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ABSTRACT: 

This paper approaches to solve the system of ordinary differential equations specifically, Lotka Volterra equation also known as 

Predator- Prey equation using classical fourth order Runge-Kutta method (RK4) . Matlab and  python are used as an important tool 

to obtain numerical solutions for different initial conditions (time t) to compare the result both numerically and also has shown the 

growth proportion graphically.  
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INTRODUCTION: 

  Numerical analysis is a branch of Mathematics and computer science that aims to create, analyze, and implement systematic 

techniques for solving mathematical problems numerically [2]. Such problems may fall into categories: algebraic equations, 

transcendental equations, ode’s and pde’s [3,4]. Amongst, all present methods Runge –Kutta methods are standard method in the 

field of numerical ODEs [5]. In this paper, we have discussed the Lotka volterra equation also known as the predator-prey equations, 

are a pair of first order system of nonlinear differential equations frequently used to describe the dynamics of biological systems in 

which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of 

equations. The physical meaning of the equation is it makes a number of assumptions, not necessarily realizable in nature, about the 

environment and evolution of the predator and prey populations [6]. During the process, the environment does not change in favor 

of one species, and genetic adaptation is in consequential. Predators have limitless appetite. The prey population finds ample food 

at all times. The food supply of the predator population depends entirely on the size of the prey population. The rate of change of 

population is proportional to its size. In this case the solution of the differential equations is deterministic and continuous. This, in 

turn, implies that the generations of both the predator and prey are continually overlapping [7].  

  The general objective of this paper is to develop an efficient and simple Matlab and python coding to solve and compare  

predator –prey model using RK4 method. It has been checked for two different initial conditions of (time t) and obtained solutions 

both numerically and graphically.  

 

PRELIMINARIES: 

Initial value problem: 

An Initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the 

unknown function at a given point in the domain.  

 

Definition: An initial value problem is a differential equation  

y’(t) = f(t, y(t)) with f : Ω ⸦ ℝ x ℝⁿ ͢   ℝⁿ  where Ω is an open set of ℝ x ℝⁿ , together with a point in t domain of  f  (tₒ, yₒ) є  Ω, 

called the Initial condition. 

A solution to an initial value problem is a function y that is a solution to the differential equation and satisfies 

https://en.wikipedia.org/wiki/Deterministic_system
https://en.wikipedia.org/wiki/Continuous_function
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y(tₒ) = yₒ 

The initial value problem is given in the form of  

y’ =   = f(x), y(xₒ) = yₒ , a≤ x ≤ b,  for x is an idependent variable and xₒ = a.  

A general system of m linear equations with n unknowns can be written as 

 a₁₁x₁ + a₁₂x  + …..+ a₁ₙxₙ = b₁ 

 a₂₁x₁ + a₂₂x₂ + …..+ a₂ₙxₙ = b₂ 

        

 aₘ₁x₁ + aₘ₂x₂ +.…. + aₘₙxₙ = bₘ, 

where x₁, x₂,…,xₙ are the unknowns a₁₁, a₁₂,….,aₘₙ are the coefficients of the system and b₁, b₂, …,bₘ are the constant terms. 

 

Lotka volterra equation: 

 The Lotka-Volterra equations, also known as the predator prey equations, are a pair of first order nonlinear differential 

equations, frequently used to describe the dynamics of biological systems in which two species interact ,one as a predator and the 

other as prey. The populations change through time according to the pair of equations: 

  = α x – β x y,           = δ x y  - γ y,      Where 

 X is the number of prey (for example: rabbits); 

 Y is the number of some predator (for example: foxes); 

   and     represent the instantaneous growth rates of the two populations; 

 t represents time; 

 α, β, γ, δ are positive real parameters describing the interaction of the two species. 

The model is simplified with the following assumptions:  

(1) only two species exist: fox and rabbit;  

(2) rabbits are born and then die through predation or inherent death;  

(3) foxes are born and their birth rate is positively affected by the rate of predation, and they die naturally. 

The characteristic of this model is that the population change of the predator and the prey are explained in terms of each other. The 

size of the fox population has a negative effect on the rabbit population, and the size of the rabbit population has a positive effect 

on the fox population. Let us first build a model for the system with a textual approach[9]. The Lotka–Volterra model can be 

described using a pair of first-order, nonlinear, differential equations as follows: 

 = rabbit birth rate× R− rabbit death rate × R× F 

 = fox birth rate × R × F − fox death rate × F 

Where  R and F are the population of rabbit and fox, respectively. 

 

Runge kutta method: 

In Numerical analysis ,the Runge Kutta methods are a family of Implicit and Explicit iterative methods, which include the Euler 

method, used in temporal discretization for the approximate solutions of Simultaneous non linear equations [2].These methods were 

developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The most widely known member of the 

Runge kutta family is generally referred to as “RK4”, the classical Runge-Kutta method” or simply as “the Runge Kutta method”. 

