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 Abstract - Let G = (V, E) be a finite, undirected and connected graph without loops and multiple edges. Power dominator coloring 

of a graphs is highly useful in all the power related circuits. The objective of power dominator coloring is to reduce the number of 

colors required to color the graph with certain restrictions. This will enable us to understand the reliability of all nodes present in 

the graphs. We find the power dominator coloring for fan graph, double fan graph, planter graph, lilly graph, octopus graph, drum 

graph, venessa graph, flower pot graph and umbrella graph. All results are diagrammatically illustrated.  
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INTRODUCTION 

In graph theory, the prime research areas of coloring and domination has wide range of applications in the real life. Teresa W. et. 

al. published a book in 1998, on domination which lists 1222 papers in this area [1]. 

 

 When Haynes et al [2] were trying to place Minimum number of PMU to observe current flow in the circuit, power domination 

was introduced.  

 

Recent variation on coloring named dominator coloring is the main focus for many research, which was introduced by Gera [3].  In 

2016, on linking the power domination and dominator coloring, K. Sathish Kumar et al, introduced power dominator coloring [4].  

 

A. Uma Maheswari and Bala Samuvel J, found power dominator chromatic number for special graphs [5]. Also, power dominator 

chromatic number for various special graphs were found [6]–[8].  

 

 

Study on properties of fan related graphs was published by Edward Samuel A. and Kalaivani S in  [9]–[15]. Chidambaram found 

properties of fan graphs in [16]. 

 

Here, in this paper, we study the power dominator coloring for fan graph, double fan graph, planter graph, lilly graph, octopus graph, 

drum graph, venessa graph, flower pot graph and umbrella graph. All results are diagrammatically illustrated. 

 

PRELIMINARIES 

The definitions required for this paper are recalled below [17].  

Definition 1: Dominator Coloring [3] 

A dominator coloring [[18]–[20]] of a graph is a proper coloring such that each vertex dominates every vertex of color class. The 

chromatic number 𝜒𝑑(𝐺) of a graph is the minimum number of colors needed for a  dominator coloring of G. 

Definition 2: Power Dominator Coloring [4] 

The power dominator coloring [[4],[5]] of G is a proper coloring of G, such that every single vertex of G power dominates all 

vertices of some color class. The minimum number of color classes in a power dominator coloring of the graph, is the power 

dominator chromatic number. It is denoted by 𝜒𝑝𝑑(𝐺). 

Definition 3: Double Fan Graph[21] 
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The double fan graph 𝐷𝐹𝑛 is defined as the graph join 𝐾2
̅̅ ̅ +  𝑃𝑛, where 𝐾2

̅̅ ̅ is the empty graph on 2 nodes and P𝑛 is the path on 

𝑛 nodes. 

Definition 4: Planter Graph[12] 

The planter graph 𝑅𝑛, (𝑛 ≥ 3) can be constructed by joining a fan graph 𝐹𝑛, (𝑛 ≥ 2) and cycle graph 𝐶𝑛, (𝑛 ≥ 3) with sharing a 

common vertex, where n is any positive integer. i.e., 𝑅𝑛 = 𝐹𝑛 + 𝐶𝑛. 

 

Definition 5: Lilly graph [10] 

The lilly graph 𝐼𝑛, n ≥ 2 is constructed by 2 stars 2𝐾1,𝑛, n ≥ 2 joining 2 path graphs 2𝑃𝑛 , n ≥ 2 with sharing of a common vertex. i.e; 

𝐼𝑛 = 2𝐾1,𝑛 + 2𝑃𝑛. 

Definition 6: Octopus graph [9] 

An octopus graph 𝑂𝑛 , (𝑛 ≥ 2) can be constructed by a fan graph 𝐹𝑛, (𝑛 ≥ 2) joining a star graph 𝐾1,𝑛 with sharing a common vertex, 

where n is any positive integer. i.e., 𝑂𝑛 = 𝐹𝑛 + 𝐾1,𝑛. 

Definition 7: Drum𝒔 graph[13] 

The drums graph 𝐷𝑛, 𝑛 ≥ 3 can be constructed by two cycle graphs 2𝐶𝑛, n ≥  3 joining two path graphs 𝑃𝑛 ,  𝑛 ≥  2 with sharing a 

common vertex. i.e., 𝐷𝑛 = 2𝐶𝑛 + 2𝑃𝑛. 

