𝑝(𝑥) 2 −
𝒾

2

] 

                      = [
1 p(𝑥)
1 0

] [
1 p(𝑥)
1 0

]
𝑡

 [
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾p(x)

1 + 𝒾𝑝(𝑥) 2 −
𝒾

2

] 

                      = [
1 p(𝑥)
1 0

] [
Gjp,t+2(x) Gjp,t+1(x)

Gjp,t+1(x) Gjp,t(x)
] 

                      = [
Gjp,t+3(x) Gjp,t+2(x)

Gjp,t+2(x) Gjp,t+1(x)
]. 

Next, we give Generalization of Cassini’s Identity for p(x) – Gaussian Jacobsthal & p(x) – Gaussian Jacobsthal Lucas 

polynomials: 

Theorem 2.7. For n  ≥ 1, 

                   𝐺𝐽𝑝,𝑛−1(𝑥) 𝐺𝐽𝑝,𝑛+1(𝑥) − 𝐺𝐽𝑝,𝑛
2 (𝑥) = 

(−1)𝑛

2
(p(x))𝑛−1(

𝑝(𝑥)

2
+ 2 − 𝒾). 

Proof. We can prove the result by matrix method. For, we need to evaluate some determinnats as follows: 

                       det 𝑄𝑛−1(𝑥) = |
1 𝑝(𝑥)
1 0

|
𝑛−1

= [−𝑝(𝑥)]𝑛−1. 

                      det 𝑃 = |
1 +

𝒾

2
 𝑝(𝑥) 1

1
𝒾

2

| =  −
𝒾

2
 – 

𝑝(𝑥)

4
− 1 = −

1

2
[
𝑝(𝑥)

2
  + 2 − 𝒾]. 

Also, by Theorem 2.5, we can obtain 

                     [Q(x)]𝑛−1 P  =  [
GJp,n+1(x) GJp,n(x)

GJp,n(x) GJp,n−1(x)
] 

so that, we have  det(𝑄𝑛−1(𝑥) P) =  𝐺𝐽𝑝,𝑛−1(𝑥) 𝐺𝐽𝑝,𝑛+1(𝑥) − 𝐺𝐽𝑝,𝑛
2 (𝑥), 
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or                   𝐺𝐽𝑝,𝑛−1(𝑥). 𝐺𝐽𝑝,𝑛+1(𝑥) − 𝐺𝐽𝑝,𝑛
2 (𝑥) = det(𝑄𝑛−1(𝑥) P) 

                                                                              = det(𝑄𝑛−1(𝑥)) det(P) 

                                                                              = [−𝑝(𝑥)]𝑛−1  (−
1

2
[
𝑝(𝑥)

2
  +  2 − 𝒾]) 

                                                                              =  
(−1)𝑛

2
[(𝑝(𝑥)]𝑛−1[

𝑝(𝑥)

2
  +  2 − 𝒾]. 

Theorem 2.8. For n ≥ 1, 

     𝐺𝑗𝑝,𝑛−1(𝑥) 𝐺𝑗𝑝,𝑛+1(𝑥) − 𝐺𝑗𝑝,𝑛
2 (𝑥) = (−1)𝑛𝑝(𝑥)𝑛−1 {

17

4
𝑝(𝑥) + 1 −

𝒾

2
[1 + 4𝒾. 𝑝(𝑥)]}. 

Proof. We shall prove the result by using matrix method. For this, we require the following determinants: 

det 𝑄𝑛−1(𝑥) = |
1 𝑝(𝑥)
1 0

|
𝑛−1

= [−𝑝(𝑥)]𝑛−1, 

det 𝑅 = |
1 + 2p(𝑥) +

𝒾

2
𝑝(𝑥) 1 + 𝒾 p(x)

1 + 𝒾 𝑝(𝑥) 2 −
𝒾

2

| =  
17

4
 𝑝(𝑥) + 1 −

𝒾

2
[1 + 4𝒾 𝑝(𝑥)]. 

Also, by Theorem 2.6, we have 

 Qn−1(x) R = [
Gjp,n+1(x) Gjp,n(x)

Gjp,n(x) Gjp,n−1(x)
], 

which implies    det(𝑄𝑛−1(𝑥) R) = 𝐺𝑗𝑝,𝑛−1(𝑥) 𝐺𝑗𝑝,𝑛+1(𝑥) − 𝐺𝑗𝑝,𝑛
2 (𝑥), 

so that 

     𝐺𝑗𝑝,𝑛−1(𝑥) 𝐺𝑗𝑝,𝑛+1(𝑥) − 𝐺𝑗𝑝,𝑛
2 (𝑥) = det(𝑄𝑛−1(𝑥) R) 

 = det(𝑄𝑛−1(𝑥)) det(R) 

 = [−𝑝(𝑥)]𝑛−1  {
17

4
𝑝(𝑥) + 1 −

𝒾

2
[1 + 4𝒾 𝑝(𝑥)]}               

 = (−1)𝑛−1 𝑝(𝑥)𝑛−1  {
17

4
𝑝(𝑥) + 1 −

𝒾

2
[1 + 4𝒾 𝑝(𝑥)]}. 

