Several Types of Functions of Intuitionistic fuzzy *M* Open Sets in Intuitionistic Fuzzy Topological Spaces

M. Suba ¹, R. Shanmugapriya ², K. Sakthivel ³, ⁴T.N.M. Malini Mai

^{1,2}Department of Mathematics, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology (Deemed to be University), Avadi, Chennai-600062, India.

³Department of Mathematics, Government Arts and Science College, Veppanthattai, Perambalur-621116, India

⁴Department of Mathematics, Saveetha School of Engineering, Saveetha nagar, Sriperumbudur, Chennai- 600124,India

Abstract

In this paper, we introduce a new class of functions termed as intuitionistic fuzzy θ , θ semi, M continuous, θ open, θ closed, θ semiopen, θ semiclosed, M closed and M open mappings with the help of \mathcal{IF} - θc , \mathcal{IF} - θo , \mathcal{IF} - θso , \mathcal{IF} - θsc , \mathcal{IF}

Keywords and phrases: intuitionistic fuzzy topological spaces, *JF*-θ*c*, *JF*-θ*o*, *JF*-θ*so*, *JF*-θ*sc*, *JF*-δ*c*, *JF*-δ*o*, *JF*-δ*po*, *JF*-δ*pc*, *JF*-*Mo*, *JF*-*Mc*

AMS (2000) subject classification: 54A40, 54A99, 03E72, 03E99

1 Introduction

The concept of fuzzy sets was introduced by Zadeh [22] in his classical paper. Fuzzy set have applications in many fields such as Information [17] and Control [18]. After the introduction of fuzzy sets, various authors introduced generalization of the notion of fuzzy set. Atanassov [3] generalized the fuzzy sets to intuitionistic fuzzy sets(in brief, \mathcal{IFS}). Some basic results on \mathcal{IFS} 's were published in [3, 4], and the book [4] provides a comprehensive coverage of virtually all results in the area of the theory and applications of \mathcal{IFS} 's. Coker and his colleague [6, 8, 7] defined intuitionistic fuzzy topology (in brief, \mathcal{IFTS}) in Chang's sense. After that the definition of \mathcal{IFTS} in Samanta and Mondal [16, 15] (\mathcal{IF} gradation of openness) was introduced and studied. In 2004, Caldas et al. [5], introduced some properties of θ open sets and in 2011, Maghrabi and Johany [11] introduced M open sets in topological spaces. In 2013 and 2014, Maghrabi and Johany [12, 13, 14] introduced several mappings by using M open sets in topological spaces. In 2017, Fora [10] discussed some properties of fuzzy clopen sets in fuzzy topological spaces. In this paper, we introduce a new class of functions termed as intuitionistic fuzzy θ , θ semi, M continuous, θ open, θ closed, θ semiopen, θ semiclosed, M closed and M open mappings with the help of $\mathcal{IF}-\theta c$, $\mathcal{IF}-\theta s$, $\mathcal{IF}-\theta sc$, $\mathcal{IF}-\delta sc$, $\mathcal{IF}-\delta$

2 Preliminaries

Definition 2.1 [3] Let Ω be a nonempty fixed set and I the closed interval [0, 1]. An JFS μ is an object of the following form $\mu = \{ \langle \varepsilon, \rho_{\mu}(\varepsilon), \varrho_{\mu}(\varepsilon) \rangle : \varepsilon \in \Omega \}$, where the mapping $\rho_{\mu} : \Omega \to I$ and $\varrho_{\mu} : \Omega \to I$ denote the degree of membership (namely, $\rho_{\mu}(\varepsilon)$) and the degree of nonmembership (namely, $\varrho_{\mu}(\varepsilon)$) \forall element $\varepsilon \in \Omega$ to the set μ , respectively, and $0 \le \rho_{\mu}(\varepsilon) + \varrho_{\mu}(\varepsilon) \le 1 \forall \varepsilon \in \Omega$.

Definition 2.2 [1, 3] Let Ω be a nonempty set, and the JFS's μ and γ in Ω be the form $\mu = \{\langle \varepsilon, \rho_{\mu}(\varepsilon), \varrho_{\mu}(\varepsilon) \rangle : \varepsilon \in \Omega\}, \gamma = \{\langle \varepsilon, \rho_{\gamma}(\varepsilon), \varrho_{\gamma}(\varepsilon) \rangle : \varepsilon \in \Omega\}$ Furthermore, let $\{\mu_i : i \in J\}$ (J be an index set) be an arbitrary family of JFS's in Ω . Then

1. $\mu \leq \gamma$ if and only if $\rho_{\mu}(\varepsilon) \leq \rho_{\gamma}(\varepsilon)$ and $\gamma_{\mu}(\varepsilon) \geq \gamma_{\gamma}(\varepsilon)$, for all $\varepsilon \in \Omega$.

- 2. $\mu = \gamma$ if and only if $\mu \leq \gamma$ and $\gamma \leq \mu$.
- 3. $\mu \wedge \gamma = \{ \langle \varepsilon, \rho_{\mu}(\varepsilon) \wedge \rho_{\gamma}(\varepsilon), \gamma_{\mu}(\varepsilon) \vee \gamma_{\gamma}(\varepsilon) \rangle : \varepsilon \in \Omega \}.$
- 4. $\mu \lor \gamma = \{ \langle \varepsilon, \rho_{\mu}(\varepsilon) \lor \rho_{\gamma}(\varepsilon), \gamma_{\mu}(\varepsilon) \land \gamma_{\gamma}(\varepsilon) \rangle : \varepsilon \in \Omega \}.$

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

- 5. $\overline{\mu} = \{ \langle \varepsilon, \gamma_{\mu}(\varepsilon), \rho_{\mu}(\varepsilon) \rangle : \varepsilon \in \Omega \}.$
- 6. $\mu \gamma = \mu \wedge \overline{\gamma}$.
- 7. $\wedge_{i\in N} \mu_i = \{ \langle \varepsilon, \wedge_{i\in N} \rho_{\mu_i}(\varepsilon), \vee_{i\in N} \gamma_{\mu_i}(\varepsilon) \rangle : \varepsilon \in \Omega \}.$
- 8. $\bigvee_{i\in N} \mu_i = \{ \langle \varepsilon, \bigvee_{i\in N} \rho_{\mu_i}(\varepsilon), \wedge_{i\in N} \gamma_{\mu_i}(\varepsilon) \rangle : \varepsilon \in \Omega \}.$
- 9. $\underline{0} = \{ \langle \varepsilon, 0, 1 \rangle : \varepsilon \in \Omega \}$ and $\underline{1} = \{ \langle \varepsilon, 1, 0 \rangle : \varepsilon \in \Omega \}.$

Definition 2.3 [8] An JFT in Coker's sense on a nonempty set Ω is a family τ of JFS's in Ω satisfying the following axioms

- 1. $\underline{0}, \underline{1} \in \tau$.
- 2. $H_1 \wedge H_2 \in \tau$, for any $H_1, H_2 \in \tau$.
- 3. $\forall H_i \in \tau$ for any arbitrary family $\{H_i : i \in J\} \subseteq \tau$.

