
Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1444

ISSN: 0974-5823 Vol. 7 No. 4 April, 2022

International Journal of Mechanical Engineering

NUMERICAL SOLUTION OF SYSTEM OF

ORDINARY DIFFERENTIAL EQUATIONS

USING RUNGE- KUTTA METHOD
 V. Gomathi

Assistant Professor, PG and Research Department of Mathematics,

Theivanai Ammal College for Women (Autonomous), Villupuram-605602, Tamil Nadu, India

 G. Rabiyabe

M.Sc Mathematics, PG and Research Department of Mathematics,

Theivanai Ammal College for Women (Autonomous), Villupuram-605602, Tamil Nadu, India

ABSTRACT:

This paper approaches to solve the system of ordinary differential equations specifically, Lotka Volterra equation also known as

Predator- Prey equation using classical fourth order Runge-Kutta method (RK4) . Matlab and python are used as an important tool

to obtain numerical solutions for different initial conditions (time t) to compare the result both numerically and also has shown the

growth proportion graphically.

KEY WORDS:

Initial Value problem, Lotka - Volterra equation, Runge – Kutta Method, Matlab and Python.

INTRODUCTION:

 Numerical analysis is a branch of Mathematics and computer science that aims to create, analyze, and implement systematic

techniques for solving mathematical problems numerically [2]. Such problems may fall into categories: algebraic equations,

transcendental equations, ode’s and pde’s [3,4]. Amongst, all present methods Runge –Kutta methods are standard method in the

field of numerical ODEs [5]. In this paper, we have discussed the Lotka volterra equation also known as the predator-prey equations,

are a pair of first order system of nonlinear differential equations frequently used to describe the dynamics of biological systems in

which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of

equations. The physical meaning of the equation is it makes a number of assumptions, not necessarily realizable in nature, about the

environment and evolution of the predator and prey populations [6]. During the process, the environment does not change in favor

of one species, and genetic adaptation is in consequential. Predators have limitless appetite. The prey population finds ample food

at all times. The food supply of the predator population depends entirely on the size of the prey population. The rate of change of

population is proportional to its size. In this case the solution of the differential equations is deterministic and continuous. This, in

turn, implies that the generations of both the predator and prey are continually overlapping [7].

 The general objective of this paper is to develop an efficient and simple Matlab and python coding to solve and compare

predator –prey model using RK4 method. It has been checked for two different initial conditions of (time t) and obtained solutions

both numerically and graphically.

PRELIMINARIES:

Initial value problem:

An Initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the

unknown function at a given point in the domain.

Definition: An initial value problem is a differential equation

y’(t) = f(t, y(t)) with f : Ω ⸦ ℝ x ℝⁿ ͢ ℝⁿ where Ω is an open set of ℝ x ℝⁿ , together with a point in t domain of f (tₒ, yₒ) є Ω,

called the Initial condition.

A solution to an initial value problem is a function y that is a solution to the differential equation and satisfies

https://en.wikipedia.org/wiki/Deterministic_system
https://en.wikipedia.org/wiki/Continuous_function

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1445

y(tₒ) = yₒ

The initial value problem is given in the form of

y’ = = f(x), y(xₒ) = yₒ , a≤ x ≤ b, for x is an idependent variable and xₒ = a.

A general system of m linear equations with n unknowns can be written as

 a₁₁x₁ + a₁₂x + …..+ a₁ₙxₙ = b₁

 a₂₁x₁ + a₂₂x₂ + …..+ a₂ₙxₙ = b₂

 aₘ₁x₁ + aₘ₂x₂ +.…. + aₘₙxₙ = bₘ,

where x₁, x₂,…,xₙ are the unknowns a₁₁, a₁₂,….,aₘₙ are the coefficients of the system and b₁, b₂, …,bₘ are the constant terms.

Lotka volterra equation:

 The Lotka-Volterra equations, also known as the predator prey equations, are a pair of first order nonlinear differential

equations, frequently used to describe the dynamics of biological systems in which two species interact ,one as a predator and the

other as prey. The populations change through time according to the pair of equations:

 = α x – β x y, = δ x y - γ y, Where

 X is the number of prey (for example: rabbits);

 Y is the number of some predator (for example: foxes);

 and represent the instantaneous growth rates of the two populations;

 t represents time;

 α, β, γ, δ are positive real parameters describing the interaction of the two species.