Theorem 2.9. The sums of the p(x) - Gaussian Jacobsthal polynomial and p(x) - Gaussian Jacobsthal Lucas polynomial are given 

as: 

(i) ∑ 𝐺𝐽𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

𝑝(𝑥)
[𝐺𝐽𝑝,𝑛+2(𝑥) −  1]; 

(ii) ∑ 𝐺𝑗𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

𝑝(𝑥)
[𝐺𝑗𝑝,𝑛+2(𝑥) − (1 + 𝒾 𝑝(𝑥))]. 

Proof.  (i)   For n ≥ 1, we have  

               GJp,n+1 (x) = GJp,n (x) + p(x) GJp,n−1 (x), 

                          GJp,n−1 (x) = 
1

𝑝(𝑥)
[GJp,n+1 (x) − GJp,n (x)]. 

 Taking n = 1, 2, 3, … , n + 1 in last equation, we can get 

                          GJp,0(x) = 
1

𝑝(𝑥)
[GJp,2 (x) − GJp,1 (x)], 

                          GJp,1(x) = 
1

𝑝(𝑥)
[GJp,3 (x) − GJp,2 (x)], 

                          GJp,2(x) = 
1

𝑝(𝑥)
[GJp,4 (x) − GJp,3 (x)], 

                                  ⋮                         ⋮ 

                           GJp,n−1(x) = 
1

𝑝(𝑥)
[GJp,n+1 (x) − GJp,n (x)], 

                           GJp,n(x)  =  
1

𝑝(𝑥)
[GJp,n+2 (x) − GJp,n+1 (x)]. 

On adding all of the above (n + 1) equations, we can get 

  ∑ 𝐺𝐽𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

𝑝(𝑥)
[𝐺𝐽𝑝,𝑛+2(𝑥) − 𝐺𝐽𝑝,1(𝑥)] 

or  ∑ 𝐺𝐽𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

p(x)
[𝐺𝐽𝑘,𝑛+2(𝑥) −  1]. 

(ii)  For n ≥ 1, we have 
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               Gjp,n+1 (x) = Gjp,n (x) + p(x) Gjp,n−1 (x); 

                          Gjp,n−1 (x) = 
1

𝑝(𝑥)
[Gjp,n+1 (x) − Gjp,n (x)]. 

Taking n = 1, 2, 3, … , n + 1 in last equation, we can get 

                          Gjp,0(x) =  
1

𝑝(𝑥)
[Gjp,2 (x) − Gjp,1 (x)], 

                          Gjp,1(x) =  
1

𝑝(𝑥)
[Gjp,3 (x) − Gjp,2 (x)], 

                          Gjp,2(x) =  
1

𝑝(𝑥)
[Gjp,4 (x) − Gjp,3 (x)], 

                                  ⋮                         ⋮ 

                         Gjp,n−1(x) =  
1

𝑝(𝑥)
[Gjp,n+1 (x) − Gjp,n(x)], 

                         Gjp,n(x)  =  
1

𝑝(𝑥)
[Gjp,n+2 (x) − Gjp,n+1 (x)]. 

On adding all of the above (n + 1) equations, we can get 

                        ∑ 𝐺𝑗𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

𝑝(𝑥)
[𝐺𝑗𝑝,𝑛+2(𝑥) − 𝐺𝑗𝑝,1(𝑥)], 

or             ∑ 𝐺𝑗𝑝,𝑚
𝑛
𝑚=0 (𝑥) = 

1

𝑝(𝑥)
[𝐺𝑗𝑝,𝑛+2(𝑥) − (1 + 𝒾 𝑝(𝑥))]. 

 

Conclusion:   

The paper discusses new notions of p(x) – Gaussian Jacobsthal & p(x) – Gaussian Jacobsthal Lucas polynomials and provides 

Generating function, Q – matrix & determinantal representation for these polynomials, there by generalizing the work of Asci & 

Gurel [3]. Further, a generalized form of Binet formula & Cassini’s Identity for these polynomials are also discussed. Present 

paper provides an extension of the work of Catarino & Morgado [4]. 
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