Each $\mathcal{IFS} \ \mu$ which belongs to τ is called an \mathcal{IF} open (\mathcal{IFo}) set in Ω . The complement $\overline{\mu}$ of an \mathcal{IFo} set μ in Ω is called an \mathcal{IF} closed (\mathcal{IFc}) set in Ω .

Definition 2.4 [8] Let (Ω, τ) be an JFTS and $\mu = \{ (\varepsilon, \mu_{\mu}, \nu_{\mu}) : \varepsilon \in \Omega \}$ be an JFS in Ω . Then the JF closure (in brief, JFC) and JF interior (in brief, JFI) of μ are defined by

- 1. $\mathcal{IFC}(\mu) = \bigwedge_{i \in \mathbb{N}} \{\iota: \iota \text{ isanIFcs} in \ \Omega \text{ and } \iota \geq \mu\}.$
- 2. $\mathcal{IFI}(\mu) = \bigvee_{i \in \mathbb{N}} \{ \kappa : \kappa \text{ isanIFos} in \ \Omega \text{ and } \kappa \leq \mu \}.$

Definition 2.5 [21] Let μ be JFS in an JFTS (Ω, τ) . μ is called an JF

- 1. regular open (in brief, \mathcal{IFro}) set if $\mu = \mathcal{IFIIFC}(\mu)$.
- 2. regular closed (in brief, \mathcal{IFrc}) set if $\mu = \mathcal{IFCIFI}(\mu)$.

Definition 2.6 [21] Let (Ω, τ) be an JFTS and $\mu = \langle \varepsilon, \mu_{\mu}(\varepsilon), \nu_{\mu}(\varepsilon) \rangle$ be a JFS in Ω . Then the JF δ closure of μ are denoted and defined by JF $\delta C(\mu) = \wedge$ { $\iota:\iota$ is an JFrc set in Ω and $\mu \leq \iota$ } and JF $\delta I(\mu) = \vee$ { $\kappa:\kappa$ is an JFro set in Ω and $\kappa \leq \mu$ }.

Definition 2.7 [19] Let μ be an JFS in an JFTS (Ω, τ) then μ is called an JF [(i)]

- 1. δ -preopen (briefly, $\mathcal{IF}\delta po$) set if $\mu \subseteq \mathcal{IF}int(\mathcal{IF}cl_{\delta}(\mu))$.
- 2. δ -semiopen (briefly, $\mathcal{IF}\delta so$) set if $\mu \subseteq \mathcal{IF}int(\mathcal{IF}cl_{\delta}(\mu))$.
- 3. *e*-open (briefly, *JFeo*) set if $\mu \subseteq JFclJFint_{\delta}(\mu) \cup JFintJFcl_{\delta}(\mu)$.
- 4. δ -preclosed (briefly, $\mathcal{IF}\delta pc$) set if $\mu \supseteq \mathcal{IF}cl(\mathcal{IF}int_{\delta}(\mu))$.
- 5. δ -semiclosed (briefly, $\mathcal{IF}\delta sc$) set if $\mu \supseteq \mathcal{IF}cl(\mathcal{IF}int_{\delta}(\mu))$.
- 6. *e*-closed (briefly, \mathcal{IFec}) set if $\mu \supseteq \mathcal{IFcl}\mathcal{IFint}_{\delta}(\mu) \cap \mathcal{IFint}\mathcal{IFcl}_{\delta}(\mu)$.

Definition 2.8 [8, 19] A function ι from a JFTS (Ω, τ) to a JFTS (ω, σ) is called as JF (resp. δ pre, and e) continuous (briefly JFCts, (resp. JF δ pCts, and JFeCts)) function if $\iota^{-1}(\mu)$ is an JFc (resp. JF δ pc, and JFec) set in $\tau \forall$ JFc set $\mu \in \sigma$.

Definition 2.9 [9] A JFS λ in a JFTS (Ω, τ) is called an JF dense (resp.JF nowhere dense) if there exists no JFo (resp. non-zero JFo) set μ in (Ω, τ) such that $\lambda < \mu < \underline{1}$ (resp. $\mu < JFC(\lambda)$).

Lemma 2.1 [19] For a JFTS (Ω, τ) , every JF dense set is JF δ po.

Definition 2.10 [8, 19] A function ι from a JFTS (Ω, τ) to a JFTS (ω, σ) , is called as a JF open (resp. JF θ semiopen, JF δ preopen, JF M open and JF e open) (briefly JFO, (resp. JF θ sO, JF δ PO, JFMO and JFeO)) function if $\iota(\mu)$ is an JFO (resp. JF θ sO, JF δ PO, JF

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Theorem 2.1 [19] Let $\iota:(\Omega, \tau) \to (\omega, \sigma)$ be a mapping. Every JFO (resp. JFC) is JF δpO (resp. JF δpC) mapping. But not conversely.

Definition 2.11 [20] Let (Ω, τ) be a JFTS, \forall JFS γ, ν the operators JF- θ interior and JF- θ closure denoted by $(JF)\theta I$ and JF θC are defined as

$$\begin{split} \mathcal{IF}\theta I(\gamma) &= \bigvee_{i \in N} \{ \nu \mid \nu \in \tau \& \mathcal{IFC}(\gamma) \leq \nu \} \\ and \\ \mathcal{IF}\theta C(\gamma) &= \bigvee_{i \in N} \{ \nu \mid \nu \in \tau \& \mathcal{IFI}(\gamma) \geq \nu \}. \end{split}$$

Definition 2.12 [20] In an JFTS (Ω, τ) and JFS γ is called an [(i)]

- 1. $\mathcal{IF} \theta$ open (resp. $\mathcal{IF} \theta$ semi open) (briefly $\mathcal{IF}\theta o$ (resp. $\mathcal{IF}\theta so$)) set if $\gamma = \mathcal{IF}\theta I(\gamma)$. (resp. $\gamma \leq \mathcal{IFC}(\mathcal{IF}\theta I(\gamma))$).
- 2. $\mathcal{IF} \theta$ closed (resp. $\mathcal{IF} \theta$ semi closed) (briefly $\mathcal{IF} \theta c$ (resp. $\mathcal{IF} \theta sc$)) set if $\overline{\gamma}$ is an $\mathcal{IF} \theta o$ (resp. $\mathcal{IF} \theta so$) set.

Definition 2.13 [20] In an JFTS (Ω, τ) , and JFS γ is called an

- 1. \mathcal{IF} -M closed (briefly $\mathcal{IF}Mc$) set if $\gamma \geq \mathcal{IF}I(\mathcal{IF}\theta C(\gamma)) \wedge \mathcal{IF}C(\mathcal{IF}\delta I(\gamma))$.
- 2. \mathcal{IF} -M open (briefly $\mathcal{IF}Mo$) set if $\overline{\gamma}$ is an $\mathcal{IF}Mc$ set.

