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Abstract: This research focuses on the development of optimization models to analyze the influence of machining parameters on 

surface roughness and to obtain the optimal machining parameters leading to minimum surface roughness during the turning of 

EN-8 steel using cemented carbide cutting tools. Data analysis has been done using Design-Expert version 11 and Minitab 19 

software. The developed models have been compared using relative error and the results have been validated using the 

experimental confirmation tests. The minimum surface roughness at optimum tuning parameters in this research has been 

obtained. The result of variance indicates that the contribution of cutting speed, feed rate, and depth of cut has 3.11%, 7.69%, and 

76.36%, respectively. It has been found that the predictive model provides optimum machining parameters. The results of the 

proposed model provide improvement in surface roughness over the best experimental run. The 3D surface and contour plots 

constructed during the research has been used for choosing the optimal machining parameters to obtain particular surface 

roughness values. The optimal machining parameters indicate that the depth of cut is the most significant machining parameter 

followed by the cutting speed and feed rate in surface roughness. The confirmation experiments has been performed to facilitate 

the verification of the obtained feasible optimal machining parameters (v = 375 m/min, f = 0.287 mm/rev and d = 1 mm) for the 

surface roughness and the optimized surface roughness obtained is (Ra) 5.113 μm.  The results reveal that the developed 

predictive models provide a close relationship between the predicted values and the experimental surface roughness values. 

Keywords:  Response Surface Methodology, Surface Roughness, EN-8 steel 

 

1. INTRODUCTION 

Surface finish is one of the most important quality characteristics in manufacturing industries, which influences the performance 

of mechanical parts as well as production cost. In recent times, modern industries are trying to achieve high-quality products in a 

very short time with less operator input. For that purpose, the computer numerically controlled machine tools with automated and 

flexible manufacturing systems have been implemented. In the manufacturing industries, various manufacturing processes are 

adopted to remove the material from the workpiece. Out of these, turning is the first most common method for metal cutting 

because of its ability to remove materials faster with reasonably good surface quality [1]. Producing good quality, appropriate 

surface finish, and geometry is essential for the machined work piece. The surface finish or surface texture based on ASME, 

1985[2] is defined as geometrical irregularities of solid materials surface while surface roughness is defined as the more delicate 

irregularities of the surface texture, usually resulting from the inherent action of the assembly process, such as feed marks 

produced during machining. 

A lot of research has been done in past and a survey on critical controllable tuning parameters for the lathe machines such as 

cutting speed, feed, depth of cut, tool geometry, tool, and work piece material, which affect the desired output including, surface 

finish, tool wear, tool life and performance are studied. But a little research has been done on optimization of surface roughness on 

cutting parameters of different EN carbon steel grades and a few works are available for different materials to show contrasting 

results – few authors observed that cutting speed is the most significant factor followed by the depth of cut[3][4][5]. Other authors 

observed that the depth of cut is the significant factor followed by cutting speed [6][7]. Therefore, more studies need to be carried 

out to observe the influence of machining parameters on performance characteristics. A generalized relationship between the 

machining parameters and the process performance is hard to model accurately mainly largely due to the nature of the challenging 

stochastic process mechanisms in machining.  

This work is an attempt to fill this gap in the research. Machining is still an open field of research after the last some years of 

research mainly because of the changes in machining technology, materials, and the advancement in the modeling and 

optimization techniques as well as the advancements in computational technology. 

This research aims to investigate the effects of cutting parameters on the resulting surface roughness in the turning operation of 

EN-8 steel material. The specific products from this steel are shafts, cam, bolt, stud, gear, so on. It is essential to optimize this 

material due to the quick-wear of components under dynamic load. In the present work, models are developed to predicate the 

surface roughness with the assistance of Response surface methodology, Design of experiments [8]. The response surface 

methodology (RSM) may be practical, accurate, and straightforward for implementation. The study of the most important 
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variables affecting the quality characteristics and a plan for  conducting such experiments is called the design of 

experiments [9]. 

The experimental data is used to develop mathematical models for second-order models using regression methods. Analysis of 

variance is used to verify the validity of the model. RSM optimization procedure has been used to optimize the output responses 

of surface roughness. On selected material, a different trial with different parameters level carried experiment, and finally, to 

verify the predicted value, a confirmation test is conducted based on an experiment. The research has completed a fractional 

experiment design that allows considering different levels of cutting parameters (cutting speed, feed rate, depth of cut) on the 

measured dependent variable (surface roughness). The ability to control the process for the better quality of the product is 

significant [10]. 

In this research work, variation of surface roughness with varying parameters (cutting parameters has been investigated. 