Definition 8: Venessa graph[11] 

The venessa graph 𝑉𝑛, 𝑛 ≥ 3 can be constructed by two fan graphs 2𝐹𝑛, n ≥ 2 of same order, sharing same common vertex 𝑣0, with 

𝑛 number of Pendent vertices 𝐾𝑛,. i.e., 𝑉𝑛  = 2𝐹𝑛 + 𝐾𝑛. 

Definition 9: Udukkai graph[14] 

An udukkai graph 𝑈𝑛,  𝑛 ≥3 is a graph constructed by joining two fan graphs 𝐹𝑛𝑛 ≥ 2 with two paths 𝑃𝑛, 𝑛 ≥  2 by sharing a 

common vertex at the center. 

Definition 10: Flower pot graph  [22] 

A flower pot graph 𝐹𝑃𝑛 is the graph attained by linking a star graph 𝐾1,𝑛 with the central vertex of a cycle graph 𝐶𝑛. 

Definition 11: Umbrella graph[23] 

An umbrella graph 𝑈(𝑚, 𝑛) is the graph attained by linking a path 𝑃𝑛 with the central vertex of a fan 𝑓𝑚. 

Here, in this paper, we study the power dominator coloring for the fan graph, double fan graph, planter graph, lilly graph, octopus 

graph, drum graph, venessa graph, flower pot graph and umbrella graph. All results are diagrammatically illustrated. 

MAIN RESULTS 

Theorem 1 

For any 𝑛 ≥ 3, the power dominator chromatic number of fan graph 𝐹𝑛 is 3. 

Proof: Let 𝐹𝑛 be the fan graph. Let the vertex 𝑣1, be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of fan graph 𝐹𝑛. Let 𝐸(𝐹𝑛) 

= {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1} ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑛 + 1 }.  

 

Assign the color 𝑐1 to the apex vertex 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of fan 𝐹𝑛 assigned color 𝑐2 and 𝑐3 alternatively.  

This coloring is proper. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1} of fan graph 𝐹𝑛 will power dominate the color class 𝑐1 = {𝑣1}.  Vertex 𝑣1 

will power dominate itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the fan graph 𝐹𝑛 will power dominate atleast one 

color class. The power dominator coloring the fan graph 𝐹𝑛 𝑖𝑠 3.  i.e., 𝜒𝑝𝑑(𝐹𝑛) = 3.  

 

Example 1: In figure 1, the power dominator coloring of fan graph 𝐹3 is shown. 

 

 

 

 

 

 

 

 

𝑐2 

𝑐1 𝑣1 
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𝑣3 
 

𝑣4 

 

𝑐3 𝑐2 

Fig.1 fan graph 𝐹3 
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Theorem 2 

For any 𝑛 ≥ 3, the power dominator coloring of double fan graph 𝐷𝐹𝑛 is 3. 

Proof: Let 𝐷𝐹𝑛 be the double fan graph. Let the vertex 𝑣1, 𝑣1
′ , be an apex vertex and  𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of path 

attached to vertices 𝑣1, 𝑣1
′ . Let 𝐸(𝐷𝐹𝑛) = {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1} ∪ {𝑣1

′  𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1}   ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑛 + 1 }.  

 

Assign the color 𝑐1 to the apex vertices 𝑣1, 𝑣1
′ . The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of double fan graph 𝐷𝐹𝑛 assigned color 𝑐2 and 𝑐3 

alternatively.  

 

This coloring is proper. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1} of double fan graph 𝐷𝐹𝑛 will power dominate the color class 𝑐1 =
{𝑣1, 𝑣1

′ }. Vertices {𝑣1, 𝑣1
′ } will power dominate itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the double fan graph 𝐷𝐹𝑛 

will power dominate atleast one color class. The power dominator chromatic number for the double fan graph 𝐷𝐹𝑛 , is 3. i.e., 

𝜒𝑝𝑑(𝐷𝐹𝑛) = 3.  

 

Example 2: In figure 2, the power dominator coloring of double fan graph 𝐷𝐹3 is shown. 

 

 

 

 

 

 

 

 

 

Theorem 3: For any 𝑛 ≥ 2, the power dominator coloring of octopus graph 𝑂𝑛 is 3. 

Proof:  Let  𝑂𝑛 be an octopus graph. Let the vertex 𝑣1,be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of fan graph 𝐹𝑛, 𝑎𝑛𝑑 

{𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of star graph 𝐾1,𝑛 . Let 𝐸(𝑂𝑛) = {𝑣1𝑣𝑖/2 ≤  𝑖 ≤  2𝑛 +  1} ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑛}.  

