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 ABSTRACT:  

 In this paper,we define a analytic functions associated with sine functions of unit disk in the region on the complex plane. Our 

aim to find the coefficient of the class S*sine using  a star like function in  Fekete-Szego Problem.  
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1.INTRODUCTION AND DEFINITION:  

1. 1.INTRODUCTION   

Let A be  the class of functions f(z) of the form,   which are analytic                         

of the function  in the region 𝐷 = {𝑍: 𝑍 ∈ 𝐶:|Z|<1} and let A be the class of all analytic functions f(z) in the open unit disk D, 

which are normalized by f(0)=0,f´(0)=1. The functions fϵA has the Taylor’s series expansion of the form,    

                               (1.1)    

and  the  subclass of  A  is comprise of univalent functions and  such functions are called as normalized univalent functions in D. 

These all functions of classes is denoted by S and the class S of all regular univalent functions. Cho et al was introduced by the class 

S*sin of analytic function .They also analysis of  ф(z) = 1+sin z  is determine by the radii problems for this class of  functions. An 

Analytic function f is subordinate to an analytic function g. we may written as f  g.  If there exists an analytic function ω with  

ω(0)=0  and  |ω(z)| <1 for  𝑍 ∈ 𝐷 such that f(z)=g(ω(z)), where ω is a Schwarz function. They also expand some new inequalities 

associate with coefficient bounds of some subclasses of univalent functions. Fekete-Szego inequality is one of the inequality for the 

coefficients of univalent analytic functions.  

 

1.2. DEFINITION:  

DEFINITION 1.2.1: Let f be given by (1.1) then   if and only if  

                              (ZϵD)                (1.2)  

DEFINITION 1.2.2: The class  of analytic function defined by,  

                                                                 (1.3)  

 

2. COEFFICIENT ESTIMATION:  

LEMMA 2.1 . If P ϵℙ  and has the form  z + 𝑐2z² +…….(ZϵD), then for anycomplex number µ we have,  

                                         |𝑐2- µ𝑐1²| ≤ max   

Then |𝑃𝑘|≤ 1, k ϵ N where P is the family of all functions analytic in D for which P(0)=1 and Re(P(z))>0, (Z ϵ D).   

THEOREM 2.2. If f(z) given by (1.1) belongs to the class  then,  

                                                   |   

                       

PROOF: . Then we can write using (1.2) and (1.3), in terms of Schwarz function as,    
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                               𝑓′   

′′   

′   

                                              ′(𝑧)= ]  

′(𝑧) = { + z+   

   

                                      

                       

                                                 

By simple calculations, we get  

                                                           = [1+2𝑎2 𝑧 + 𝑧2 (6𝑎3 − 4𝑎2²)]  

²) z²}   

From (1.1), we can write  

  

                                         3𝑎3z²+𝜆 +2𝑎2𝜆z+ 𝜆(6𝑎3-4𝑎2²) z²                                (2.1)  

Using the above lemma and  by simple calculations, we get  

 z²+……                               (2.2)  

By comparing (2.1) and (2.2), on equating the coefficients of z,   

                                                   

We get  

                                                                                                    (2.3)  

 Equating the coefficients of  z² ,  

                                    

Substituting the value 𝑎2 in this equation,  

   

  

By simple Calculations,   

We get,  

                                                         (2.4)  

  

                                      =     
  1 + 2 𝑎 2 𝑧 + 3 𝑎 3 𝑧 2 + 4 𝑎 4 𝑧 3   + ( 2 𝑎 2 𝑧 + 6 𝑎 3 𝑧 2 + 12 𝑎 4 𝑧 3 ) 

( 1 + 2 𝑎 2 𝑧 + 3 𝑎 3 𝑧 2 + 4 𝑎 4 𝑧 3 ) 
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                                     3.THE FEKETE-SZEGO PROBLEM  

THEOREM 3.1.   If   then,  

   

PROOF:    then   𝑎3 − µ𝑎2
2   

 Substituting the value 𝑎2  𝑎𝑛𝑑  𝑎3 , we get                

 ²   

   

By simple calculations, we get  

   

Hence we have,  

²ν                         (3.1)  

Where                                     ν =   

By taking modulus on both sides of (3.1),we get the required result.  

Hence,  

                   

Corollary 1.    

                          When 𝜆 = 1, then  

                             ²ν   

Where,                            

                          ν =   

Corollary 2.  

                     When 𝜆 = 0, then  

²ν   

Where,  

                                 ν =  µ   

 

Conclusion:  

In this paper, the focus is to venture of investigate a some new subclasses of analytic functions for to describe on the open unit disk 

D. Additionally determines using the sine functions to the coefficients bounds and classical  fekete  szego problem.     
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