Experimental investigation of surface roughness of EN-8 steel material using turning operation and the variation of surface 

roughness with response variables has been done. The models have been developed to predicate the surface roughness with the 

assistance of Response surface methodology, Design of experiments. 

2. MATERIALS AND METHODOLOGIES 

2.1 Experimental setup 

A conventional lathe machine was used for experimental study for cutting parameters on surface roughness. The turning machine 

with the model of URSUS 200 was used for this study. The sample material for the research was EN-8 steel. The work piece was 

estimated by using a surface roughness analyzer (Profilo-meter) and it was used to measure average roughness. The detailed 

information on chemical composition and mechanical properties and specification of EN-8 steel is provided in Table 1 and Table 

2 respectively. A round bar with 50 mm diameter and 280 BHN was used. 

Table 1 Chemical composition of EN 8 steel [11] 

Element Standard (wt%) Actual (wt%) 

Sulfur, S 0.045 0.04 

Phosphorus, P  0.045 0.04 

Molybdenum, Mo 0.10 0.10 

Carbon, C  0.36 0.44 

Silicon, Si 0.40 0.40 

Chromium, Cr 0.40 0.25 

Nickel, Ni 0.40 0.25 

Manganese, Mn  0.65 0.60 

 

 

 

Table 2 Mechanical properties of EN-8 steel [12] 

Sample ID Solid, Round 

Diameter (mm) 50 

Area (mm2) 1,963.495 

Yield Stress MPa 280 

Tensile Stress MPa 550 

Hardness 152/207 

  

2.2 Machining parameters and their levels 

The choice of machining parameters was made by taking into account the capacity/limiting cutting conditions of the turning, tool 

manufacturer’s catalog, experimental time and cost into account, and the values taken by researchers in the literature. Cutting 

speed, feed rate, and depth of cut are the input parameters chosen for the research. The cutting speed (A) [rev/min] is the 

rotational speed of the lathe machine spindle or the work-piece. Feed rate (B) [mm/rev] is the speed of the cutting tool relative to 

that of the work-piece as the tool takes a cut along the axis of the work-piece. The depth of cut (C) [mm] is the thickness of the 

material removed in one pass of the work under cutter. The performance characteristic chosen to investigate the effect of 

machining parameters is surface roughness. Cutting parameters for EN-8 steel were selected depending on the recommended 

cutting parameters, which are given in Table 3, and the range was taken to get accurate results since the maximum difference was 

at the maximum range.  

Table 3 Machining parameters and their levels 

Factor  Symbol  Level 1  Level 2  Level 3 

Cutting speed (m/min)  v 220 292 375 

Feed rate (mm/min)  f 0.1 0.2 0.3 

Depth of cut (mm)  d 1 1.5 2 
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2.3 Response variables 

The surface roughness was selected for response variable. The surface roughness, as a measure of surface texture, was the vertical 

deviations of a real surface from its ideal form. A significant deviation was taken as a rough surface; while a small deviation was 

taken as a smooth surface. Thus, surface roughness seen as the high frequency, short wavelength component of surface measured, 

which determines how a real object was interact with its environment. Rough surfaces wear faster and have a higher coefficient of 

friction than smooth surfaces. Again, the roughness of a surface [micron, µm, or µmm] may form nucleation sites for cracks or 

corrosion, promote adhesion, and may be very expensive to control in manufacturing.  

2.4 Mathematical model 

Engineering experiments aim at determining the conditions that can lead to optimum performances. One of the methodologies for 

obtaining optimum performance is the Response Surface Methodology(RSM). RSM, developed by Box and Draper, 1987[13], is a 

collection of mathematical and statistical techniques that are useful for the modeling and analysis of problems in which several 

variables influence the response of interest and the objective is to optimize the response. It is a sequential experimentation 

approach for empirical model building and optimization. RSM is repeatedly applied in the characterization and optimization of 

processes. In RSM, it is possible to represent independent process parameters in quantitative form as: 

                                                  (1) 

where Y is the response, f is the response function,  is the experimental error, and X1, X2, X3, ……, Xn are independent 

parameters. Y is plotted to get the response surface. The form of f is unknown and may be very complicated. Therefore, RSM 

aims at approximating f by a suitable lower ordered polynomial in some regions of the independent process variables. If the 

response can be well modeled by a linear function of the independent variables, the function equation (1) can be written as: 

                                        (2) 

However, if a curvature appears in the system, then a higher-order polynomial such as quadric model (equation (3)) may be used: 

                                    (3) 

where Y is the corresponding response and xi (1, 2, …, n) is the independent input parameters. The terms b0, b1, b2, so on. are the 

second-order regression coefficients. The second term contributes to the linear effect, the third term contributes to the higher-order 

effects, and the fourth term contributes to the interactive effects of the input parameters. The values of the coefficients are 

estimated by using the responses collected (Y1, Y2…, Yn) through the design points (n) by applying the least square technique. 