 

Assign the color 𝑐1 to the apex vertices 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of fan 𝐹𝑛 assigned color 𝑐2 and 𝑐3 alternatively, and 

the vertices {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  of star graph 𝐾1,𝑛 assigned color 𝑐2 and 𝑐3 alternatively.  

 

This coloring is proper. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1} of fan graph 𝐹𝑛 will power dominate the color class 𝑐1 = {𝑣1}, every vertex 

of the star 𝐾1,𝑛 , {𝑣𝑖 , 𝑛 + 2 ≤ 𝑖 ≤ 2𝑛 + 1, will power dominate the color class 𝑐1 = {𝑣1}.  Vertex 𝑣1 will power dominate itself and 

color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The power dominator 

chromatic number for octopus graph 𝑂𝑛, is 3. i.e., 𝜒𝑝𝑑(𝑂𝑛) = 3.  

 

Example 3: In figure 3, the power dominator coloring of octopus graph 𝑂5 is shown. 

 

 

 

 

 

 

 

 

 

 

Theorem 4: For any 𝑛 ≥ 2, the power dominator chromatic number of lilly graph 𝐼𝑛 is 3. 
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Fig.3 Octopus graph 𝑂5 
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Proof:  Let 𝐼𝑛 be the lilly graph. Let the vertex 𝑣1 be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of star graph 𝐾1,𝑛, and 

{𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of second star graph 𝐾1,𝑛. The vertices of first path 𝑃𝑛 be {𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛}, 

and the vertices of second path 𝑃𝑛 be {𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−1}. The vertices 𝑣2, … , 𝑣𝑛 , 𝑣𝑛+1, … , 𝑣2𝑛+1, 𝑣3𝑛, 𝑣4𝑛−1represents 

the pendant vertices. Let 𝐸(𝐼𝑛) = {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1} ∪ {𝑣1𝑣𝑖+1 / 𝑛 + 2 ≤  𝑖 ≤  2𝑛 + 1 } ∪ {𝑣𝑖𝑣i+1 / 2n +  2 ≤  i ≤  3n −
1 } ∪ {𝑣𝑖𝑣i+1 / 3n + 1 ≤  i ≤  4n − 1 }} ∪ {𝑣1𝑣2n+2, 𝑣1𝑣3n+1 }.  

 

Assign the color 𝑐1 to the vertices 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of star 𝐾1,𝑛 assigned color 𝑐2 and 𝑐3 alternatively, and the 

vertices {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  of star 𝐾1,𝑛 assigned color 𝑐2 and 𝑐3 alternatively. The vertices of first path 𝑃𝑛  

{𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛}, and the vertices of second path 𝑃𝑛  {𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−1} are assigned color 𝑐2 and 𝑐3 

alternatively. This coloring is proper. The vertices 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1,𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, …,  

𝑣2𝑛+1, 𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛 , 𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . ., 

𝑣4𝑛−1 will power dominate the color class 𝑐1 = {𝑣1}. Vertex 𝑣1 will power dominate itself and color class 𝑐2 and 𝑐3. Therefore, 

every vertex in the graph will power dominate atleast one color class. The power dominator chromatic number of lilly graph 𝐼𝑛, is 

3. i.e., 𝜒𝑝𝑑(𝐼𝑛) = 3.  

 

Example 4: In figure 4, the power dominator coloring of lilly graph 𝐼5 is shown. 

 

 

 

 

 

 

 

 

 

 

Theorem 5: For any 𝑛 ≥ 2, the power dominator chromatic number of planter graph 𝑅𝑛 is 3. 

Proof:  Let 𝑅𝑛 be the planter graph. Let the vertex 𝑣1 be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of fan graph 𝐹𝑛, and 

{𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of cycle graph 𝐶𝑛. Let 𝐸(𝑅𝑛) = {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1} ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑛 +
1 } ∪ {vi𝑣i+1/n +  2 ≤  i ≤  2n −  1}. 

 

Assign the color 𝑐1 to the apex vertex 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of fan 𝐹𝑛 assigned color 𝑐2 and 𝑐3 alternatively, and the 

vertices {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛}  of cycle graph  𝑐𝑛 assigned color 𝑐2 and 𝑐3 alternatively.  

