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Abstract: A Markovian single server queue in which server is in distinct phases with impatience customers is studied. The server 

stays in active mode and in sleep mode alternatively for  random amount of time. In active mode, either server is fully active or 

partially active (slow and active mode). Arrivivg customers get service with FCFS queue discipline while server is in Full active 

mode. Server can offer service only in lesser rate whenever it switches from full active to slow active mode. During slow active 

mode, no customer is allowed to join the system and each customer independently activates impatient timer and leaves the system 

if he does not get service before the expiry of the timer. Server goes to the sleep mode immediately after serving the last available 

customer either in active or slow mode. All customers who are all arriving during the sleep mode are lost. At the end of the sleep 

mode, the server enters into full active mode. We obtain expressions for the time-independent state probabilities.We also obtain 

some performance measures of the system. 

Keywords: Single server queueing system, Server in different phases, Matrix geometric method, Customer removal. 

 

1  Introduction 

Significant delay for the customers in the queue before getting the service may lead to the to develop impatience despite of the server 

being available in the system. Consideration of Impatient customers in the Queueing models have been studied by several authors 

[1-5] . These models have been applicable in many real time situations such as in treating critical patients, transmitting data packets, 

production inventory systems ,Call centers etc.Impatience is studied by allotting a random time for each customer who enters the 

system.If the customer does not get service within his allotted time,his time expires then customer leaves the queue and is lost 

forever. Literatures relating to this topic can be found in several surveys by [6-9]. 

Queueing systems with impatient customers have been concentrated by number of authors.There is an board measures of literature 

based on this kind of model and we refer the reader to [10-13]. In this papers, the wellspring of fretfulness has continuously been 

taken to be either a significant delay as of now experienced upon landing in a line, or a huge delay expected by a customer upon 

arrival. 

In[14-16] analysed Queues with system disasters and impatient customers.Udayabaskaran and Dora Pravina[17] studied the 

Transient analysis of single server queue with server operating in three modes,namely active,maintanence and sleep modes.Perel 

and Yechiali[18] studied Queues with slow servers with impatient customers.That is,server is in two phases(fast and slow). It is not 

give due importance for the sleep mode in their model,since it is essential to consider the queueing models concentrated on in power 

saving mechanism.To fill this gap,Here it is proposed the realistic single server queueing model with server operating in three modes 

subject to customers impatience. 

The sections of this article is arranged as follows: In Section 2 the model is described. Section 3 is devoted for writting the balance 

equations to arrive time-independent probabilities of the system. Explicit expressions for the steady state probabilities are arrived in 

Section 4. In section 5, we obtain the system performance measures. Section 6 devoted for the numerical illustrations to validate the 

model. 

 

2  Assumptions and Description of the Model 

Considered a single server which is operating in three phases  namely active phase, slow phase(only service no arrival) and sleep 

phase. In active phase, we assume that the customers arrival pattern follows Poisson distribution with rate 𝜆. In active and slow 

phases, service rates are  𝜇1 and 𝜇2 respectively such that 𝜇2 < 𝜇1. The server moves to sleep phase with rate 𝛼 after it served 

all the available customers in FCFS basis when it is in active phase. During the sleep phase no customer is allowed to join the system. 

The server spends for a random amount of time  in sleep mode which is exponentially distributed with mean 1/𝛽. Immediately 
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after the sleep period, the server ready to serve the customers with active phase. If the server is in active phase and the customers 

are there for service, then the server can switch over from active phase to slow phase with rate 𝛾.No customers are allowed to join 

the system while the server is in slow phase. The server enter in to the sleep phase after completed all the customers who are all 

waiting for service when it is in slow phase. When the server is in slow phase, due to prolonged service time the customers may fall 

in impatience and leaves the system with the rate 𝜂. 

Let 𝑈 be the phase of the server and let 𝑋 be  the number of customers in the system. Then the two dimensional  stochastic process 

(𝑈, 𝑋) defines a continuous time Markov process. We define the probability  

 𝜋𝑚,𝑙 = Π[𝑈 = 𝑚, 𝑋 = 𝑙|𝑈 = 0,𝑋 = 0],𝑚 = 0,1,2. ; 𝑙 = 0,1,2,⋯.                                  

denote the steady-state probabilities of the random process(𝑈, 𝑋) In the next section, we derive the balance equations. 