This equation can be rewritten in terms of the three variables: 

(4) 

The objective of using RSM is not only to investigate the response over the entire factor space but also to locate the region of 

interest where the response reaches its optimal or near-optimal value. A careful study of the response surface model provides a 

combination of factors giving the best response. 

2.5 Design of Experiment 

In the design of experiment techniques, RSM attempts to minimize the assess experimental error, make a qualitative estimation of 

parameters, optimize values of parameters, number of runs or trials, and make inferences regarding the effect of parameters on the 

characteristics of a process. The essential idea of RSM is to use a sequence of designed experiments to obtain an optimal response. 

To observe the most influential process parameters in the turning process, namely cutting speed, feed, and depth of cut each at 

three levels was considered in the this research work. For these reasons, RSM, based on CC-DOE, was selected. Therefore, it was 

used in this work to model, predict, and optimize Ra. As a mathematical and statistical technique, it was developed for the 

treatment of problems involving a response of interest as a function of several variables. This is one of the ways machining 

process modeling and analysis can achieve to facilitate its optimization. Its application requires machining response Υ to define as 

[1]: 

                                                   Υ = φ (x1, x2, …, xi) ±e                                                              (5) 

where φ (x1, x2, …, xi) is the response surface function in the form of a polynomial model, x1 is the process variables and is the 

residual or experimental error. The second-order polynomial or quadratic model may, therefore, be written as: 

φ = φ (x1, x2, …, Xk) 

                                                               = (Υ ± e)                                                                         (6) 

 

 

Equation (6) is a multiple regression model. In this form, it has constant, linear, square, and cross-

product terms. It can, satisfactorily, be used to correlate dependent variables, φj, with independent variables, xi. Several techniques 

for DOE are available for use to estimate the coefficients of the regression models.  
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The Central Composite (CC) was selected for the design of the turning experiment. Analysis of variance (ANOVA) was used to 

validate the developed models and also to predict the effect of selected factors A, B, and C on the response characteristics Ra. 

Optimization of the coded and actual response functions, Ra (A, B, C), subject to constraints as determined by the limits of the 

factors A, B, and C, was performed as appropriate using a standard optimization technique. The RSM was implemented in the 

Design-Expert software version 11 environment. 

2.6 Experiment plan 

The experiment was performed to investigate the effect of input parameters on response. The DOE has a significant effect on the 

approximate accuracy and cost of the response surface. The experiment of 27 runs was randomized by using DOE. DOE was 

evaluated as the response to the model fitness. The design data is evaluated by running the 27 samples through turning operation 

and calculated the measuring value of the surface roughness using a profile-meter. The machining of a cutting parameter is given 

in Table 3. 

2.7 Surface roughness measurement 

The experimental setup is shown in Figure 1(a). The final work piece used for measuring the surface roughness is shown in Figure 

1(b). The surface roughness of the finished surface is measured by placing the work piece on a rectangular block over a cast-iron 

surface plate after each cut (Figure 1(c)).  

 

 

   

 

 

 

Figure 1 (a) Experimental setups,(b) samples after machined and (c) measuring  surface roughness 

After the setup was ready, trial cuts were taken, and equipment was calibrated to ensure that the part quality adhered to the quality 

requirements of the Original Equipment Manufacturer (OEM) and to compare the stability of the machining process to that of the 

OEMs. The equipment was calibrated by measuring the known diameter of a high-precision spherical ball. Figure 2(c) shows the 

surface roughness profile, measured on the spherical ball. The stability of the experimental setup was compared to the OEM’s 

recommended specification. Once the stability of the setup was confirmed, the experiments were conducted and the surface 

roughness was measured at three equally spaced locations around the circumference of the work-piece to obtain the statistically 

significant data for the test, and then the mean of measurements was calculated. Thus, probable observation errors were kept 

relatively small. 

3. RESULTS AND DISCUSSIONS 

After completing the machining operation, the response parameter that is the surface roughness was measured. Statistical analysis 

was performed on the optimum result obtained for attaining main effects. The experimental study was conducted to evaluate the 

effect of cutting parameters, 

namely cutting speed, feed rate, and depth of cut on the surface quality of EN-8 steel during the turning process. This step 

determines the effect of various process parameters to achieve desired surface roughness. Table 4 shows the design layout for the 

turning experiment conducted as well as the response data generated. The experiment was conducted in a controlled environment 

to minimize errors. The DOE was used to identify the optimum cutting parameters and to identify the most influential parameters.  