 

This coloring is proper. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1} of fan graph 𝐹𝑛 will power dominate the color class 𝑐1 = {𝑣1}, every 

vertex of the cycle 𝑐𝑛, {𝑣𝑖 , 𝑛 + 2 ≤ 𝑖 ≤ 2𝑛, } will power dominate the color class 𝑐1 = {𝑣1}. Vertex 𝑣1 will power dominate itself 

and color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The power dominator 

chromatic number of planter graph 𝑅𝑛, 3. i.e., 𝜒𝑝𝑑(𝑅𝑛) = 3.  

 

Example 5: In figure 5, the power dominator coloring of planter graph 𝑅3 is shown. 
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Theorem 6 

For any 𝑛 ≥ 3, the power dominator coloring of venessa graph 𝑉𝑛 is 3. 

Proof: Let 𝑉𝑛 be the venessa graph. Let the vertex 𝑣1,be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices of fan graph 𝐹𝑛, 𝑎𝑛𝑑 

{𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of second fan graph 𝐹𝑛.and 𝑣2𝑛+2, 𝑢2𝑛+3, 𝑢2𝑛+4, … , 𝑢3𝑛+1 be vertices of a star 𝐾1,𝑛 Let 

𝐸(𝑉𝑛) = {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤  𝑛 + 1} ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑛 + 1 } ∪ {𝑣1 𝑣𝑗/𝑛 + 2 ≤  𝑗 ≤ 2 𝑛 + 1} ∪ {𝑣i𝑣i+1/n +  2 ≤  i ≤  2n +

 1} ∪ {𝑣1 𝑢𝑗/2𝑛 + 2 ≤  𝑘 ≤ 3 𝑛 + 1}. 

Assign the color 𝑐1 to the apex vertex 𝑣1. The even indexed vertices {𝑣2, 𝑣4, 𝑣6, … , }  of venessa graph assigned color 𝑐2 and the odd 

indexed vertices {𝑣3, 𝑣5, 𝑣7, … , }  of venessa graph assigned color 𝑐3. This procedure ensures the coloring is proper. Every vertex 

𝑣𝑖 . 2 ≤ 𝑖 ≤ 3𝑛 + 1 of venessa graph will power dominate the color class 𝑐1 = {𝑣1}.  Vertex 𝑣1 will power dominate itself and color 

class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The power dominator coloring of 

venessa graph 𝑉𝑛,  𝑛 ≥ 3  is 3. i.e., 𝜒𝑝𝑑(𝑉𝑛) = 3.  

Example 6: In figure 5, the power dominator coloring of venessa graph 𝑉3 is shown 

 

 

 

 

 

 

 

 

 

Theorem 7 

For any 𝑛 ≥ 3, the power dominator chromatic number for flower pot graph 𝐹𝑃𝑛 is 3. 

Proof: Let 𝐹𝑃𝑛,  𝑛 ≥ 3 be a flower pot graph with 𝑛 ≥ 3 vertices. Let the vertex 𝑣1,be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the 

vertices of star graph 𝐾1,𝑛, and {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of cycle graph 𝐶𝑛. Let (𝐹𝑃𝑛) = {𝑣1𝑣𝑖/2 ≤  𝑖 ≤  𝑛 +
 1} ∪ {𝑣𝑖𝑣𝑖+1/𝑛 + 2 ≤  𝑖 ≤  2𝑛 + 1} ∪ {𝑣1𝑣𝑛+2, 𝑣2𝑛+1𝑣1}.  

 

Assign the color 𝑐1 to the apex vertices 𝑣1. The pendent vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of star graph 𝐾1,𝑛 assigned color 𝑐2, and the 

vertices {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  of cycle graph 𝐶𝑛 assigned color 𝑐2 and 𝑐3 alternatively. This coloring is proper. The vertices 

{𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1} of star graph associated in flower pot graph 𝐹𝑃𝑛 will power dominate the color class 𝑐1 = {𝑣1}, every vertex of 

the cycle 𝐶𝑛 =  {𝑣𝑖 , 𝑛 + 2 ≤ 𝑖 ≤ 2𝑛 + 1, will power dominate the color class 𝑐1 = {𝑣1} and 𝑐3 . Vertex 𝑣1 will power dominate 

itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The power 

dominator coloring of flower pot graph 𝐹𝑃𝑛, 𝑛 ≥ 3 is 3.  i.e., 𝜒𝑝𝑑(𝐹𝑃𝑛) = 3.  