Definition 2.14 [20] Let (Ω, τ) be a JFTS, then the [(i)]

1. union of all \mathcal{IFMo} (resp. $\mathcal{IF}\theta so$) sets contained in γ is called the \mathcal{IFM} (resp. $\mathcal{IF}\theta$ semi) interior of γ and is denoted by $\mathcal{IFMI}(\gamma)$ (resp. $\mathcal{IF}\theta sI(\gamma)$).

2. intersection of all \mathcal{IFMc} (resp. $\mathcal{IF}\theta sc$) sets containing γ is called the \mathcal{IFM} (resp. $\mathcal{IF}\theta$ semi) closure of γ and is denoted by $\mathcal{IFMC}(\gamma)$ (resp. $\mathcal{IF}\theta sC(\gamma)$).

3 Intuitionistic fuzzy M continuous functions

Definition 3.1 A function ι from a JFTS (Ω, τ) to a JFTS (ω, σ) is called as JF θ (resp. θ semi, and M) continuous (briefly JF θ Cts (resp. JF θ sCts, and JFMCts)) function if $\iota^{-1}(\mu)$ is an JF θ c, (resp. JF θ sc and JFMc) set in $\tau \forall$ JFc set $\mu \in \sigma$.

Theorem 3.1 Let $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a mapping. Every

- 1. $JF\theta sCts$ (resp. $JF\delta pCts$) is JFMCts
- 2. JFOCts is JFOsCts
- 3. JFOCts is JFCts
- 4. JFCts is JFδpCts
- 5. JFMCts is JFeCts

function. But not conversely.

Example 3.1 Let $\Omega = \omega = \{a, e, i, o\}, v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right)\right), \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right)\right)$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $\iota: (\Omega, \tau) \to (\omega, \sigma)$ then ϕ is JFeCts but not JF\deltasCts and JF\deltaMCts.

Example 3.2 Let $\Omega = \omega = \{a, e, i, o\}, v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0.1}\right)\right), \varphi = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}\right)\right), \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}, \frac{i}{0.2}, \frac{o}{0.2}\right)\right)$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an $\Im \mathcal{F}\mathcal{T}$ on Ω and

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

 $\sigma = \{\underline{0}, \underline{1}, v, \psi\}$ is an JFT on ω . Let us consider the function $\iota: (\Omega, \tau) \to (\omega, \sigma)$ then ψ is JFMCts but not JF θ sCts and JF δ pCts.

Example 3.3 Let $\Omega = \omega = \{a, e, i, o\}, v = \left\langle \varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right) \right\rangle, \phi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right) \right\rangle, \left\langle \frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0.1}\right) \right\rangle, \phi = \left\langle \varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{i}{0}, \frac{o}{0}\right) \right\rangle, \psi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right) \right\rangle$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $v: (\Omega, \tau) \to (\omega, \sigma)$ then ψ is JFCts but not JF θ Cts and JF θ SCts.

Example 3.4 Let $\Omega = \omega = \{a, e\}$, $v = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle$, $\phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$, $\varphi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle$, $\psi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.7}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, v\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \varphi\}$ is an JFT on ω . Let us consider the function $v: (\Omega, \tau) \to (\omega, \sigma)$ then φ is JF $\delta pCts$ but not JFCts

Example 3.5 Let $\Omega = \omega = \{a, e\}, \ v = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle, \ \phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle, \ \varphi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle, \ \psi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.7}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, v\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \psi\}$ is an JFT on ω . Let us consider the function $v: (\Omega, \tau) \to (\omega, \sigma)$ then ψ is JF δ pCts but not JFCts

From the Theorem 3.1 and Examples 3.1, 3.2, 3.3, 3.4 and 3.5 the following implications are hold.

Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Definition 3.2 Let (Ω, τ) be a IFTS, $\mu \in \tau$, $x_{t,s}$ is a IF point then μ is called IFQ [?] (resp. IFMQ) -neighborhood of $x_{t,s}$ if $\mu \in \tau$ (resp. IFMO) and $x_{t,s}q\mu$.

Definition 3.3 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is called JFMCts at a JF point $x_{t,s}$ if the inverse image of each JFQ neighbourhood of $\iota(x_{t,s})$ is an JFMQ neighbourhood of $x_{t,s} \in \tau$.

Theorem 3.2 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is *JFMCts iff it is JFMCts at every JF point* $x_{t,s} \in \tau$.

Theorem 3.3 Let (Ω, τ) and (ω, σ) be $\Im FTS$'s and $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a mapping. Then

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

- 1. ι is *JFMCts* function.
- 2. $\iota^{-1}(\lambda) \in \tau$ is an $\Im FMo$, $\forall \ \Im Fo$ set $\lambda \in \sigma$.
- 3. $\iota^{-1}(\lambda) \in \tau$ is an $\mathcal{IFMc}, \forall \mathcal{IFc}$ set $\lambda \in \sigma$.
- 4. $\iota(\mathcal{IFMC}(\lambda)) \leq \mathcal{IFC}(\iota(\lambda)), \forall \lambda \in \tau.$
- 5. $\mathcal{IFMC}(\iota^{-1}(\lambda)) \leq \iota^{-1}(\mathcal{IFC}(\lambda)), \forall \ \lambda \in \sigma.$
- 6. $\mathcal{IFI}(\mathcal{IF}\theta C(\iota^{-1}(\lambda))) \wedge \mathcal{IFC}(\mathcal{IF}\delta I(\iota^{-1}(\lambda))) \leq \iota^{-1}(\mathcal{IFC}(\lambda)), \forall \lambda \in \sigma.$
- 7. $\iota^{-1}(\mathcal{IFI}(\lambda)) \leq \mathcal{IFMI}(\iota^{-1}(\lambda)), \forall \lambda \in \sigma.$
- 8. $\iota^{-1}(\Im \mathcal{F}I(\mu)) \leq \Im \mathcal{F}C(\Im \mathcal{F}\theta I(\iota^{-1}(\mu))) \vee \Im \mathcal{F}I(\Im \mathcal{F}\delta C(\iota^{-1}(\mu),)),) \forall \mu \in I^{Y}$

are equivalent.

Proof. (ii) \Rightarrow (iii), (v) \Rightarrow (vii), (vi) \Rightarrow (viii), (viii) \Rightarrow (iii) are direct to prove, other results are provided here.

(i) \Rightarrow (ii): Let λ be an $\mathcal{IF}o$ set in (ω, σ) , ι is a \mathcal{IFMCts} function, then we have $\iota^{-1}(\overline{\lambda})$ is an \mathcal{IFMc} set of (Ω, τ) . Therefore $\iota^{-1}(\lambda)$ is an \mathcal{IFMo} set of (Ω, τ) .

(iii) \Rightarrow (iv): Let $\lambda \in \tau$, since $\mathcal{IFI}(\iota(\lambda)) \in \sigma$ Then by (iii), $\iota^{-1}(\mathcal{IFC}(\iota(\lambda)))$ is an \mathcal{IFMc} set of (Ω, τ) . Since $\lambda \leq \iota^{-1}(\iota(\lambda)) \leq \iota^{-1}(\mathcal{IFC}(\iota(\lambda)))$, we have $\mathcal{IFMC}(\lambda) \leq \iota^{-1}(\mathcal{IFC}(\iota(\lambda)))$. Hence $\iota(\mathcal{IFMC}(\lambda)) \leq \mathcal{IFC}(\iota(\lambda))$.