The state transition diagram is given below:  

 

Figure 1: State transition diagram 

 

 

  

3  Balance Equations 

  

       𝛽𝜋0,0  = 𝛼𝜋1,0 + 𝜇2𝜋2,1 (1) 

 𝜆 + 𝛼)𝜋1,0 = 𝛽𝜋0,0 + 𝜇1𝜋1,1 (2) 

 𝜆 + 𝜇1 + 𝛾)𝜋1,𝑙 = 𝜆𝜋1,𝑙−1 + 𝜇1𝜋1,𝑙+1, 𝑙 = 1,2,⋯. (3) 

 𝜇2 + (𝑙 − 1)𝜂)𝜋2,𝑙 = 𝛾𝜋1,𝑙 + (𝜇2 + 𝑙𝜂)𝜋2,𝑙+1, 𝑙 = 1,2,⋯. (4) 

 

4  Steady State Solutions 

 

The corresponding transition rate matrix  

 𝒬 =

(

 
 
 
 
 

𝒟0 𝒜0 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
𝒜2,1 𝒜1,1 𝒜0 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 𝒜2,2 𝒜1,2 𝒜0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 0 0 ⋯ ⋯ ⋯ 𝒜1,𝑙−1 𝒜0 0

0 0 0 0 ⋯ ⋯ ⋯ 𝒜2,𝑙 𝒜1,𝑙 𝒜0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
)

 
 
 
 
 

 (5) 

 where  

 𝒟0 = (     
−(𝜆 + 𝛼)    𝛼
𝛽 −𝛽 ) (6) 

 𝒜0 = (
𝜆 0
0 0 ) (7) 

 𝒜1,𝑙 = (
−(𝜆 + 𝜇1 + 𝛾)      𝛾

0 −(𝜇2 + (𝑙 − 1)𝜂)) (8) 
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 𝒜2,𝑙 = (
𝜇1        0   
0     𝜇2 + (𝑙 − 1)𝜂) (9) 

 

Let 𝜋𝑙 = (𝜋0,0, 𝜋1,𝑙, 𝜋2,𝑙) be the existing partition of the stationary probability vector associated with the Markov process such that 

𝜋𝒬 = 0 and 𝜋𝑒 = 1 where e is the two dimensional column vector whose elements are all unity. From the matrix analytic method 

(Neuts [19]), it is easy to see that 

  

 𝜋0(𝒟0 +ℛ𝒜2,𝑙) = 0 and  𝜋0(𝐼 − ℛ)
−1𝑒 = 1 (10) 

 

 𝜋𝑙 = 𝜋0ℛ
𝑙               for  𝑙 = 0,1,2, . .. (11) 

 

Where matrix ℛ is the solution to the matrix -quadratic equations  

 ℛ2𝒜2,𝑙 +ℛ𝒜1,𝑙 +𝒜0 = 0 (12) 

 

 ℛ = (

𝑟1 𝑟2
𝑟3 𝑟4 ) 

 Substitute and simplify (12),we get  

 

 𝜇1(𝑟1
2 + 𝑟2𝑟3) − 𝑟1(𝜆 + 𝜇1 + 𝛾) + 𝜆 = 0 (13) 

 𝜇2 + (𝑙 − 1)𝜂](𝑟1𝑟2 + 𝑟2𝑟4) + 𝛾𝑟1 − 𝑟2(𝜇2 + (𝑙 − 1)𝜂) = 0 (14) 

 𝜇1(𝑟3𝑟1 + 𝑟4𝑟3) − 𝑟3(𝜆 + 𝜇1 + 𝛾) = 0 (15) 

 𝜇2 + (𝑙 − 1)𝜂](𝑟2𝑟3 + 𝑟4
2) + 𝛾𝑟3 − 𝑟4(𝜇2 + (𝑙 − 1)𝜂) = 0 (16) 