The family of explicit Runge –Kutta methods is a generalization of the RK4 method mentioned below:   

yₙ₊₁ = yₙ + h          where 

k₁ =  f (tₙ , yₙ), 

k₂ =  f (tₙ + c₂ h, yₙ + h (a₁₂ k₁)), 

k₃ = f (tₙ + c₃ h, yₙ + h (a₃₁ k₁ +  a₃₂ k₂)), 
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kₛ =  f (tₙ + cₛ h, yₙ + h (aₛ₁ k₁ +  aₛ₂ k₂ + …. + aₛ, ₛ₋₁ k ₛ₋₁)). 

 

To specify a particular method one needs to provide the integer s (the no. of. Stages), and the coefficients aij (for1≤  j ˂ i ≤ S) , bᵢ 

(for i=1,2,3,….,s) and cᵢ (for i = 2,3,….,s). 

 

 

MATLAB: 

MATLAB (an abbreviation of "MATrix LABoratory") was invented by mathematician and computer programmer Cleve 

Moler.[11]. It is a proprietary multi-paradigm programming language and numeric computing environment developed 

by MathWorks. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs written in other languages. The idea for MATLAB was based on his 1960s PhD thesis.  

 

PYTHON: 

PYTHON was invented by Guido van Rossum . He began working on Python in the late 1980s as a successor to the ABC 

programming language and first released it in 1991 as Python 0.9.0 [21]. Python consistently ranks as one of the most popular 

programming languages. It is a high-level, interpreted, general-purpose programming language also constructs and object-oriented 

approach aim to help programmers write clear, logical code for small- and large-scale projects. It is meant to be an easily readable 

language and formatting is visually uncluttered. 

 

RESULTS AND DISCUSSIONS: 

 We now obtain numerical and graphical solution of predator-prey model. The classical RK4 method is used to find solution in 

matlab and python as well. It is checked for two different values of  time t in both programming language and obtained same results 

graphically.  

 

Numerical Illustration:  Consider there are two species of animals, a baboon (prey) and a cheetah (predator). If the initial conditions 

are 10 baboons and 10 cheetahs, one can plot the progression of the two species over time; given the parameters that the growth and 

death rates of baboon are 1.1 and 0.4 while that of cheetahs are 0.1 and 0.4 respectively. The choice of time interval is arbitrary. 

One may also plot solutions parametrically as orbits in phase space, without representing time, but with one axis representing the 

number of prey and the other axis representing the number of predators for all times. 

This corresponds to eliminating time from the two differential equations above to produce a single differential equation 

    =  

relating the variables x and y. The solutions of this equation are closed curves. It is amenable to separation of variables: integrating 

   dy +  dx = 0  

yields the implicit relationship 

V = δx – γ In(x) + βy – α In(y), 

where V is a constant quantity depending on the initial conditions and conserved on each curve. 

To find the solution , we need to calculate the k values in order to find the yn+1 value of Rk4 method. 

Let the initial value problem is given in the form of  

y =   = f(t, y),  y(tₒ) = yₒ , here y is an unknown function of time t , which we would like to approximate;  , the rate at which y 

changes ,is a function of t and y itself. At the initial time tₒ the corresponding y value is yₒ. The function f and the initial conditions 

tₒ, yₒ are given. 

Now pick a step-size h ˃ 0 and define 

 yₙ+₁ = yₙ +  h (k₁ + 2k₂ + 2k₃ + k₄), 

https://en.wikipedia.org/wiki/Cleve_Moler
https://en.wikipedia.org/wiki/Cleve_Moler
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/Orbit_(dynamics)
https://en.wikipedia.org/wiki/Phase_space
https://en.wikipedia.org/wiki/Separation_of_variables
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 tₙ+₁ = tₙ + h 

for   n = 0,1,2,3,…., using 

 k₁ = f (tₙ , yₙ), 

k₂ = f (tₙ +  ,   yₙ + h   ), 

k₃ = f  (tₙ +  ,    yₙ + h   ), 

kₛ =  f (tₙ + h ,  yₙ + h k₃). 

 

here yₙ+₁ is the RK4 approximation of y(tₙ+₁), and the next value (yₙ+₁) is determined by the present value (yₙ) plus the weighted  

average of four increments, where each increment is the product of the size of the interval, h, and an estimated slope specified by 

function f on the right-hand side of the differential equation. In averaging the four slopes, greater weight is given to the slopes at 

the midpoint. 

 

 K₁ is the slope at the beginning of the interval, using y; 

 k₂ is the slope at the midpoint of the interval, using y and k₁. 

 k₃ is again the slope at the midpoint, but now using y and k₂. 

 k₄ is the slope at the end of the interval, using y and k₃. 