(iv) \Rightarrow (v): For all $\lambda \in \sigma$, let $\iota^{-1}(\lambda)$ instead of λ in (iv), we have

 $\iota(\mathcal{IFMC}(\iota^{-1}(\lambda),)) \leq \mathcal{IFC}(\iota(\iota^{-1}(\lambda))) \leq \mathcal{IFC}(\lambda).$

It implies that

 $\mathcal{IFMC}(\iota^{-1}(\lambda)) \leq \iota^{-1}(\mathcal{IFC}(\lambda)).$

(vii) \Rightarrow (i): Let λ be an \mathcal{IFc} set in (ω, σ) . Then $\overline{\lambda} = I(\overline{\lambda})$. By (vii), $\iota^{-1}(\overline{\lambda}) \leq \mathcal{IFMI}(\iota^{-1}(\overline{\lambda}))$. But we know that $\iota^{-1}(\overline{\lambda}) \geq \mathcal{IFMI}(\iota^{-1}(\overline{\lambda}))$. Thus, $\iota^{-1}(\overline{\lambda}) = \mathcal{IFMI}(\iota^{-1}(\overline{\lambda}))$, that is, $\iota^{-1}(\overline{\lambda})$ is \mathcal{IFMo} set. Since, $\iota^{-1}(\lambda)$ is \mathcal{IFMc} set. Therefore ι is \mathcal{IFMC} ts function.

(iii) \Rightarrow (vi): For all $\lambda \in \sigma$, since $\mathcal{IFC}(\lambda)$ is an \mathcal{IFc} set in (ω, σ) , by (iii), we have that $\iota^{-1}(\mathcal{IFC}(\lambda))$ is an \mathcal{IFMc} set in (Ω, τ) . Hence $\iota^{-1}(\mathcal{IFC}(\lambda)) \geq \mathcal{IFI}(\mathcal{IFPC}(\iota^{-1}(\mathcal{C}(\lambda)))) \wedge \mathcal{IFC}(\mathcal{IF\deltaI}(\iota^{-1}(\mathcal{C}(\lambda)))) \geq \mathcal{IFI}(\mathcal{IFPC}(\iota^{-1}(\lambda))) \wedge \mathcal{IFC}(\mathcal{IF\deltaI}(\iota^{-1}(\lambda)))$.

 $(vi) \Rightarrow (iii)$: For all $\lambda \in \sigma$, since $\mathcal{IFC}(\lambda)$ is an \mathcal{IFc} set in (ω, σ) , and let $\mathcal{IFC}(\lambda)$ instead of λ in (vi), we have that

 $\Im \mathcal{F} I(\Im \mathcal{F} \theta \mathcal{C}(\iota^{-1}(\Im \mathcal{F} \mathcal{C}(\lambda)))) \wedge \Im \mathcal{F} \mathcal{C}(\Im \mathcal{F} \delta I(\iota^{-1}(\Im \mathcal{F} \mathcal{C}(\lambda))))$

 $\leq \iota^{-1}(\mathcal{IFC}(\mathcal{IFC}(\lambda)))$ $= \iota^{-1}(\mathcal{IFC}(\lambda)).$

Hence $\iota^{-1}(\mathcal{IFC}(\lambda))$ is an \mathcal{IFMc} set in (Ω, τ) .

Proposition 3.1 Let $\iota: (\Omega, \tau) \to (\omega, \sigma)$) *JFMCts mapping and if for any JFS* λ *of* Ω *is JF nowhere dense then* ι *is JF* $\delta pCts$.

Proof. Let $\mu \in \sigma$ Since ι is an *JFMCts* mapping, then $\iota^{-1}(\mu)$ is an *JFMo* set in (Ω, τ) . Put $\iota^{-1}(\mu) = \lambda$ is an *JFMo* set in Ω . Hence

 $\lambda \leq \mathcal{IFC}(\mathcal{IF}\theta I(\lambda)) \lor \mathcal{IFI}(\mathcal{IF}\delta C(\lambda)).$

But $\mathcal{IF}\theta I(\lambda) \leq \mathcal{IF}I(\lambda) \leq \mathcal{IF}C(\lambda)$, then

 $\mathcal{IF}\theta I(\lambda) \leq \mathcal{IF}I(\mathcal{IFC}(\lambda)).$

Since λ is \mathcal{IF} nowhere dense and Lemma ??, we have $\mathcal{IF}\theta I(\lambda) = \underline{0}$. Therefore ι is $\mathcal{IF}\delta pCts$.

Definition 3.4 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is called $JF \theta$ -open map (briefly $JF\theta 0$) if the image of every JFo set of (Ω, τ) is $JF\theta o$ set in (ω, σ) .

Definition 3.5 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is called $JF \theta$ -bicontinuous (briefly, $JF\theta biCts$) if ι is $JF\theta 0$ map and $JF\theta Cts$ map.

Theorem 3.4 If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a JF θ biCts mapping then the inverse image of each JFMo set in (ω, σ) under ι is JFMo set in (Ω, τ) .

Proof. Let ι be a $\mathcal{JF}\theta biCts$ and μ be a $\mathcal{JF}Mo$ set in (ω, σ) . Then

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

$$\begin{split} \mu &\leq \Im \mathcal{F}\mathcal{C}(\Im \mathcal{F}\theta I(\mu)) \lor \Im \mathcal{F}I(\Im \mathcal{F}\delta\mathcal{C}(\mu)).\\ \iota^{-1}(\mu) &\leq \iota^{-1}(\Im \mathcal{F}\mathcal{C}(\Im \mathcal{F}\theta I(\mu))) \lor \iota^{-1}(\Im \mathcal{F}I(\Im \mathcal{F}\delta\mathcal{C}(\mu))).\\ &\leq \Im \mathcal{F}\mathcal{C}(\iota^{-1}(\Im \mathcal{F}\theta I(\mu))) \lor \iota^{-1}(\Im \mathcal{F}I(\Im \mathcal{F}\delta\mathcal{C}(\mu))). \end{split}$$

Since ι is an $\mathcal{JF}\theta biCts$ mapping, then ι is $\mathcal{JF}\theta O$ map and $\mathcal{JF}\theta Cts$ map. Then ι is $\mathcal{JF}\theta sCts$ map and $\mathcal{JF}\delta pCts$ map. Hence $\iota^{-1}(\mu) \leq \mathcal{JF}C(\mathcal{JF}\theta I(\iota^{-1}(\mu))) \vee \mathcal{JF}I(\mathcal{JF}\delta C(\iota^{-1}(\mu))).$

This shows that $\iota^{-1}(\mu)$ is \mathcal{IFMo} set in (Ω, τ) .

Remark 3.1 If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a JF θ biCts mapping. Then the inverse image of each JF δ po (resp. JF θ so) set in Y under ι is JFMo set in Ω .

The next theorem gives the conditions under which the composition of *JFMCts* mapping is *JFMCts*.