 

Solving (13) to (16) and simplify we get 

𝑟3 = 0 and 𝑟4 = 0  

 

 𝑟1 =
(𝜆+𝜇1+𝛾)−√(𝜆+𝜇1+𝛾)

2−4𝜆𝜇1

2𝜇1
 

 𝑟2 =
𝛾𝑟1

(1−𝑟1)[𝜇2+(𝑙−1)𝜂]
 

 Therefore  

 ℛ = (
𝑟1 𝑟2
0 0 ) 

From (10) we get  

 𝜋0 = (
𝜋1,0 𝜋0,0

) 

 𝜋0(𝒟0 + ℛ𝒜2,𝑙) = 0 

 (
𝜋1,0 𝜋0,0

) (
−(𝜆 + 𝛼) + 𝜇1𝑟1 𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂)
𝛽 −𝛽 ) = (

0 0
0 0 ) 

 (−(𝜆 + 𝛼) + 𝜇1𝑟1)𝜋1,0 + 𝛽𝜋0,0 = 0 (17) 

 (𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂))𝜋1,0 − 𝛽𝜋0,0 = 0 (18) 

 

From (18)  

 𝜋1,0 = 𝑇𝛽                                                                       (19) 
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 𝜋0,0 = 𝑇[𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂)]                                               (20) 

 

 To find T using (10)  

 𝜋0(𝐼 − ℛ)
−1𝑒 = 1 

 (
𝜋1,0 𝜋0,0

)(

1

1−𝑟1

𝑟2

1−𝑟1

0 1 )(
1
1 ) = 1 

 
1

1−𝑟1
𝜋1,0 +

𝑟2

1−𝑟1
𝜋1,0 + 𝜋0,0 = 1 

 

substitute 𝜋1,0 and 𝜋0,0 and simplify we get T  

 

 𝑇 [
𝛽(1+𝑟2)

1−𝑟1
+ 𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂)] = 1 

 𝑇 =
(1−𝑟1)

𝛽(1+𝑟2)+(𝛼+𝑟2(𝜇2+(𝑙−1)𝜂))(1−𝑟1)
 (21) 

 From (11)  

 𝜋𝑙 = 𝜋0ℛ
𝑙 

 𝜋𝑙 = (
𝜋1,0 𝜋0,0

) (
𝑟1 𝑟2
0 0 )

𝑙

 

 (
𝜋1,𝑙 𝜋2,𝑙

) = (
𝜋1,0 𝜋0,0

) (
𝑟1
𝑙 𝑟2

𝑙−1𝑟2
0 0 ) 

 (
𝜋1,𝑙 𝜋2,𝑙

) = (
𝜋1,0𝑟1

𝑙 𝜋1,0𝑟1
𝑙−1𝑟2) 

 

Equating we get  

 𝜋1,𝑙 = 𝑇𝛽𝑟1
𝑙 ,   𝑙 = 1,2, . .. (22) 

 

 𝜋2,𝑙 = 𝑇𝛽𝑟1
𝑙−1𝑟2, 𝑙 = 1,2, . .. (23) 

 Steady state probabilities of all the states are in equations (19),(20),(22)and (23) . 

 

5  Effective Measures of System Performance 

  

5.1  Expected customers in the active phase 

  Let the average customers in the active phase be denoted by E[R].  

 𝐸[𝑅] = ∑∞𝑙=0 𝑙𝜋1,𝑙 = ∑
∞
𝑙=0 𝑙𝑇𝛽𝑟1

𝑙  

 𝐸[𝑅] = 𝑇𝛽𝑟1[1 + 2𝑟1 + 3𝑟1
2+. . . ] 

 𝐸[𝑅] =
𝑇𝛽𝑟1

(1−𝑟1)
2 

5.2  Expected customers in the slow phase 

  Let E[N] signifies the average number of customers in slow phase.  