 

Proposed Algorithm using Matlab: 

xdot = LotkaVolterraModel(x, params) 

 alpha = params.alpha; 

beta = params.beta; 

gamma = params.gamma;  

delta = params.delta; 

 xdot = [alpha*x(1) - beta*x(1)*x(2) 

        delta*x(1)*x(2) - gamma*x(2)]; 

      [x, t] = RungeKutta4(f, x0, t0, tf, dt) 

 t = t0:dt:tf; 

nt = numel(t); 

nx = numel(x0); 

x = nan(nx, nt); 

x(:,1) = x0; 

for k = 1:nt-1 

       k1 = dt*f(t(k), x(:,k)); 

       k2 = dt*f(t(k) + dt/2, x(:,k) + k1/2); 

       k3 = dt*f(t(k) + dt/2, x(:,k) + k2/2); 

       k4 = dt*f(t(k) + dt, x(:,k) + k3); 

     dx = (k1 + 2*k2 + 2*k3 + k4)/6; 

       x(:,k+1) = x(:,k) + dx; 

     

 %% Define problem  

 params.alpha = 1.1; 

params.beta = 0.4; 

params.gamma = 0.4; 

params.delta = 0.1; 

 f = @(t,x) LotkaVolterraModel(x, params); 
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x0 = [20; 5]; 

 

 %% solve Diff.Eq. 

 t0 = 0; 

tf = 100; 

dt = 0.01; 

 [x, t] = RungeKutta4(f, x0, t0, tf, dt); 

 

%% Plot Results 

Figure; 

subplot(1, 2, 1); 

plot(t, x); 

legend(‘preys’, ‘Predators’); 

xlabel(‘Time (t)’); 

grid on; 

subplot(1, 2, 2); 

plot( x(1,:), ( x(2,:)); 

xlabel(‘preys’); 

ylabel(‘Predators’); 

grid on; 

 

Output:                        

 

        Fig 1.1 the values of t with step size h = 0.01 
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                            Fig 1.2 the values of x with respect to t values 

     

Fig 2.1 the graphical representation of predator-prey equation with time t = 50 
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Fig 2.2 the graphical representation of predator-prey equation with time t = 100 

.  

Proposed Algorithm using Python: 

import numpy as np 

import matplotlib.pyplot as plt 

# define the General Model 

def LotkaVolterraModel(x, params): 

  alpha = params["alpha"] 

    beta = params["beta"] 

gama = params["gama"] 

    delta = params ["delta"] 

xdot = np.array([alptha*x[0] - beta*x[0]*x[1], delta*x[0]*x[1] - gamma*x[1]]) 

  return xdot 

 

# RK4 Method 

    def RungeKutta4(f, x0, t0, tf, dt): 

  t = np.arrange(t0, tf, dt) 

nt = t.size 

nx = x0.size 

        x = np.zeros((nx,nt)) 

  x[:,0] = x0 

 

for k in range(nt - 1): 

            k1 = dt*f(t[k], x[:, k]) 

            k2 = dt*f(t[k] + dt/2, x[:,k] + k1/2) 

            k3 = dt*f(t[k] + dt/2, x[:,k] + k2/2) 

            k4 = dt*f(t[k] + dt, x[:,k] + k3) 
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           dx = (k1 + 2*k2 + 2*k3 + k4)/6 

            x[:,k+1] = x[:,k] + dx 

  return x,t 

 

# Define Problem 

  params = {"alpha": 1.1, "beta": 0.4, "gama": 0.4, "delta": 0.1} 

    f = lambda t,x : LotkaVolterraModel(x, params) 

    x0 = np.array([20,5]) 

 

# Solve the Diff. Eq. 

    t0 = 0 

    tf = 100 

    dt = 0.01 

  x, t = RungeKutta4(f, x0, t0, tf, dt) 

 

  # Plot Results 

plt.subplot(1, 2, 1) 

plt.plot(t, x[0,:], "r", label="preys") 

plt.plot(t, x[1,:], "b", label="predators") 

plt.xlable("time (t)") 

plt.grid() 

plt.legend 

 

plt.subplot(1, 2, 2) 

plt.plot(x[0,:], x[1,:]) 

plt.xlabel("preys") 

plt.ylabel("predators") 

plt.grid() 

plt.show() 

 

Output: 
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Fig 3.1 the graphical representation of predator-prey equation with time t = 100 

 

 

 

 

Fig 3.2 the graphical representation of predator-prey equation with time t = 50 
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CONCLUSION: 

  This paper concludes that solving numerical problems analytically using iterative methods such as Euler, Taylor’s series, Implicit 

and Explicit Runge- Kutta methods, Adams-BashForth ,  Predictor-Corrector , Milne –Simpsons are not accurate globally and time 

consuming as well. Solving such problems computationally using Matlab, Python, psilab, Mathematicia ,etc., helps to obtain  more 

accurate and quick results. We have tried to compare an ODEs” Lotka Volterra Predator-Prey model problem” using matlab and 

python both numerically and graphically, this study makes clear that output Fig 2.2in matlab and  Fig 3.1in python indicates good 

agreement in graphical representation for time t = 100 and also Fig 2.1 in matlab ,Fig 3.2 in python indicates good agreement in 

graphraphical representation for time t = 50. Thus, both the programming language yields accurate and likely results, quickly while 

compared to solving analytically. Further, this predator –Prey model can be  analysed with Pieciewise Analytic (PAM) Method. 
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