Table Error! No text of specified style in document.. Measured surface roughness at L27 full factorial machining parameters 

No. 
A: Cutting speed 

(m/min) 

B: Feed rate 

(mm/min) 

C: Depth of cut 

(mm) 

Surface roughness (μm) 

Run 1 Run 2 Run 3 Average 

1  220 0.1 1 13.313 13.496 13.261 13.357 

2  220 0.1 1.5 7.592 7.629 7.584 7.602 

3  220 0.1 2 7.230 7.218 7.422 7.290 

4  220 0.2 1 13.977 15.222 10.776 13.325 

5  220 0.2 1.5 7.577 7.824 8.868 8.090 

6  220 0.2 2 8.252 8.274 8.297 8.274 

7  220 0.3 1 14.150 13.335 12.095 13.193 

8  220 0.3 1.5 9.368 9.699 9.985 9.684 

9  220 0.3 2 9.409 9.250 9.089 9.249 
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10  292 0.1 1 9.156 9.167 9.015 9.113 

11  292 0.1 1.5 7.010 7.015 6.945 6.990 

12  292 0.1 2 8.214 8.203 8.160 8.192 

13  292 0.2 1 6.916 7.246 6.374 6.845 

14  292 0.2 1.5 6.215 6.10 7.379 6.565 

15  292 0.2 2 8.083 8.082 8.130 8.098 

16  292 0.3 1 7.076 7.106 7.149 7.110 

17  292 0.3 1.5 6.853 6.841 6.831 6.842 

18  292 0.3 2 11.066 11.075 11.100 11.080 

19  375 0.1 1 5.158 4.792 5.316 5.089 

20  375 0.1 1.5 7.074 7.021 7.115 7.070 

21  375 0.1 2 11.571 11.564 11.515 11.550 

22  375 0.2 1 5.496 5.487 5.503 5.495 

23  375 0.2 1.5 6.211 6.225 6.220 6.219 

24  375 0.2 2 13.524 13.558 13.501 13.528 

25  375 0.3 1 5.156 5.139 5.117 5.137 

26  375 0.3 1.5 8.936 8.928 8.889 8.918 

27  375 0.3 2 14.733 14.698 14.848 14.760 

 

 

3.1 Data generated from the turning experiment 

Data collection plays a significant role in the statistical analysis of any field, as it decides the progression of the analysis to the 

best or worst. Proper and suitable data collection leads to better results from the analysis. In such a focus, it is very much essential 

to choose a well suitable data collection technique for the analysis. In this work, Data collection for the turning process is selected 

for proceeding with RSM design, i.e., a second-order quadratic model. The values predicted using the model in the turning of EN-

8 steel using a carbide cutting tool have been shown in Table 5. 

Table 5. Data generated from the turning experiment 

Run 

Factor 1 

A: Cutting speed 

(m/min) 

Factor 2 

B: Feed rate 

(mm/min) 

Factor 3 

C: Depth of Cut 

(mm) 

Response 

Surface roughness 

(μm) 

1  220 0.1 1 13.357 

2  220 0.1 1.5 7.602 

3  220 0.1 2 7.290 

4  220 0.2 1 13.325 

5  220 0.2 1.5 8.090 

6 220 0.2 2 8.274 

7 220 0.3 1 13.193 

8 220 0.3 1.5 9.684 

9 220 0.3 2 9.249 

10 292 0.1 1 9.113 

11 292 0.1 1.5 6.990 

12 292 0.1 2 8.192 

13 292 0.2 1 6.845 

14 292 0.2 1.5 6.565 



Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022) 

International Journal of Mechanical Engineering 

1379 

15 292 0.2 2 8.098 

16 292 0.3 1 7.110 

17 292 0.3 1.5 6.842 

18 292 0.3 2 11.080 

19 375 0.2 1 5.089 

20 375 0.2 1.5 7.070 

21 375 0.2 2 11.550 

22 375 0.1 1 5.495 

23 375 0.1 1.5 6.219 

24 375 0. 2 13.528 

25 375 0.3 1 5.137 

26 375 0.3 1.5 8.918 

27 375 0.3 2 14.760 

On average the minimum surface roughness was found to be 5.089μm whereas the maximum surface roughness is 14.760μm 

(Figure 2).  