The model is simplified with the following assumptions:

(1) only two species exist: fox and rabbit;

(2) rabbits are born and then die through predation or inherent death;

(3) foxes are born and their birth rate is positively affected by the rate of predation, and they die naturally.

The characteristic of this model is that the population change of the predator and the prey are explained in terms of each other. The

size of the fox population has a negative effect on the rabbit population, and the size of the rabbit population has a positive effect

on the fox population. Let us first build a model for the system with a textual approach[9]. The Lotka–Volterra model can be

described using a pair of first-order, nonlinear, differential equations as follows:

 = rabbit birth rate× R− rabbit death rate × R× F

 = fox birth rate × R × F − fox death rate × F

Where R and F are the population of rabbit and fox, respectively.

Runge kutta method:

In Numerical analysis ,the Runge Kutta methods are a family of Implicit and Explicit iterative methods, which include the Euler

method, used in temporal discretization for the approximate solutions of Simultaneous non linear equations [2].These methods were

developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The most widely known member of the

Runge kutta family is generally referred to as “RK4”, the classical Runge-Kutta method” or simply as “the Runge Kutta method”.

The family of explicit Runge –Kutta methods is a generalization of the RK4 method mentioned below:

yₙ₊₁ = yₙ + h where

k₁ = f (tₙ , yₙ),

k₂ = f (tₙ + c₂ h, yₙ + h (a₁₂ k₁)),

k₃ = f (tₙ + c₃ h, yₙ + h (a₃₁ k₁ + a₃₂ k₂)),

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1446

kₛ = f (tₙ + cₛ h, yₙ + h (aₛ₁ k₁ + aₛ₂ k₂ + …. + aₛ, ₛ₋₁ k ₛ₋₁)).

To specify a particular method one needs to provide the integer s (the no. of. Stages), and the coefficients aij (for1≤ j ˂ i ≤ S) , bᵢ

(for i=1,2,3,….,s) and cᵢ (for i = 2,3,….,s).

MATLAB:

MATLAB (an abbreviation of "MATrix LABoratory") was invented by mathematician and computer programmer Cleve

Moler.[11]. It is a proprietary multi-paradigm programming language and numeric computing environment developed

by MathWorks. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user

interfaces, and interfacing with programs written in other languages. The idea for MATLAB was based on his 1960s PhD thesis.

PYTHON:

PYTHON was invented by Guido van Rossum . He began working on Python in the late 1980s as a successor to the ABC

programming language and first released it in 1991 as Python 0.9.0 [21]. Python consistently ranks as one of the most popular

programming languages. It is a high-level, interpreted, general-purpose programming language also constructs and object-oriented

approach aim to help programmers write clear, logical code for small- and large-scale projects. It is meant to be an easily readable

language and formatting is visually uncluttered.

RESULTS AND DISCUSSIONS:

 We now obtain numerical and graphical solution of predator-prey model. The classical RK4 method is used to find solution in

matlab and python as well. It is checked for two different values of time t in both programming language and obtained same results

graphically.

Numerical Illustration: Consider there are two species of animals, a baboon (prey) and a cheetah (predator). If the initial conditions

are 10 baboons and 10 cheetahs, one can plot the progression of the two species over time; given the parameters that the growth and

death rates of baboon are 1.1 and 0.4 while that of cheetahs are 0.1 and 0.4 respectively. The choice of time interval is arbitrary.

One may also plot solutions parametrically as orbits in phase space, without representing time, but with one axis representing the

number of prey and the other axis representing the number of predators for all times.

This corresponds to eliminating time from the two differential equations above to produce a single differential equation

 =

relating the variables x and y. The solutions of this equation are closed curves. It is amenable to separation of variables: integrating

 dy + dx = 0

yields the implicit relationship

V = δx – γ In(x) + βy – α In(y),

where V is a constant quantity depending on the initial conditions and conserved on each curve.