Theorem 3.5 Let (Ω, τ) , (ω, σ) and (Z, γ) be IFTS's. If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ and $j: (\omega, \sigma) \to (Z, \gamma)$ are mappings, then $j \circ \iota$ is JFMCts mapping if

- 1. ι is *JFMCts* and j is *JFCts*.
- 2. ι is *JF* θ *biCts* and j is *JFMCts* mapping.

Proof. (i) Let $\mu \in \gamma$ and $\tau_3^*(\mu) \leq \kappa$. Since *j* is *JFCts* then $j^{-1}(\mu) \in \sigma$. Since *i* is *JFMCts*, then $i^{-1}(j^{-1}(\mu)) = (j \circ i)^{-1}(\mu)$ is *JFMo* set in (Ω, τ) . Hence $j \circ i$ is *JFMCts*.

(ii) Let $\mu \in \gamma$. Since *j* is *JFMCts*, then $j^{-1}(\mu)$ is an *JFMo* set in (ω, σ) . Since *i* is *JF* θ *biCts*, by Theorem 3.4, $(j \circ i)^{-1}(\mu)$ is *JFMo* set in (Ω, τ) . Hence $j \circ i$ is *JFMCts*.

4 Intuitionistic fuzzy *M* open mappings

Definition 4.1 A function ι from a JFTS (Ω, τ) to a JFTS (ω, σ) , is called as a JF θ open (resp. JF θ semiopen, and JF M open) (briefly JF $\theta 0$ (resp. JF θ s0 and JFM0)) function if $\iota(\mu)$ is an JF θo (resp. JF θ s0 and JFMo) set in $\sigma \forall$ JFo set $\mu \in \tau$

Definition 4.2 A function ι from a JFTS (Ω, τ) to a JFTS (ω, σ) , is called as a JF θ closed (resp. JF θ semiclosed, and JF M closed) (briefly JF θ C (resp. JF θ SC and JFMC)) function if $\iota(\mu)$ is an JF θ C (resp. JF θ SC and JFMC) set in $\sigma \forall$ JFc set $\mu \in \overline{\tau}$

Theorem 4.1 Let $\iota:(\Omega, \tau) \to (\omega, \sigma)$ be a mapping. Every

- 1. $\mathcal{JF}\theta sO$ (resp. $\mathcal{JF}\delta pO$) is $\mathcal{JF}MO$
- 2. $\mathcal{IF}\theta sC$ (resp. $\mathcal{IF}\delta pC$) is $\mathcal{IF}MC$
- 3. $\mathcal{JF}\theta O$ (resp. $\mathcal{JF}\theta C$) is $\mathcal{JF}\theta sO$ (resp. $\mathcal{JF}\theta sC$)
- 4. $\mathcal{IF}\theta O$ (resp. $\mathcal{IF}\theta C$) is $\mathcal{IF}O$ (resp. $\mathcal{IF}C$)
- 5. \mathcal{IFO} (resp. \mathcal{IFC}) is $\mathcal{IF\delta pO}$ (resp. $\mathcal{IF\delta pC}$)
- 6. JFMO (resp. JFMC) is JFeO (resp. JFeC)

mapping. But not conversely.

Example 4.1 Let $\Omega = \omega = \{a, e, i, o\}, v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0.1}\right)\right), \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right)\right)$ Then the families $\tau = \{0, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then ϕ is JFeO but not JF\deltasO and JF\deltaMO.

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering 1644

Example 4.2 Let $\Omega = \omega = \{a, e, i, o\}, v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0.1}\right)\right), \varphi = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{i}{0}, \frac{o}{0}\right)\right), \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{0.8}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right)\right)$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \psi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then ψ is JFMO but not JF θ sO and JF δ pO.

Example 4.3 Let $\Omega = \omega = \{a, e, i, o\}, v = \left\langle \varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right) \right\rangle, \phi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right) \right\rangle, \psi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right) \right\rangle$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then ψ is JFO but not JF0O and JF0sO.

Example 4.4 Let $\Omega = \omega = \{a, e\}, \ \upsilon = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle, \ \phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle, \ \varphi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle, \ \psi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.7}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, \upsilon\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \varphi\}$ is an JFT on ω . Let us consider the function $\upsilon: (\omega, \sigma) \to (\Omega, \tau)$ then φ is JF δ pO but not JFO

Example 4.5 Let $\Omega = \omega = \{a, e\}, \ v = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle, \ \phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle, \ \varphi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle, \ \psi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.7}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, v\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \psi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then ψ is JF δpO but not JFO

Example 4.6 Let $\Omega = \omega = \{a, e, i, o\}, v = \left\langle \varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right) \right\rangle, \phi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right) \right\rangle, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right) \right\rangle, \varphi = \left\langle \varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0}, \frac{o}{0}\right) \right\rangle, \psi = \left\langle \varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right) \right\rangle$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then $\overline{\varphi}$ is JFeC but not JF\deltasC and JF\deltaMC.

Example 4.7 Let $\Omega = \omega = \{a, e, i, o\}, v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right)\right), \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{0}\right)\right)$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \psi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then $\overline{\psi}$ is JFMC but not JF θ sC and JF δp C.

Example 4.8 Let $\Omega = \omega = \{a, e, i, o\}, \ v = \left(\varepsilon, \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{0.2}, \frac{o}{0}\right), \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0.7}, \frac{o}{1}\right)\right), \ \phi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{1}, \frac{i}{0}, \frac{o}{0}\right), \left(\frac{a}{1}, \frac{e}{0}, \frac{i}{1}, \frac{o}{0}\right)\right), \ \psi = \left(\varepsilon, \left(\frac{a}{0}, \frac{e}{0.3}, \frac{i}{0}, \frac{o}{1}\right), \left(\frac{a}{0}, \frac{e}{0.2}, \frac{i}{0.9}, \frac{o}{0}\right)\right)$ Then the families $\tau = \{\underline{0}, \underline{1}, v, \phi, v \lor \phi\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, v, \phi\}$ is an JFT on ω . Let us consider the function $v: (\omega, \sigma) \to (\Omega, \tau)$ then $\overline{\psi}$ is JFC but not JF θ C and JF θ sC.

Example 4.9 Let $\Omega = \omega = \{a, e\}, \ \upsilon = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle, \ \phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle, \ \varphi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle, \ \psi = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, \upsilon\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \varphi\}$ is an JFT on ω . Let us consider the function $\upsilon: (\omega, \sigma) \to (\Omega, \tau)$ then $\overline{\varphi}$ is JF δpC but not JFC

Example 4.10 Let $\Omega = \omega = \{a, e\}, \ \upsilon = \left\langle \varepsilon, \left(\frac{a}{0.5}, \frac{e}{0.5}\right), \left(\frac{a}{0.3}, \frac{e}{0.5}\right) \right\rangle, \ \phi = \left\langle \varepsilon, \left(\frac{a}{0.7}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle, \ \varphi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.4}\right), \left(\frac{a}{0.5}, \frac{e}{0.6}\right) \right\rangle, \ \psi = \left\langle \varepsilon, \left(\frac{a}{0.3}, \frac{e}{0.2}\right), \left(\frac{a}{0.3}, \frac{e}{0.2}\right) \right\rangle$. Then the families $\tau = \{\underline{0}, \underline{1}, \upsilon\}$ is an JFT on Ω and $\sigma = \{\underline{0}, \underline{1}, \psi\}$ is an JFT on ω . Let us consider the function $\upsilon: (\omega, \sigma) \to (\Omega, \tau)$ then $\overline{\psi}$ is JF δpC but not JFC

From the above Theorem 2.1 and 4.1 Examples 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 the following implications are hold.