 𝐸[𝑁] = ∑∞𝑙=1 𝑙𝜋2,𝑙 = ∑
∞
𝑙=1 𝑙𝑇𝛽𝑟1

𝑙−1𝑟2 = 𝑇𝛽𝑟2[1 + 2𝑟1 + 3𝑟1
2+. . . ] 

 𝐸[𝑁] =
𝑇𝛽𝑟2

(1−𝑟1)
2 

5.3  Expected number of customers in the system  

Let E[S] denotes  the average number of customers in the system.  
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 𝐸[𝑆] = 𝐸[𝑅] + 𝐸[𝑁] = ∑∞𝑙=0 𝑙𝜋1,𝑙 +∑
∞
𝑙=1 𝑙𝜋2,𝑙 =

𝑇𝛽𝑟1

(1−𝑟1)
2+

𝑇𝛽𝑟2

(1−𝑟1)
2   

                   𝐸[𝑆] =
𝑇𝛽(𝑟1+𝑟2)

(1−𝑟1)
2  

5.4  Average number of times server switches from active phase to sleep phase 

Let 𝐸[𝑅𝑆] signifies the expected number of times the server switching from active phase to sleep phase per unit time.  

 𝐸[𝑅𝑆] = 𝛼𝜋1,0 = 𝛼𝑇𝛽 

 

5.5  Average number of times server switches from active phase to slow phase  

Let E[RN] signifies the expected number of times the server switching from active phase to slow phase per unit time.  

 𝐸[𝑅𝑁] = 𝛾∑∞𝑙=1 𝜋1,𝑙 = 𝛾∑
∞
𝑙=1 𝑇𝛽𝑟1

𝑙 = 𝛾𝑇𝛽𝑟1[1 + 𝑟1 + 𝑟1
2+. . . ] 

 𝐸[𝑅𝑁] =
𝛾𝑇𝛽𝑟1

1−𝑟1
 

5.6  Average number of times server switches from sleep phase to active phase  

Let 𝐸[𝑆𝑅] signifies the expected number of times the server switching from sleep phase to active phase per unit time.  

 𝐸[𝑆𝑅] = 𝛽𝜋0,0 = 𝛽𝑇[𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂)] 

 

5.7  Average customers leaves the system by impatience 

  Let E[I] denotes mean customers left the system due to impatience per unit time.  

 𝐸[𝐼] = 𝜂 ∑∞𝑙=2 𝑙𝜋2,𝑙 = 𝜂𝑇𝛽𝑟2∑
∞
𝑙=2 𝑙𝑟1

𝑙−1 

 𝐸[𝐼] = 𝜂𝑇𝛽𝑟2[(1 − 𝑟1)
−2 − 1] 

 𝐸[𝐼] = 𝜂𝑇𝛽𝑟2 [
1−(1−𝑟1)

2

(1−𝑟1)
2 ] 

 𝐸[𝐼] = 𝜂𝑇𝛽𝑟2 [
2𝑟1−𝑟1

2

(1−𝑟1)
2] 

 

5.8  Effective arrival rate 

  Let A be The effective arrival rate. It is defined as the total arrival when the server is available.Even if the server is available in 

either active phase or slow phase, the customers are allowed to join the system only when the server is in active phase. 

Therefore,  

 𝜋0,0 +∑
∞
𝑙=0 𝜋1,𝑙 + ∑

∞
𝑙=1 𝜋2,𝑙 = 1 

 ∑∞𝑙=0 𝜋1,𝑙 = 1− 𝜋0,0 − ∑
∞
𝑙=1 𝜋2,𝑙 

 𝐴 = [1 − 𝜋0,0 − ∑
∞
𝑙=1 𝜋2,𝑙]𝜆 

 𝐴 = [1 − 𝑇[𝛼 + 𝑟2(𝜇2 + (𝑙 − 1)𝜂)] − 𝑇𝛽𝑟1
𝑙−1𝑟2]𝜆 

 

5.9  Average time a customer spemds in the system 

  Let E[W] signifies the customers expect to spend in the system By Little’s formula  

 𝐸[𝑊] =
𝐸[𝑆]

𝜆
 

 𝐸[𝑊] =
𝑇𝛽(𝑟1+𝑟2)

𝜆(1−𝑟1)
2  

 