 

Figure 2 Minimum and maximum surface roughness 

3.2 Surface roughness data 

This analysis deals with the finding the investigation of cutting parameters on surface roughness in turning the operation of EN-8 

steel using cemented carbide cutting tool in turning for the different values of cutting speed, feed rate, and depth of cut. The 

selection of experimental design was a decision-making process that decides the degree of validity of the desired model in finding 

optimal cutting parameters. This work was carried out using a Response surface methodology. Central Composite Design (CCD) 

method comes under the Response surface methodology.  

A central composite design is an experimental design, useful in response surface methodology, for creating a second-order 

(quadratic) model for the response variable. The response surface design is better, as it generates a second-order quadratic model 

of regression, which is a better predictive model than a first-order quadratic model. In this work, CCD was applied for the 

experimental investigation. 

3.3 Model summary statistics 

In the process of model selection, the cubic Model is aliased as the central composite matrix provides too few unique design 

points to determine all the terms in the cubic model. It’s set up only for the quadratic model. Table 6 shows the model summary 

statistics.  

Table 6 Model summary statistics 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 2.81 0.1113 -0.0046 -0.2993 265.23  

2FI 1.50 0.7803 0.7144 0.5995 81.77  

Quadratic 0.6593 0.9638 0.9446 0.9136 17.63 Suggested 

Cubic 0.7282 0.9740 0.9325 0.7873 43.42 Aliased 

For each source of terms, the quadratic probability Prob > F falls under 0.05. So far, Design-Expert was indicated (via bold 

highlighting) the quadratic model best – these terms are significant, but adding the cubic order terms will not significantly 
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improve the fit. (Even if they were significant, the cubic terms would be aliased, so they wouldn’t be useful for modeling 

purposes).  

3.4 Analysis of variance(ANOVA) 

The ANOVA is where the descriptive statistics and statistical tests are presented. In general, look for low p-values to identify 

important terms in the model. The p-values to determine if the model explains a significant portion of the variance. Table 7 shows 

ANOVA results for the linear [A, B, C] quadratic [A2, B2, C2] and interactive [(A × B), (A × C), (B×C)] factors. The sum of 

squares is used to estimate the square of deviation from the mean. Mean squares are estimated by dividing the sum of squares by 

degrees of freedom. F-value, which is a ratio between the regression mean square and the mean square error, is used to measure 

the significance of the model under investigation concerning the variance of all the terms, including the error term at the desired 

significance level. Usually, F > 4 means that the change of the design parameter has a significant effect on the response variable. 

P-value or probability value is used to determine the statistical significance of results at a confidence level. In this study, the 

significance level of α = 0.05 is used, i.e., the results are valid for a confidence level of 95%. Table 7 shows the p-values, the 

significance levels associated with the F-values for each source of variation. If the p-value is less than 0.05, then the 

corresponding factor (source) has a statistically significant contribution to the response variable. If the p-value is more than 0.05, 

then it means the effect of a factor on the response variable is not statistically significant at a 95% confidence level.  

Table 7 Analysis of variance results 

Source Sum of Squares Df Mean Square F-value p-value Contribution%  

Model 6.75 9 21.86 6.74 < 0.0001 21.62 

A-Cutting speed 0.97 1 5.3 1.19 0.0528 3.11 

B-Feed rate 2.4 1 8.4 19.33 0.0004 7.69 

C-Depth of cut 23.84 1 12.07 27.77 < 0.0001 76.36 

AB 0.16 1 0.1646 0.3787 0.0564 0.51 

AC 0.75 1 127.77 2.97 0.4901 2.40 

BC 0.63 1 8.63 1.85 0.7003 2.02 

A² 0.51 1 13.51 3.08 0.3022 1.63 

B² 0.57 1 1.62 3.72 0.0505 1.83 

C² 0.33 1 22.33 0.38 0.8059 1.06 

Residual 1.06 17 0.4346   3.40 

Total 31.22 26    

 The Model F-value of 6.75 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur 

due to noise. P-values less than 0.0500 indicate model terms are significant. In this case, A, B, C, AC, BC, A², C² are significant 

model terms. Values greater than 0.1000 indicate the model terms are not significant. If there're a lot of numerous insignificant 

model terms (not counting those required to support hierarchy), model reduction may improve the model. 

3.5 Parametric influence on surface roughness 

Theoretically, surface roughness is a function of feed rate and nose radius. However, in practice, cutting speed, depth of cut, and 

tool wear also affect surface roughness. Since the inserts used in the experiments have identical nose radius values, the effect of 

nose radius was not investigated in this study. The effect of tool wear was neglected as a new cutting edge was used for each 

experiment, and wear did not reach high levels enough to affect the surface roughness. 