To find the solution , we need to calculate the k values in order to find the yn+1 value of Rk4 method.

Let the initial value problem is given in the form of

y = = f(t, y), y(tₒ) = yₒ , here y is an unknown function of time t , which we would like to approximate; , the rate at which y

changes ,is a function of t and y itself. At the initial time tₒ the corresponding y value is yₒ. The function f and the initial conditions

tₒ, yₒ are given.

Now pick a step-size h ˃ 0 and define

 yₙ+₁ = yₙ + h (k₁ + 2k₂ + 2k₃ + k₄),

https://en.wikipedia.org/wiki/Cleve_Moler
https://en.wikipedia.org/wiki/Cleve_Moler
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Separation_of_variables

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1447

 tₙ+₁ = tₙ + h

for n = 0,1,2,3,…., using

 k₁ = f (tₙ , yₙ),

k₂ = f (tₙ + , yₙ + h),

k₃ = f (tₙ + , yₙ + h),

kₛ = f (tₙ + h , yₙ + h k₃).

here yₙ+₁ is the RK4 approximation of y(tₙ+₁), and the next value (yₙ+₁) is determined by the present value (yₙ) plus the weighted

average of four increments, where each increment is the product of the size of the interval, h, and an estimated slope specified by

function f on the right-hand side of the differential equation. In averaging the four slopes, greater weight is given to the slopes at

the midpoint.

 K₁ is the slope at the beginning of the interval, using y;

 k₂ is the slope at the midpoint of the interval, using y and k₁.

 k₃ is again the slope at the midpoint, but now using y and k₂.

 k₄ is the slope at the end of the interval, using y and k₃.

Proposed Algorithm using Matlab:

xdot = LotkaVolterraModel(x, params)

 alpha = params.alpha;

beta = params.beta;

gamma = params.gamma;

delta = params.delta;

 xdot = [alpha*x(1) - beta*x(1)*x(2)

 delta*x(1)*x(2) - gamma*x(2)];

 [x, t] = RungeKutta4(f, x0, t0, tf, dt)

 t = t0:dt:tf;

nt = numel(t);

nx = numel(x0);

x = nan(nx, nt);

x(:,1) = x0;

for k = 1:nt-1

 k1 = dt*f(t(k), x(:,k));

 k2 = dt*f(t(k) + dt/2, x(:,k) + k1/2);

 k3 = dt*f(t(k) + dt/2, x(:,k) + k2/2);

 k4 = dt*f(t(k) + dt, x(:,k) + k3);

 dx = (k1 + 2*k2 + 2*k3 + k4)/6;

 x(:,k+1) = x(:,k) + dx;

 %% Define problem

 params.alpha = 1.1;

params.beta = 0.4;

params.gamma = 0.4;

params.delta = 0.1;

 f = @(t,x) LotkaVolterraModel(x, params);

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1448

x0 = [20; 5];

 %% solve Diff.Eq.

 t0 = 0;

tf = 100;

dt = 0.01;

 [x, t] = RungeKutta4(f, x0, t0, tf, dt);

%% Plot Results

Figure;

subplot(1, 2, 1);

plot(t, x);

legend(‘preys’, ‘Predators’);

xlabel(‘Time (t)’);

grid on;

subplot(1, 2, 2);

plot(x(1,:), (x(2,:));

xlabel(‘preys’);

ylabel(‘Predators’);

grid on;

Output:

 Fig 1.1 the values of t with step size h = 0.01

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1449

 Fig 1.2 the values of x with respect to t values

Fig 2.1 the graphical representation of predator-prey equation with time t = 50

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1450

Fig 2.2 the graphical representation of predator-prey equation with time t = 100

.