6  Numerical Illustration 

  

6.1  Steady state probabilities 

  By fixing 𝜆 = 0.25; 𝜇1 = 0.5; 𝜇2 = 0.03; 𝜂 = 0.8; 𝛾 = 1.2; 𝛽 = 1.3; 𝛼 = 1.1.Arrived the steady-state probabilities by using 

(3.19),(3.20),(3.22)and (3.23), we get probability distribution which is given in Table 1: 
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Table 1:  Steady-state probability distribution 

 

(i,j) π(i,j) (i,j) π(i,j) 

(0,0) 0.4596 (2,1) 0.0031 

(1,0) 0.4655 (2,2) 0.0036 

(1,1) 0.0618 (2,3) 0.0036 

(1,2) 0.0700 (2,4) 0.0036 

(1,3) 0.0711 (2,5) 0.0036 

(1,4) 0.0712 (2,6) 0.0036 

(1,5) 0.0712 (2,7) 0.0036 

(1,n),n=6,7,8,... 0.0712 (2,n),n=8,9,10,... 0.0036 

 

    

    

6.2 Mean number of customers in active phase against 𝜶 

 By fixing 𝜆 = 0.25; 𝜇1 = 0.5; 𝜇2 = 0.03; 𝜂 = 0.8; 𝛾 = 1.2; 𝛽 = 1.3. and vary 𝛼  from 0.1 to 3.0. Computing the steady-state 

probabilities of the average customers in the active phase. It is listed out in table 2 and depicted in figure 2: 

 

Table 2: Assortment of Mean number of customers in active phase against 𝜶 

   

𝜶 𝑬[𝑹] 𝜶 𝑬[𝑹] 𝜶 𝑬[𝑹] 

0.1 0.12796 1.1 0.082138 2.1 0.060481 

0.2 0.1212 1.2 0.079299 2.2 0.058928 

0.3 0.11511 1.3 0.076649 2.3 0.057452 

0.4 0.10961 1.4 0.074171 2.4 0.056048 

0.5 0.10461 1.5 0.071848 2.5 0.054711 

0.6 0.10005 1.6 0.069666 2.6 0.053437 

0.7 0.09587 1.7 0.067612 2.7 0.05222 

0.8 0.092024 1.8 0.065676 2.8 0.051058 

0.9 0.088475 1.9 0.063848 2.9 0.049946 

1.0 0.085189 2.0 0.062119 3.0 0.048882 

  

Figure 2:  Assortment of 𝑬[𝑹] versus 𝜶 

 

   We observe from Table 2 and Figure 2, the customers in the active phase diminishes as the rate of the system to be in sleep phase 

increases. 
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6.3  Average number of customers in active phase against 𝜷 

 We next fix 𝜆 = 0.25; 𝜇1 = 0.5; 𝜇2 = 0.03;𝜂 = 0.8; 𝛾 = 1.2; 𝛼 = 1.1. and vary 𝛽 from 0.1 to 3.0. The steady-state probabilities 

for the mean number of customers in the active phase. It is listed out in the following table 3 and depicted in figure 3: 

Table 3:  variation of average number of customers in active phase against 𝜷 

 𝜷 𝑬[𝑺𝑹] 𝜷 𝑬[𝑺𝑹] 𝜷 𝑬[𝑺𝑹] 

0.1 0.091707 1.1 0.55145 2.1 0.72437 

0.2 0.16937 1.2 0.57549 2.2 0.73591 

0.3 0.23598 1.3 0.59754 2.3 0.74677 

0.4 0.29375 1.4 0.61782 2.4 0.75702 

0.5 0.34432 1.5 0.63655 2.5 0.76669 

0.6 0.38896 1.6 0.65389 2.6 0.77584 

0.7 0.42865 1.7 0.67000 2.7 0.78451 

0.8 0.46419 1.8 0.68499 2.8 0.79274 

0.9 0.49617 1.9 0.69899 2.9 0.80055 

1.0 0.52512 2.0 0.71209 3.0 0.80799 

 

Figure 3: Variation of 𝑬[𝑺𝑹] versus 𝜷 

 

 We observe from Table 3 and Figure 3, the average customers in the active phase increases as the rate of residing sleep phase 

increases. 