The main effects of machining parameters are shown in Figure 3. Depth of cut has the greatest effect on surface roughness. The 

effect of feed rate is very less, and the effect of cutting speed is negligible, as shown in Figure 3. Even after a 900% increase in 

cutting speed, no considerable change was noticed. An increase in cutting speed improves surface quality. This result supports the 

argument that high cutting speeds reduce cutting forces, giving a better surface finish[14]. The best surface quality values can be 

achieved at low feed rates and high cutting speeds. Sahin and Motorcu (2005)[15] also demonstrated that surface roughness 

increases with an increase in feed rate and decreases with an increase in cutting speed during the cutting of EN-8 steel using a 

cemented carbide cutting tool. 

 However, Cetin et al. (2011)[16] indicated that the effects of feed rate and depth of cut are more effective than cutting speed on 

reducing the forces and improving the surface finish. 
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                                    Figure 3 Main effect plot of surface roughness 

 

                 Figure 4 Interaction plot of surface roughness 

The interaction plot for surface roughness is shown in Figure 4. This figure clearly shows that the surface roughness is high with a 

variation of feed rate at any depth of cut (row 3 column 2) and any cutting speed (row 1 column 2) as the minimum surface 

roughness is close to 5 µm for level 1 depth of cut and all levels of feed rate and cutting speed, and the maximum surface 

roughness is more than 7.5 µm for level 3 depth of cut and all levels of feed rate and cutting speed. The variation of feed rate has a 

negligible effect on surface roughness for feed rate (row 2 column 3) as the spacing between the lines is very small. 

3.6 Validation of the proposed predictive models 

The results obtained from the proposed predictive modeling techniques of RSM are shown in Table 8. The relative percentage 

error between the fitted values predicted and the experimental values of the surface roughness are computed using the following 

equation. 

 



 

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022) 

International Journal of Mechanical Engineering 

1382 

Table 8 Predicted values and relative errors for modeling techniques of RSM for surface roughness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 and Figure 5 show the relative errors for the modeling techniques. 

Experiment 

No. 

Experiment 

No. 

Surface roughness (µm) Relative  

Error (%) Experimental Predicted 

1 13.357 12.891 3.489 

2 9.113 8.508 6.639 

3 5.495 5.821 5.933 

4 13.325 12.497 6.214 

5 13.193 12.319 6.625 

6 6.845 6.737 1.578 

7 5.137 5.603 9.071 

8 5.089 5.43 6.701 

9 7.11 7.453 4.824 

10 6.99 7.164 2.489 

11 7.602 7.832 3.026 

12 6.565 6.294 4.128 

13 7.07 7.576 7.157 

14 8.09 7.548 6.700 

15 9.684 8.916 7.931 

16 6.842 7.287 6.504 

17 8.918 8.365 6.201 

18 6.219 6.837 9.937 

19 8.098 7.653 5.495 

20 7.29 7.414 1.701 

21 11.55 11.67 1.039 

22 14.76 14.54 1.491 

23 8.274 7.806 5.656 

24 13.528 12.368 8.575 

25 8.192 7.928 3.223 

26 11.08 10.499 5.244 

27 9.249 10.065 8.823 
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Figure 5 Deviation of surface roughness predicted values from the experimental values 

The maximum relative error of 9.937% is obtained and which is caused by measurement error and accuracy of profile-meter used. 

3.7 Surface roughness optimization using response surface methodology 

After developing predictive models to predict the surface roughness, the next logical step is surface roughness optimization 

concerning cutting conditions. The selection of optimum cutting conditions has always been a challenge in machining. Low 

surface roughness values can be achieved by adjusting cutting conditions with the help of appropriate optimization methods. 

Therefore, the process parameters are defined in the standard optimization format to be solved by optimization algorithms. The 

response optimization parameters and starting values are given in table 9 and 10.The optimal response plot is generated using 

MINITAB software. 

Response Optimization: Ra 

Table 9 Parameters 

 

 

 

 

 

Table 10 Starting values 

Variables v(m/min) f(mm/min) d(mm) 

Settings 260.15 0.1 1.202 

Desirability is simply a mathematical method to find the optimum. Desirability is an objective function that ranges from zero 

external of the limits to one at the goal. The numerical optimization finds a point that maximizes the desirability function. The 

desirability of 1.00 means the goals were simple to reach and better results may be available. Consider thinking about producing 

the goals harder or adding new criteria for less critical responses and even factors. The final goal is not to maximize the 

desirability value. The factor settings that result in the highest desirability scores point to over there is an island of acceptable 

outcomes. It is quite possible for over there to be multiple islands (local optima) to explore. The optimized solution is as shown in 

table 11. 