Proposed Algorithm using Python:

import numpy as np

import matplotlib.pyplot as plt

define the General Model

def LotkaVolterraModel(x, params):

 alpha = params["alpha"]

 beta = params["beta"]

gama = params["gama"]

 delta = params ["delta"]

xdot = np.array([alptha*x[0] - beta*x[0]*x[1], delta*x[0]*x[1] - gamma*x[1]])

 return xdot

RK4 Method

 def RungeKutta4(f, x0, t0, tf, dt):

 t = np.arrange(t0, tf, dt)

nt = t.size

nx = x0.size

 x = np.zeros((nx,nt))

 x[:,0] = x0

for k in range(nt - 1):

 k1 = dt*f(t[k], x[:, k])

 k2 = dt*f(t[k] + dt/2, x[:,k] + k1/2)

 k3 = dt*f(t[k] + dt/2, x[:,k] + k2/2)

 k4 = dt*f(t[k] + dt, x[:,k] + k3)

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1451

 dx = (k1 + 2*k2 + 2*k3 + k4)/6

 x[:,k+1] = x[:,k] + dx

 return x,t

Define Problem

 params = {"alpha": 1.1, "beta": 0.4, "gama": 0.4, "delta": 0.1}

 f = lambda t,x : LotkaVolterraModel(x, params)

 x0 = np.array([20,5])

Solve the Diff. Eq.

 t0 = 0

 tf = 100

 dt = 0.01

 x, t = RungeKutta4(f, x0, t0, tf, dt)

 # Plot Results

plt.subplot(1, 2, 1)

plt.plot(t, x[0,:], "r", label="preys")

plt.plot(t, x[1,:], "b", label="predators")

plt.xlable("time (t)")

plt.grid()

plt.legend

plt.subplot(1, 2, 2)

plt.plot(x[0,:], x[1,:])

plt.xlabel("preys")

plt.ylabel("predators")

plt.grid()

plt.show()

Output:

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1452

Fig 3.1 the graphical representation of predator-prey equation with time t = 100

Fig 3.2 the graphical representation of predator-prey equation with time t = 50

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1453

CONCLUSION:

 This paper concludes that solving numerical problems analytically using iterative methods such as Euler, Taylor’s series, Implicit

and Explicit Runge- Kutta methods, Adams-BashForth , Predictor-Corrector , Milne –Simpsons are not accurate globally and time

consuming as well. Solving such problems computationally using Matlab, Python, psilab, Mathematicia ,etc., helps to obtain more

accurate and quick results. We have tried to compare an ODEs” Lotka Volterra Predator-Prey model problem” using matlab and

python both numerically and graphically, this study makes clear that output Fig 2.2in matlab and Fig 3.1in python indicates good

agreement in graphical representation for time t = 100 and also Fig 2.1 in matlab ,Fig 3.2 in python indicates good agreement in

graphraphical representation for time t = 50. Thus, both the programming language yields accurate and likely results, quickly while

compared to solving analytically. Further, this predator –Prey model can be analysed with Pieciewise Analytic (PAM) Method.

REFERENCES:

[1] M K Jain, S R K Iyengar, R K Jain, (2019)” Numerical Methods for scientific and Engineering Computation(7th Ed),New Delhi,

New age international publishers,ISBN:978-93-87477-25-4.

[2] Kedir Aliyi Koroche, (2021)” Numerical solution of first order ODE by using Runge kutta method”, Ethiopia, ISSN:2575-5803.

[3] Sastry, S. S. (2006). “Introductory method of numerical analysis”, Fourth-edition.

[4] Walter Gautschi (2012) “Numerical Analysis”, Second Edition.

[5] Butcher, J. C., & Goodwin, N. (2008).” Numerical methods for ordinary differential equations (Vol. 2). New York: Wiley”.

[6] "Predator-Prey Dynamics". www.tiem.utk.edu. Retrieved 2018-01-09.

[7] Cooke, D.; Hiorns, R. W.; et al. (1981). “The Mathematical Theory of the Dynamics of Biological Populations”. Vol. II.

Academic Press.

[8] Hoppensteadt, F. (2006). "Predator-prey model". Scholarpedia. 1 (10):1563. Bibcode:2006

SchpJ...1.1563H. doi:10.4249/scholarpedia.1563.

[9] Lotka, A. J. (1910). "Contribution to the Theory of Periodic Reaction". J. Phys. Chem. 14 (3): 271–

274. doi:10.1021/j150111a004.