 

Example 7: In figure 7, the power dominator coloring of flower pot graph 𝐹𝑃5 is shown 
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Theorem 8 

For any 𝑛 ≥ 2, 𝑚 ≥ 3  , the power dominator chromatic number of umbrella graph, 𝑈(𝑚, 𝑛) is 3. 

Proof:  Let 𝑈(𝑚, 𝑛),  𝑚 ≥ 3, 𝑛 ≥ 2 be a be umbrella graph with 𝑚 ≥ 3, 𝑛 ≥ 2 vertices. Let the vertex 𝑣1be the apex vertex, 

𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑚+1  be the vertices of fan 𝐹𝑚, and {𝑣𝑚+2, 𝑣𝑚+3, 𝑣𝑚+4, … , 𝑣𝑚+𝑛}  be the vertices of path 𝑃𝑛 . Let 𝐸(𝑈(𝑚, 𝑛)) =

{𝑣1𝑣𝑖/2 ≤  𝑖 ≤  𝑚 +  1} ∪ {𝑣𝑖𝑣𝑖+1/2 ≤  𝑖 ≤  𝑚} ∪ {𝑣1𝑣𝑚+2} ∪ {𝑣𝑗𝑣𝑗+1/𝑚 + 2 ≤ 𝑗 ≤ 𝑚 + 𝑛 − 1}. 

Assign the color 𝑐1 to the apex vertices 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑚+1}  of  fan graph 𝐹𝑚 assigned color 𝑐2 and 𝑐3 alternatively, 

and the vertices {𝑣𝑚+2, 𝑣𝑚+3, 𝑣𝑚+4, … , 𝑣𝑛+𝑚}  of path 𝑃𝑛 assigned color 𝑐2 and 𝑐3 alternatively. This coloring is proper. The vertices 

{𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑚+1} of fan graph associated in flower pot graph 𝑈(𝑚, 𝑛) will power dominate the color class 𝑐1 = {𝑣1}, every 

vertex of the path 𝑃𝑛 =  {𝑣𝑖 , 𝑚 + 2 ≤ 𝑗 ≤ 𝑚 + 𝑛, will power dominate the color class 𝑐1 = {𝑣1}. And vertex 𝑣1 will power dominate 

itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The power 

dominator coloring for umbrella graph 𝑈(𝑚, 𝑛), 𝑚 ≥ 3, 𝑛 ≥ 2, is 3. i.e., 𝜒𝑝𝑑(𝑈(𝑚, 𝑛)) = 3.  

 

Example 8: In figure 8, the power dominator coloring of umbrella graph 𝑈(5,4) is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 9: For any 𝑛 ≥ 2, the power dominator coloring of drums graph 𝐷𝑛 is 3. 

Proof:  Let 𝐷𝑛 be the drums graph. Let the vertex 𝑣1, be the apex vertex, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛  be the vertices of cycle graph 𝐶𝑛, and 
{𝑣𝑛+1, 𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛−1}  be the vertices of second cycle graph 𝐶𝑛. The vertices of first path 𝑃𝑛 be 
{𝑣2𝑛 , 𝑣2𝑛+1, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛−2}, and the vertices of second path 𝑃𝑛 be {𝑣3𝑛−1, 𝑣3𝑛 , 𝑣3𝑛+1, 𝑣3𝑛+2, . . , 𝑣4𝑛−3}. Let 𝐸(𝐷𝑛) = 

{𝑣𝑖  𝑣𝑖+1/1 ≤  𝑖 ≤  𝑛} ∪ {𝑣𝑗𝑣𝑗+1 / 𝑛 + 1 ≤  𝑗 ≤  2𝑛 − 2 } ∪ {𝑣1𝑣𝑛+1, 𝑣1𝑣2𝑛−1, 𝑣1𝑣2𝑛 , 𝑣1𝑣3𝑛−1} ∪ {𝑣𝑘𝑣k+1 / 2𝑛 ≤ 𝑘 ≤  3𝑛 −

3 } ∪ {𝑣𝑙𝑣𝑙+1 / 3n − 1 ≤ 𝑙 ≤  4n − 4 }.  