Copyrights @Kalahari Journals

Vol.7 No.4 (April, 2022)

Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Definition 4.3 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is called JFMO at a JF point $x_{t,s}$ if the image of each JF-Q neighbourhood of $x_{t,s}$ is an JF-MQ neighbourhood of $\iota(x_{t,s}) \in \sigma$.

Theorem 4.2 A mapping $\iota: (\Omega, \tau) \to (\omega, \sigma)$ is $\Im \mathcal{F}MO$ iff it is $\Im \mathcal{F}MO$ at every $\Im \mathcal{F}$ point $x_{t,s} \in \tau$.

Theorem 4.3 Let (Ω, τ) and (ω, σ) be *JFTS*'s and $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a mapping. Then

- 1. ι is *JFMO* function.
- 2. $\iota(\lambda)$ is an \mathcal{IFMo} set in $(\omega, \sigma) \forall \mathcal{IFo}$ set λ in (Ω, τ) .
- 3. ι is *JFMC* function.
- 4. $\iota(\lambda)$ is an $\Im FMc$ set in $(\omega, \sigma) \forall \Im Fc$ set λ in (Ω, τ) .
- 5. $\mathcal{IFMC}(\iota(\lambda), 1) \leq \iota(\mathcal{IFC}(\lambda)) \forall \lambda \in \tau$.
- 6. $\mathcal{IFI}(\mathcal{IF}\theta C(\iota(\lambda))) \land \mathcal{IFC}(\mathcal{IF}\delta I(\iota(\lambda))) \leq \iota(\mathcal{IFC}(\lambda)) \forall \lambda \in \tau.$
- 7. $\iota(\Im \mathcal{F}I(\lambda)) \leq \Im \mathcal{F}C(\Im \mathcal{F}\theta I(\iota(\lambda))) \vee \Im \mathcal{F}I(\Im \mathcal{F}\delta C(\iota(\lambda))) \forall \lambda \in I^{\Omega}.$
- 8. $\iota(\mathcal{IFI}(\lambda,)) \leq \mathcal{IFMI}(\iota(\lambda)) \ \forall \ \lambda \in \tau.$
- 9. $\mathcal{IFI}(\iota^{-1}(\lambda)) \leq \iota^{-1}(\mathcal{IFMI}(\lambda)) \ \forall \ \lambda \in \sigma$

are equivalent.

Proof. (i) \Rightarrow (ii), (iii) \Rightarrow (iv), (v) \Rightarrow (vi), (vii) \Rightarrow (viii), are direct to prove, other results are provided here.

(ii) \Rightarrow (iii): Let $\overline{\omega}$ be an $\mathcal{IF}o$ set in (Ω, τ) , by (ii), we have $\iota(\overline{\omega})$ is an $\mathcal{IF}Mo$ set of (ω, σ) . Therefore $\iota(\lambda)$ is an $\mathcal{IF}Mc$ set of (ω, σ) $\forall \lambda \in (\Omega, \tau), \mathcal{IF}c$ set.

(iv) \Rightarrow (v): Since $\mathcal{IFC}(\lambda)$ is an \mathcal{IFc} set, then $\iota(\mathcal{IFC}(\lambda))$ is an \mathcal{IFMc} set in Y. Hence

 $\Im \mathcal{F}MC(\iota(\lambda)) \leq \Im \mathcal{F}MC(\iota(\Im \mathcal{F}C(\lambda))) = \iota(\Im \mathcal{F}C(\lambda)).$

(vi) \Rightarrow (vii): Let $\overline{\varpi}$ instead of λ in (vi), then, (vii) will follows directly.

(viii) \Rightarrow (ix) Let $\lambda \in \sigma$, by (viii) we have

Copyrights @Kalahari Journals

 $\iota(\mathcal{IFI}(\iota^{-1}(\lambda))) \leq \mathcal{IFMI}(ff^{-1}(\lambda)) \leq \mathcal{IFMI}(\lambda),$

then $I(\iota^{-1}(\lambda)) \leq \iota^{-1}(\mathcal{IFMI}(\lambda)).$

 $(ix) \Rightarrow (i)$: For each $\lambda \in \tau$, since $\mathcal{IFI}(\lambda) = \lambda$, $\iota(\lambda) \leq \mathcal{IFMI}(\iota(\lambda)) \leq \iota(\lambda)$. Thus $\iota(\lambda) = \mathcal{IFMI}(\iota(\lambda))$. $\iota(\lambda)$ is \mathcal{IFMO} in ω .

Theorem 4.4 Let (Ω, τ) and (ω, σ) be *JFTS*'s. Let $\iota: \Omega \to \omega$ be a *JFMC* mapping iff ι is surjective, then \forall subset μ of ω and each *JFo* set α in Ω containing $\iota^{-1}(\mu)$, there exists an *JFMo* set β of ω containing μ such that $\iota^{-1}(\beta) \leq \alpha$.

Proof. Suppose that α is an $\mathcal{IF}o$ set of Ω containing $\iota^{-1}(\mu)$. Then by hypothesis, β is $\mathcal{IF}Mo$ in ω . But $\iota^{-1}(\mu) \leq \alpha$, then $\mu \leq \iota(\alpha)$ and $\mu \leq \beta$, $\iota^{-1}(\beta) \leq \alpha$.

Conversely, let δ be a $\mathcal{IF}c$ set and $y_{t,s}$ be any \mathcal{IF} point of $\iota(\overline{\delta})$. Then $\iota^{-1}(y_{t,s}) \in \overline{\delta}$ which is $\mathcal{IF}o$ set in Ω . Hence by hypothesis, $\exists \quad \mathcal{IF}Mo$ set β containing $y_{t,s}$ such that $\iota^{-1}(\beta) \leq \overline{\delta}$. But ι is surjective, then $y_{t,s} \in \beta \leq \iota(\overline{\delta})$ and $\iota(\overline{\delta})$ is the union of $\mathcal{IF}Mo$ sets and hence $\iota(\delta)$ is $\mathcal{IF}Mc$ set in ω . Therefore, ι is $\mathcal{IF}Mc$ map. t

Theorem 4.5 Let (Ω, τ) and (ω, σ) be $\Im FTS$'s and $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a $\Im FMO$ (resp. $\Im F\delta sO$, $\Im F\delta pO$) mapping. If $\mu \in \sigma$ and $\lambda \in \tau$, such that $\iota^{-1}(\mu) \leq \lambda$, then there exists an $\Im FMc$ (resp. $\Im F\delta sc$, $\Im F\delta pc$) set ν of ω such that $\mu \leq \nu, \iota^{-1}(\nu) \leq \lambda$.