  

6.4  Mean number of customers in system against 𝜼 

 We next fix 𝜆 = 0.25; 𝜇1 = 0.5; 𝜇2 = 0.03;𝛾 = 1.2; 𝛽 = 1.3, 𝛼 = 1.1 and vary 𝜂 from 0.1 to 3.0. To compute the steady-state 

probabilities of the average customers in the system, It is shown in the following table 4 and depicted in figure 4: 

 

Table 4:  variation of average number of customers in system against 𝜼 

 𝜼 𝑬[𝑺] 𝜼 𝑬[𝑺] 𝜼 𝑬[𝑺] 

0.1 0.11245 1.1 0.085259 2.1 0.083917 

0.2 0.097722 1.2 0.085024 2.2 0.08385 

0.3 0.09269 1.3 0.084826 2.3 0.083789 

0.4 0.090151 1.4 0.084656 2.4 0.083733 

0.5 0.08862 1.5 0.084508 2.5 0.083681 

0.6 0.087596 1.6 0.084379 2.6 0.083633 

0.7 0.086863 1.7 0.084265 2.7 0.083589 

0.8 0.086312 1.8 0.084164 2.8 0.083548 

0.9 0.085883 1.9 0.084073 2.9 0.083509 

1.0 0.08554 2.0 0.083991 3.0 0.083474 
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Figure 4:  Variation of 𝑬[𝑺] versus 𝜼 

 

   

We observe from Table 4 and Figure 4, the average number of customers in the system decreases while the rate ofcustomer 

impatience increases. 

 

6.5  Variation in average number of customers in the system against 𝜸 

 We next fix 𝜆 = 0.25; 𝜇1 = 0.5; 𝜇2 = 0.03;𝜂 = 0.8; 𝛽 = 1.3, 𝛼 = 1.1 and vary 𝛾 from 0.1 to 3.0. Computing the average number 

of customers in the system, it is shown in the following table 5 and depicted in figure 5: 

 

Table 5: Variation in average number of customers in the system against 𝜸 

  

𝜸 𝑬[𝑹𝑵] 𝜸 𝑬[𝑹𝑵] 𝜸 𝑬[𝑹𝑵] 

0.1 0.039072 1.1 0.097026 2.1 0.10688 

0.2 0.056536 1.2 0.098566 2.2 0.10745 

0.3 0.067251 1.3 0.099923 2.3 0.10798 

0.4 0.074686 1.4 0.10113 2.4 0.10847 

0.5 0.080216 1.5 0.10221 2.5 0.10893 

0.6 0.084519 1.6 0.10318 2.6 0.10935 

0.7 0.087979 1.7 0.10406 2.7 0.10976 

0.8 0.090829 1.8 0.10486 2.8 0.11013 

0.9 0.093222 1.9 0.10559 2.9 0.11049 

1.0 0.095263 2.0 0.10626 3.0 0.11082 

   

Figure 5:  Variation of 𝑬[𝑹𝑵] versus 𝜸 

 

 

We observe from Table 5 and Figure 5, there is an increase in the average number of customers while the rate of active phase 

increased.   
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7  Conclusions 

Our study carried out on the steady state analysis for Single server queue with the consideration of three distinct phases of the server. 

In which, while the server serving the customers in slow phase, customers who are in queue become impatience and immediately 

lost from the system. System have been solved and gor expressions for steady state probabilities. Performance measures like 

Expected number of customers in the system which covers both the cases of the server is in active phase and slow phase. Expected 

number of times the server switches from one phase to another, Expected number of customers leaves the system due to the effect 

of implimentation of  impatiency, Effective arrival rate of teh customers to the system and Expected waiting time of the arriving 

customer in the system. Effect  of change in each parameter on the values of parameters are listed by appropriate figures and 

diagrams. This article laid the path to the researchers to take up the model with the consideration of the stay of the servers in each 

phase as a general distribution and may prioratice the customers.  
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