[10] Khaled Bathia, (2007) “ Numerical solutions of the Multispecies predator-prey model by variational iteration method”, Jordan,

ISSN 1549-3636.

[11] Steven C. Chapra. “Applied Numerical Methods with MATLAB for Engineers and Scientists”. HcGraw-Hill, New York,

NY10020, third edition, 2012.

[12] N. Shawagfer., D. Kaya (2004) “Comparing Numerical Methods for the Solutions of Systems of Ordinary Differential

Equations”.Elsevier, Applied Mathematics Letters 17, pp. 323-328.

[13] C. Senthilnathan(2018). “A numerical Solutions of Initial Value Problems (IVP) for Ordinary Differential Equations (ODE)

with Euler and Higher Order of Runge Kutta Methods Using Matlab”. International Journal of Engineering Science Invention

(IJESI) ISSN (online): 2319-6734, ISSN (print): 2319-6726 Volume 7, pp. 25- 31.

[14] Murad Hossen, Zain Ahmed, Rashadul Kabir, Zakir Hossan (2019). “Acomparative Investigation on Numerical Solution of

Initial Value Problem by Using Modiffied Euler Method and Runge Kutta Method.” ISOR Journal of Mathematics (IOSR-

JM)e-ISSN: 2278-5728, P-ISSN: 2319-765X. Volume 15, pp. 40-45.

[15] J. C. Butcher. “The Numerical Analysis of Ordinary Differential Equations: Runge Kutta and General Linear Methods”. John

Wiley, New York, NY, 1987.

[16] John H. Mathews, Kurtis D. Fink.” Numerical Methods Using Matlab”, prentice Hall, Upper Saddle River, NJ 07458, third

edition, 1999.

[17] Stephen J. Chapman. “MATLAB Programming for Engineers”, Thomson Learning, 2004

[18] Eaqub Ali, S.M. (2006).” A Text Book of Numerical Methods with Computer Programming”. Beauty Publication, Khulna.

[19] Volterra, V. (1931). "Variations and fluctuations of the number of individuals in animal species living together". In Chapman,

R. N. (ed.). Animal Ecology. McGraw–Hill.

[20] Rosenzweig, M. L.; MacArthur, R.H. (1963). "Graphical representation and stability conditions of predator-prey

interactions". American Naturalist. 97 (895): 209223. doi: 10.1086/282272. S2CID 84883526.

[21] Rossum, Guido Van (20 January 2009). "The History of Python: A Brief Timeline of Python". The History of

Python. Archived from the original on 5 June 2020. Retrieved 5 March 2021.

[22] "Python 0.9.1 part 01/21". alt.sources archives. Archived from the original on 11 August 2021. Retrieved 11 August 2021.

[23] "Python 3.10.4 and 3.9.12 are now available out of schedule". 24 March 2022. Retrieved 24 March 2022.

http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html
https://doi.org/10.4249%2Fscholarpedia.1563
https://en.wikipedia.org/wiki/Scholarpedia
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.4249%2Fscholarpedia.1563
https://zenodo.org/record/1428768
https://en.wikipedia.org/wiki/Journal_of_Physical_Chemistry_A
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1021%2Fj150111a004
https://en.wikipedia.org/wiki/McGraw%E2%80%93Hill
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1086%2F282272
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:84883526
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://web.archive.org/web/20200605032200/https:/python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://www.tuhs.org/Usenet/alt.sources/1991-February/001749.html
https://web.archive.org/web/20210811171015/https:/www.tuhs.org/Usenet/alt.sources/1991-February/001749.html
https://pythoninsider.blogspot.com/2022/03/python-3104-and-3912-are-now-available.html

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022)

International Journal of Mechanical Engineering

1454

[24] "Python 3.10.2, 3.9.10, and 3.11.0a4 are now available". 14 January 2022. Retrieved 15 January 2022.

 [25] "Why is Python a dynamic language and also a strongly typed language - Python Wiki". wiki.python.org. Archived from the

original on 14 March 2021. Retrieved 27 January 2021.

https://blog.python.org/2022/01/python-3102-3910-and-3110a4-are-now.html
https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://web.archive.org/web/20210314173706/https:/wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language