Response Goal Lower Target Upper Weight Importance 

Ra Target 4.5801 5.089 14.76 1 1 
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Table 11 Optimized solution 

Solution v (m/min) f (mm/min) d 

(mm) 

Ra 

Fit (μm) 

Composite 

Desirability 

1 375 0.287879 1 5.09575 0.999302 

The value is completely dependent on how closely the lower and upper limits are set relative to the actual optimum. The goal of 

optimization is to locate a good set of conditions that will meet all the goals, not to get to a desirability value of 1.0. The optimal 

machining parameters are given in table 12. 

Table 12 Optimal machining parameters 

Variable v (m/min) f (mm/min) d (mm) 

Setting 375 0.287879 1 

Optimal machining parameters obtained are cutting speed of 375 m/min at a feed rate of 0.287 mm/min and 1 mm depth of cut. 

The optimized surface roughness is given in table 13. 

Table 13 Optimized surface roughness 

Response Fit SE Fit 95% CI 95% PI 

Ra 5.10 3.76 (-2.83, 13.02) (-4.72, 14.91) 

The optimized surface roughness obtained is (Ra) 5.10 μm. The desirability value is 0.9993, which is very close to 1.0. The 

response optimization for surface roughness is given in table 14. 

 

Table 14 Response optimization for surface roughness 

Respons

e 

Goal Optimum Combination Lower Target Upper Predicted Desirability 

v 

(m/min) 

f 

(mm/min) 

d 

(mm) 

Ra Min 375 0.287 1 5.089 5.089 14.76 5.10 0.9993 

Figure 6 shows the surface roughness optimization plots for parameters v, f, and d. Each column of the graph corresponds to a 

factor. Each row of the graph corresponds to the response. Each cell of the graph shows how the response changes as a function of 

one of the factors, while all other factors remain fixed. The numbers displayed at the top of a column show the current factor level 

settings and the high and low settings of a factor in the experimental design. 

The current optimal parameter settings are: cutting speed of 375 m/min, the feed rate of 0.287 mm/min Furthermore, the depth of 

the cut of 1 mm for achieving the minimum surface roughness. The composite desirability (D) is displayed in the upper left corner 

of the graph. The label above composite desirability refers to the current setting and changes interactively with the factor settings. 

The optimal response plot is generated using MINITAB software. The vertical lines inside the graph represent current optimal 

parametric settings. The horizontal dotted lines represent the current response values. 

 

Figure 6 Response optimization plot for surface roughness 

3.8 Combined effect 

The combined effect of feed rate and cutting speed on surface roughness is as shown in Figure 7. 
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Figure 7 Combined effects on surface roughness 

 

Figure 7 shows 3 different combined effect feed rates and the minimum result is found at 0.2 feed rate, at 375 cutting speed, and 

Min Ra = 5.089μm. 

3.9 Interaction contour plot 

The 2D, 3D surface, and contour plots for the respective cutting parameters and surface roughness are shown in Figures 8, 9 and 

10. However, this plot is useful to find the optimum values of cutting speed and feed rate at a particular value of surface roughness 

and depth of cut. These 3D surface plots can be used for estimating the surface roughness values for any suitable combination of 

the input parameters, namely cutting speed, feed rate, and depth of cut. 

Figure 8 shows the surface and contour plots for surface roughness at 1 mm depth of cut. It is observed that the surface roughness 

increases with decreases in cutting speed at a slower feed rate and decreases with an increase in feed rate. While at a higher feed 

rate, the surface roughness decreases with an increase in cutting speed.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Surface and contour plot of Ra for varying cutting speed and feed rate at 1 mm depth of cut (A) 2D view and (B) 3D 

view 



 

Copyrights @Kalahari Journals Vol.7 No.4 (April, 2022) 

International Journal of Mechanical Engineering 

1386 

Figure 9 shows the surface and contour plots for surface roughness at a cutting speed of 375 m/min. It reveals that surface 

roughness increases with an increase in depth of cut, and feed rate has a less significant effect. Figure 10 shows the surface and 

contour plots for surface roughness at a feed rate of 0.287 mm/min. At a minimum depth of cut and maximum cutting speed, the 

surface roughness is minimum. At a maximum depth of cut maximum cutting speed, the surface roughness is high. At a minimum 

depth of cut and minimum, cutting speed surface roughness is maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Surface and contour plot of Ra for varying feed rate and depth of cut at 375 m/min cutting speed (A) 2D view and (B) 3D 

view 
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Figure 10 Surface and contour plot of Ra for varying cutting speed and depth of cut at 0.287 mm/min feed rate (A) 2D view and 

(B) 3D view 

3.10 Predicted values 

Predicted values of surface roughness from the developed mathematical model and the experimental values are shown in Figure 

11 and Table 15. The comparison of predicted and measured values shows that the predicted values of the surface roughness are 

very close to measured values.  