 

Assign the color 𝑐1 to the vertices 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛}  of first cycle graph 𝐶𝑛 assigned color 𝑐2 and 𝑐3 alternatively, 

and the vertices {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛−1}  of second cycle graph  𝐶𝑛 assigned color 𝑐2 and 𝑐3 alternatively. The vertices of first 

path 𝑃𝑛 be {𝑣2𝑛, 𝑣2𝑛+1, 𝑣2𝑛+2, . . , 𝑣3𝑛−2}, and the vertices of second path 𝑃𝑛 be {𝑣3𝑛 , 𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−3} are assigned color 

𝑐2 and 𝑐3 alternatively. This coloring is proper. The vertices 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1, 

 𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛, 𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−3  will power dominate the color class 𝑐1 = {𝑣1}. vertex 𝑣1 will power 

dominate itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The 

power dominator coloring of drums graph 𝐷3 is 3. i.e., 𝜒𝑝𝑑(𝐷𝑛) = 3.  
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Example 9: In figure 3, the power dominator coloring of drums graph 𝐼5 is shown. 

 

 

 

 

 

 

 

 

 

 

Theorem 10: For any 𝑛 ≥ 3, the power dominator chromatic number of udukkai graph 𝑈𝑛 is 3. 

Proof:  Let 𝑈𝑛 , 𝑛 ≥ 3 be the udukkai graph. Let the vertex 𝑣1, be the apex vertex. The vertices, 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1  be the vertices 

of first fan graph 𝐹𝑛, and {𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1}  be the vertices of second fan graph 𝐹𝑛. The vertices of first path 𝑃𝑛 be 
{𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛}, and the vertices of second path 𝑃𝑛 be {𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−1}. Let 𝐸(𝑈𝑛) = {𝑣1 𝑣𝑖/2 ≤  𝑖 ≤
 𝑛 + 1} ∪ {𝑣𝑖𝑣𝑖+1 / 2 ≤  𝑖 ≤  𝑛 } ∪ {𝑣1𝑣𝑖+1 / 𝑛 + 2 ≤  𝑖 ≤  2𝑛 + 1 } ∪ {𝑣𝑖𝑣𝑖+1 / 𝑛 + 2 ≤  𝑖 ≤  2𝑛 } ∪ {𝑣𝑖𝑣i+1 / 2n +  2 ≤  i ≤
 3n − 1 } ∪ {𝑣𝑖𝑣i+1 / 3n + 1 ≤  i ≤  4n − 1 }} ∪ {𝑣1𝑣2n+2, 𝑣1𝑣3n+1 }.  

 

Assign the color 𝑐1 to the vertices 𝑣1. The vertices {𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1}  of first fan graph 𝐹𝑛 assigned color 𝑐2 and 𝑐3 alternatively, 

and the vertices {𝑣𝑛+2, 𝑣𝑛+3,  𝑣𝑛+4, … , 𝑣2𝑛+1}  of second fan graph 𝐹𝑛 assigned color 𝑐2 and 𝑐3 alternatively. The vertices of first 

path 𝑃𝑛 be {𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3, . . , 𝑣3𝑛}, and the vertices of second path 𝑃𝑛 be {𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−1} are assigned color 𝑐2 

and 𝑐3 alternatively. This coloring is proper. The vertices 𝑣2, 𝑣3, 𝑣4, … , 𝑣𝑛+1𝑣𝑛+2, 𝑣𝑛+3, 𝑣𝑛+4, … , 𝑣2𝑛+1,  

𝑣2𝑛+2, 𝑣2𝑛+2, 𝑣2𝑛+3. . , 𝑣3𝑛 , 𝑣3𝑛+1, 𝑣3𝑛+2, 𝑣3𝑛+3, . . , 𝑣4𝑛−1 will power dominate the color class 𝑐1 = {𝑣1}, And vertex 𝑣1 will power 

dominate itself and color class 𝑐2 and 𝑐3. Therefore, every vertex in the graph will power dominate atleast one color class. The 

power dominator coloring of udukkai graph 𝑈𝑛 , 𝑛 ≥ 3 is 3. i.e., 𝜒𝑝𝑑(𝑈𝑛) = 3.  

 

Example 10: In figure 3, the power dominator coloring of udukkai graph 𝐼5 is shown. 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

On connecting graph coloring problem with power domination, power dominator coloring was introduced. The main objective of 

this paper is to study the power dominator coloring of the fan graph, double fan graph, planter graph, lilly graph, octopus graph, 

drums graph, venessa graph, flower pot graph and umbrella graph. There is scope for studying power dominator coloring for some  

platonic graphs and chemical structures. 
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