Proof. Since $\iota^{-1}(\mu) \leq \lambda$, we have $\iota(\overline{\lambda}) \leq \overline{\mu}$. Since ι is $\Im FMO$ map, then ν is $\Im FMc$ in Y and $\iota^{-1}(\nu) = \lambda$. The other cases of the theorem can be proved in a same manner.

Theorem 4.6 If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a JFMO mapping. Then $\forall \mu \in \sigma, \iota^{-1}(J\mathcal{FC}(J\mathcal{F}\theta I(\mu))) \land \iota^{-1}(J\mathcal{FI}(J\mathcal{F}\delta C(\mu))) \leq J\mathcal{FC}(\iota^{-1}(\mu)).$

Proof. Since $\mu \in \omega, \mathcal{IF}(\iota^{-1}(\mu)) \in \Omega$ and $\iota^{-1}(\mu) \leq \mathcal{IFC}(\iota^{-1}(\mu)) \forall \mu \in \sigma$, it follows from Theorem 4.5, that there exists an \mathcal{IFMc} set λ of ω , $\mu \leq \lambda$ such that $\iota^{-1}(\lambda) \leq \mathcal{IFC}(\iota^{-1}(\mu))$. So $\lambda \geq \mathcal{IFC}(\mathcal{IF\delta}I(\lambda)) \land \mathcal{IFI}(\mathcal{IF\theta}C(\lambda))$, hence

 $\iota^{-1}(\lambda) \geq \iota^{-1}(\mathcal{IFC}(\mathcal{IF\delta}I(\lambda))) \wedge \iota^{-1}(\mathcal{IFI}(\mathcal{IF\theta}C(\lambda)))$

 $\geq \iota^{-1}(\mathcal{IFC}(\mathcal{IF\delta}I(\mu))) \wedge \iota^{-1}(\mathcal{IFI}(\mathcal{IF\theta}C(\mu))).$

Thus it concludes the proof.

Theorem 4.7 If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a bijective mapping such that $\iota^{-1}(\mathcal{IFC}(\mathcal{IF\delta}I(\mu))) \land \iota^{-1}(\mathcal{IFI}(\theta C(\mu))) \leq \mathcal{IFC}(\iota^{-1}(\mu)), \forall \mu \in \sigma$, then ι is \mathcal{IFMO} map.

Proof. Let $\lambda \in \tau$ Then, hypothesis, $\iota^{-1}(\Im F \mathcal{O}(\Im F \delta I(\iota(\overline{\lambda})))) \wedge \iota^{-1}(\Im F \mathcal{O}(\iota(\overline{\lambda})))) \leq \Im F \mathcal{O}(\iota^{-1}(\iota(\overline{\lambda}))) = \Im F \mathcal{O}(\overline{\lambda}) = \overline{\lambda}$ and so $\Im F \mathcal{O}(\Im F \delta I(\iota(\overline{\lambda}))) \wedge \Im F I(\Im F \delta \mathcal{O}(\iota(\overline{\lambda})))) \leq \iota(\overline{\lambda})$, which shows that $\iota(\overline{\lambda})$ is an $\Im F M \mathcal{O}$ set of ω . Since ι is bijective, then $\iota(\lambda)$ is an $\Im F M \mathcal{O}$ set of ω , therefore ι is $\Im F M \mathcal{O}$ map.

Theorem 4.8 Let (Ω, τ) and (ω, σ) be JFTS's. Let $\iota: \Omega \to \omega$ be a JFMC mapping. Then the following statements hold.

- 1. If ι is a surjective map and $\iota^{-1}(\alpha)\overline{q}\iota^{-1}(\beta)$ in Ω , then there exists $\alpha, \beta \in \sigma$ such that $\alpha \overline{q}\beta$.
- 2. $\mathcal{JFMI}(\mathcal{JFMC}(\iota(\lambda))) \leq \iota(\mathcal{JFC}(\lambda)), \forall \lambda \in \Omega.$

Proof. (i) Let $\gamma_1, \gamma_2 \in \Omega$ such that $\iota^{-1}(\alpha) \leq \gamma_1$ and $\iota^{-1}(\beta) \leq \gamma_2$ such that $\gamma_1 \overline{q} \gamma_2$. Then there exists two \mathcal{IFMo} sets μ_1 and μ_2 such that $\iota^{-1}(\alpha) \leq \mu_1 \leq \gamma_1$, $\iota^{-1}(\beta) \leq \mu_2 \leq \gamma_2$. But ι is a surjective map, then $ff^{-1}(\alpha) = \alpha \leq \iota(\mu_1) \leq \iota(\gamma_1)$ and $ff^{-1}(\beta) = \beta \leq \iota(\mu_2) \leq \iota(\gamma_2)$. Since $\gamma_1 \overline{q} \gamma_2$, then also $\iota(\gamma_1 \wedge \gamma_2) = 0$. Hence $\alpha \wedge \beta \leq \iota(\mu_1 \wedge \mu_2) \leq \iota(\gamma_1 \wedge \gamma_2) = 0$. Therefore, $\alpha \overline{q}\beta$ in ω , that is $\alpha \wedge \beta = 0$.

(ii) Since $\lambda \leq \Im FC(\lambda) \leq \underline{1}$ and ι is a $\Im FMC$ mapping, then $\iota(\Im FC(\lambda))$ is $\Im FMc$ set in ω . Hence $\iota(\lambda) \leq \Im FMC(\lambda) \leq \iota(\Im FC(\lambda))$. So $\Im FMI(\Im FMC(\iota(\lambda))) \leq \iota(\Im FC(\lambda))$.

Proposition 4.1 Let $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a JFMO mapping and if for any JFS λ of ω is JF nowhere dense then ι is JF δpO map.

Proof. Let $\mu \in \Omega$. Since ι is an \mathcal{IFMO} mapping, then $\iota(\mu)$ is an \mathcal{IFMO} set in (ω, σ) . Put $\iota(\mu) = \lambda$ is an \mathcal{IFMO} set in ω . Hence $\lambda \leq \mathcal{IFC}(\mathcal{IF}\theta I(\lambda)) \vee \mathcal{IFI}(\mathcal{IF}\delta C(\lambda))$. But $\mathcal{IF}\theta I(\lambda) \leq \mathcal{IFI}(\lambda) \leq \mathcal{IFC}(\lambda)$, and since λ is \mathcal{IF} nowhere dense, then

 $\mathcal{IF}\theta I(\lambda) \leq \mathcal{IF}I(\mathcal{IFC}(\lambda))$

we have $\mathcal{IF}\theta I(\lambda) = \underline{0}$. Using Lemma ??, ι is $\mathcal{IF}\delta pO$ map.

Theorem 4.9 If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ be a JF θ biCts mapping then the image of each JFMo set in (Ω, τ) under ι is JFMo set Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

in (ω, σ) .