The mathematical model for the surface roughness prediction based on the experimental results given in Table 15 is developed 

using equation (7). The developed mathematical model to predict Ra is: 

Ra = 41.4 - 0.075 v - 9.6 f - 30.3 d - 0.000028 v2 +  

                 45 f2 + 4.39 d2 - 0.027 v*f + 0.0625 v*d + 0.1 f*d                      (7) 
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Table 15 Experimental and predicted values of surface roughness 

Experiment 

No. 

Surface roughness (µm) 

Experimental Predicted 

1 13.357 12.891 

2 9.113 8.508 

3 5.495 5.821 

4 13.325 12.497 

5 13.193 12.319 

6 6.845 6.737 

7 5.137 5.603 

8 5.089 5.43 

9 7.11 7.453 

10 6.99 7.164 

11 7.602 7.832 

12 6.565 6.294 

13 7.07 7.576 

14 8.09 7.548 

15 9.684 8.916 

16 6.842 7.287 

17 8.918 8.365 

18 6.219 6.837 

19 8.098 7.653 

20 7.29 7.414 

21 11.55 11.67 

22 14.76 14.54 

23 8.274 7.806 

24 13.528 12.368 

25 8.192 7.928 

26 11.08 10.499 

27 9.249 10.065 
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Figure 11 Experimentally measured and predicted values of surface roughness 

3.11 Parameter optimization 

The surface roughness (Ra) is an undesirable and uncontrollable quality characteristic of a turning process. As such, they are to be 

minimized to improve product quality subject to constraints determined by the design limits of the process variables. Figure 10, 

therefore, gives the optimum setting of cutting speed of 375 m/min at a feed rate of 0.287 mm/min and 1 mm depth of cut. These 

would be required to minimize Ra to a value of 5.10 μm with the desirability of 0.9993, all within the selected design space.  This 

is confirmed by the contour and surface plots of the figures are Figures 8, 9, and 10. The results of optimum parameters is shown 

in the figure 12. 

 

 

 

 

 

 

 

Figure 12 Results of parameter optimum 

3.12 Experimental confirmation 

The confirmation experiments were performed to facilitate the verification of the obtained feasible optimal machining parameters 

(v = 375 m/min, f = 0.287 mm/rev and d = 1 mm) for the surface roughness. The results of the confirmation run for the response 

Ra are listed in Table 16. The error between the predicted and the confirmation results is 3.403%.  

Table 16 Confirmation results for surface roughness 

Optimum cutting parameters Surface roughness (μm)  

Validation 

error 

(%) v 

(m/min) 

f 

 (mm/min) 

d 

(mm) 

Experimental 

 

Predicted 

Run 1 Run 2 Run 3 Average 

375 0.287 1 5.10 5.118 5.122 5.113 4.939 3.403 

 

The comparison of predicted and measured values shows that the predicted values of the surface roughness are very close to 

measured values and the same result was reported by Girish Kant (2016)[17].  

4. CONCLUSION 

The research presents an investigation of cutting parameters on surface roughness for the turning operation of EN-8 steel. It has 

been found that the predictive model provides optimum machining parameters. The results of the proposed model provide 

improvement in surface roughness over the best experimental run. It has been observed that the depth of cut is the main 

influencing machining parameter for the minimization of surface roughness by the feed rate and the cutting speed. The 3D surface 

and contour plots designed during the study can be used for choosing the optimal machining parameters to gain specific values of 

surface roughness these can be used by the machine tool manufacturers to provide the range of cutting speeds, feed rate, and depth 
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of cut for a particular application. RSM is the best modeling as it learns the best fit of models. It has better performance in 

optimization and enhancement of surface finish. Confirmations experiments carried out using the optimum machining parameters 

show that the developed predictive and optimization model can be used for turning of EN - 8 steel within 3.403% error. The 

minimum value of surface roughness obtained is 5.113µm. Optimal cutting conditions for turning operation o EN-8 steel for better 

surface finish of 5.113 µm was found to be 1mm, 375m/min, and 0.287mm/min for depth of cut, cutting speed, and feed rate 

respectively. 
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