Proof. Let ι be a $\mathcal{JF}\theta biCts$ and μ be a $\mathcal{JF}Mo$ set in (Ω, τ)). Then

 $\mu \leq \mathcal{IFC}((\mathcal{IF}\theta I(\mu)) \vee \mathcal{IFI}(\mathcal{IF}\delta C(\mu)).$

This implies that

 $\iota(\mu) \leq \iota(\Im \mathcal{F}\mathcal{C}(\Im \mathcal{F}\theta I(\mu))) \lor \iota(\Im \mathcal{F}I(\Im \mathcal{F}\delta \mathcal{C}(\mu)))$

 $\leq \mathcal{IFC}(\iota(\mathcal{IF}\theta I(\mu))) \lor \iota(\mathcal{IFI}(\mathcal{IF}\delta C(\mu))).$

Since ι is an $\mathcal{IF}\theta biCts$ mapping, then ι is $\mathcal{IF}\theta O$ map and $\mathcal{IF}\theta Cts$ map. Then ι is $\mathcal{IF}\theta sCts$ map and $\mathcal{IF}\theta pCts$ map. Hence $\iota(\mu) \leq \mathcal{IF}C(\mathcal{IF}\theta I(\iota(\mu))) \vee \mathcal{IF}(\mathcal{IF}\delta C(\iota(\mu)))$. This shows that $\iota(\mu)$ is $\mathcal{IF}Mo$ set in (ω, σ) .

Theorem 4.10 Let (Ω, τ) , (ω, σ) and (Z, γ) be $\Im FTS$'s. If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ and $j: (\omega, \sigma) \to (Z, \gamma)$ are mappings, then $j \circ \iota$ is $\Im FMO$ mapping if

1. ι is *JFO* and j is *JFMO*.

2. ι is *JFMO* and j is *JF* θ *biCts* mapping.

Proof. (i) Let $\mu \in \Omega$. Since ι is \mathcal{IFO} then $\iota(\mu) \in \omega$. Since j is \mathcal{IFMO} , then $j(\iota(\mu)) = (j \circ \iota)(\mu)$ is \mathcal{IFMO} set in (Z, γ) . Hence $j \circ \iota$ is \mathcal{IFMO} .

(ii) Let $\mu \in \Omega$. Since ι is *JFMO*, then $\iota(\mu)$ is an *JFMo* set in (ω, σ) . Since j is *JF* $\theta biCts$, by Theorem 4.9, $(j \circ \iota)(\mu)$ is *JFMo* set in (Z, γ) . Hence $j \circ \iota$ is *JFMO*.

Theorem 4.11 Let (Ω, τ) , (ω, σ) and (Z, γ) be $\Im FTS$'s. If $\iota: (\Omega, \tau) \to (\omega, \sigma)$ and $j: (\omega, \sigma) \to (Z, \gamma)$ are mappings, then

- 1. If $j \circ \iota$ is *JFMO* mapping and ι is a surjective *JFCts* map, then j is *JFMO* map.
- 2. If $j \circ \iota$ is *JFO* mapping and j is an injective *JFMCts* map, then ι is *JFMO* map.

Proof. (i) Let $\mu \in \omega$. Since ι is *JFCts*, then $\iota^{-1}(\mu)$ is an *JFo* set in (Ω, τ) . But $j \circ \iota$ is *JFMO* map, then $(j \circ \iota)(\iota^{-1}(\mu))$ is *JFMo* set in (Z, γ) . Hence by surjective of ι , we have $j(\mu)$ is *JFMo* set of (Z, γ) . Hence, j is *JFMO* map.

(ii) Let μ is an $\mathcal{IF}o$ set in (Ω, τ) . and $j \circ \iota$ be an $\mathcal{IF}o$. Then $(j \circ \iota)(\mu) = j(\iota(\mu))$ is an $\mathcal{IF}o$ set in (Z, γ) . Since j is an injective \mathcal{IFMCts} map, hence $\iota(\mu)$ is fMo set in (ω, σ) . Therefore ι is \mathcal{IFMO} .

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR'S Session, Sofia (September, 1983)(in Bulgarian).
- [2] K. Atanassov and S. Stoeva, *Intuitionistic fuzzy sets*, Polish Symp. On Interval and Fuzzy Mathematics, Poznan (August, 1983), Proceedings: 23-26.
- [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [4] K. T. Atanassov, Intuitionistic fuzzy sets, Theory and Applications, Springer-Verlag, Heidelberg, New York, (1999).
- [5] M. Caldas, S. Jafari and M. M. Kovar, Some properties of θ -open sets, 12 (2) (2004), 161-169.
- [6] D. Coker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, Journal of Fuzzy Mathematics, **4** (1996), 749-764.
- [7] D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostaks sense, 67 (1996), 67-76.
- [8] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1) (1997), 81-89.
- [9] R. Dhavaseelam, E. Roja and M. K. Uma, *Intuitionistic fuzzy nowher dense*, The Journal of fuzzy mathematics, **23**(4) (2015),869-874.
- [10] A. A. A. Fora, *The number of fuzzy clopen sets in fuzzy topological spaces*, Journal of Mathematical Sciences and Applications, **5** (1) (2017), 24-26.
- [11] A. I. E. Maghrabi and M. A. Al-Johany, *M- open set in topological spaces*, Pioneer Journal of Mathematics and Mathematical Sciences, 4 (2) (2011), 213-308.
- [12] A. I. E. Maghrabi and M. A. Al-Johany, New types of functions by M- open sets, Journal of Taibah University for Science, 7 (2013), 137-145.

Copyrights @Kalahari Journals

- [13] A. I. E. Maghrabi and M. A. Al-Johany, *Some applications of M- open set in topological spaces*, Journal of King Saud University- Science, **26** (2014), 261-266.
- [14] A. I. E. Maghrabi and M. A. Al-Johany, *Further properties on M- continuity*, Journal of Egyptain Mathematical Society, **22** (2014), 63-69.
- [15] T. K Mondal and S. K. Samanta, *On Intuitionistic gradation of openness*, Fuzzy Sets and Systems, **131** (3) (2002), 323-336.
- [16] S. K. Samanta and T. K Mondal, Intuitionistic gradation of openness, Intuitionistic Fuzzy Topology, Busefal, 73 (1997), 8-17.
- [17] P. Smets, The degree of belief in a fuzzy event, Information Sciences, 25 (1) (1981), 1-19.
- [18] M. Sugeno, An introductory survey of fuzzy control, Information Sciences, 36(1-2) (1985), 59-83.
- [19] D. Sobana, V. Chandrasekar and A. Vadivel, On Fuzzy e-open Sets, Fuzzy e-continuity and Fuzzy e-compactness in Intuitionistic Fuzzy Topological Spaces, Sahand Communications in Mathematical Analysis, 12 (1) 2018, 131-153.
- [20] M. Suba, R. Shanmugapriya, , K. Sakthivel, M.L.Suresh, On intuitionistic fuzzy M closed sets in intuitionistic fuzzy topological spaces (submitted)
- [21] S. S. Thakur and S. Singh, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems, (1998), 383-391.
- [22] L. A. Zadeh, Fuzzy Sets, Information and Control, 8 (3) (1965), 338-353.