COEFFICIENT BOUNDS FOR CERTAIN SUBCLASSES OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

K. Dhanalakshmi and A. Megapriya

PG and Research Department of Mathematics, Theivanai Ammal College for Women (A), Villupuram, Tamil Nadu, India

Abstract

In this paper we introduce two new subclass of analytic and bi-univalent function in the open unit disk U. Further, we find estimate on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. for functions in this subclass.

1 Introduction

Let A denote the class of functions f(z) which are analytic in the open disk

 $U = z \in C : |z| < 1$

that have the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

Let S be the subclass of A consisting of univalent function in U. An important member of the class S is the Koebe function. The function

$$w = f(z) = f_{\theta}(z) = \frac{z}{(1 - e^{i\theta}z)^2} = z + \sum_{n=2}^{\infty} n e^{i(n-1)\theta} z^n$$

Where $\{\theta \in [0,2\pi)\}$. This function was studied by p koebe[1]. The koebe function map the disc $\{|z| < 1\}$ onto the w-plane with a slit along the ray starting at the point $\{-e^{-i\theta}/4\}$, its extension containing the point w=0. The koebe function in a number of problems in the theory of univalent functions. The function

$$\phi(z) = \frac{1-z}{\sqrt{1-2z\cos\alpha+z^2}}$$

is in P for every real α where P is the caratheodory class defined by $P=\{p(z): R(p(z)) > 0, z \in u\}$

$$p(z) = 1 + c_1 z + c_2 z^2 + \dots$$

then,

$$\phi(z) = 1 + \sum_{n=1}^{\infty} \left[p_n(\cos\alpha) - p_n - 1(\cos\alpha) \right] z^n$$
(1.2)

$$= 1 + \sum_{n=1}^{\infty} B_n z^n, z \epsilon u$$

If we consider,

$$\frac{1}{(\phi(z))^2} = \frac{1 - 2z\cos\alpha + z^2}{(1 - z)^2}$$

$$= 1 + 2(1 - \cos \alpha) \frac{z}{(1-z)^2}$$

By the geometric properties of koebe function ϕ maps onto the right plane R(w) > 0 minus the slit along positive real axis from $\frac{1}{|\cos\frac{\alpha}{2}|}\phi(u)$ is univalent, symmetric with respect to real axis and starlike with respect to $\phi(0) = 1$ by using one- quarter theorem[4]. Thus every functions $f \in A$ has an inverse f^{-1} , which is defined by

$$f^{-1}(f(z)) = z(z \in U)$$

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.4 (April, 2022)

and

$$f(f^{-1}(w)) = w(|w| < r_0(f); r_0(f) \ge \frac{1}{4})$$

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions in the U given by (1.1). For a brief history and interesting example of function in the class Σ , see[3]. Brannan and Taha [1] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in each of these subclasses.

Definition 1 Let function $f \in \sigma$ belongs to the class $L_{\sigma}(\lambda, \phi)$ with $0 \le \lambda \le 1$ if the following subordination condition are satisfied.

$$\lambda(1+\frac{zf'(z)}{f'(z)}+(1-\lambda)(\frac{zf'(z)}{f(z)}<\phi(z)(z\epsilon U)$$

and

$$\lambda(1+\frac{wg^{''(w)}}{g'(w)}+(1-\lambda)(\frac{wf'(w)}{g(w)}<\phi(w)(w\epsilon U)$$

2 Results

$$u(z) = \sum_{n=1}^{\infty} b_n z^n$$

and

$$v(w) = \sum_{n=1}^{\infty} c_n w^n$$

Then

and

$$\phi(u(z)) = 1 + B_1 b_1 z + (B_1 b_2 + B_2 b_1^2) z^2 + (B_1 b_3 + 2b_1 b_2 B_2 + B_3 b_1^3) z^3 + \dots$$

$$\phi(v(w)) = 1 + B_1 c_1 w + (B_1 c_2 + B_2 c_1^2) w^2 + (B_1 c_3 + 2c_1 c_2 B_2 + B_3 c_1^3) w^3 + \dots$$

where

$$B_1 = \cos\alpha - 1$$
$$B_2 = \frac{1}{2}(\cos\alpha - 1)(1 + 3\cos\alpha)$$

$$B_3 = \frac{1}{2}(5\cos^3\alpha - 3\cos^2\alpha + 1)$$

Theorem 1 Let the function $f \in L_{\sigma}(\lambda, \phi)$. Then

$$|a_2| \le \frac{\sqrt{2}(1-\cos\alpha)}{\sqrt{(1+\lambda)[3\lambda(\cos\alpha+1)+5+\cos\alpha]}}$$
(2.1)

and

$$|a_3| \le \left[1 - \frac{(1+\lambda)^2}{2(1+2\lambda)|B_1|}\right] |a_2|^2 + \frac{|B_1|}{2(1+2\lambda)}$$
 (2.2)

and for $z \in u$

$$|a_3 - \xi a_2^2| \le \begin{cases} \frac{|\cos \alpha - 1|}{2} & if |\xi - 1| \le \frac{(\cos \alpha - 1)}{(1 + \lambda)[(\cos \alpha - 1) - 2(1 + \lambda)(1 + 3\cos \alpha)]} \\ \frac{|\cos \alpha - 1|}{2(1 + 2\lambda)} & if |\xi - 1| \ge \frac{(\cos \alpha - 1)}{(1 + \lambda)[(\cos \alpha - 1) - 2(1 + \lambda)(1 + 3\cos \alpha)]} \end{cases}$$

Copyrights @Kalahari Journals

International Journal of Mechanical Engineering

Vol.7 No.4 (April, 2022)

Proof. Let $f \in L_{\sigma}(\lambda, \phi)$ then,

$$|a_{3} - \xi a_{2}^{2}| \leq \left| \frac{B_{1}}{4(1+2\lambda)} (b_{2} - c_{2}) - \xi \frac{B_{1}^{3}}{2(1+\lambda)[B_{1}^{2} - (1+\lambda)B_{2}]} (b_{2} + c_{2}) \right|$$

$$(2.3)$$

By expanding and re-arranging we get,

$$|a_3 - \xi a_2^2| \le \frac{B_1}{2} \left[\left(\Psi - \xi \frac{B_{1^2}}{(1+\lambda)[B_1^2 - (1+\lambda)B_2]} \right) b_2 \right] - \frac{B_1}{2} \left[\left(\Psi + \xi \frac{B_1^2}{(1+\lambda)[B_1^2 - (1+\lambda)B_2]} \right) c_2 \right]$$

Applying result to the above equation and after simple calculations, We get

$$|a_{3} - \xi a_{2}^{2}| \leq \begin{cases} \frac{|\cos \alpha - 1|}{2} & if |\xi - 1| \leq \frac{(\cos \alpha - 1)}{(1 + \lambda)[(\cos \alpha - 1) - 2(1 + \lambda)(1 + 3\cos \alpha)]} \\ \frac{|\cos \alpha - 1|}{2(1 + 2\lambda)} & if |\xi - 1| \geq \frac{(\cos \alpha - 1)}{(1 + \lambda)[(\cos \alpha - 1) - 2(1 + \lambda)(1 + 3\cos \alpha)]} \end{cases}$$
(2.4)

3 Conclusion

In this paper, we introduce a new subclass of bi-univalent function. Moreover we find estimate on the frist two Taylor-Maclaurin coefficient $|a_2|$ and $|a_3|$ for the functions belonging to these new subclasses.

References

- Altinkaya,s ; Yacin,s. Faber polynomial coefficient bounds for a subclass of bi-univalent function. C.R Math. 2015 353,1075-1080.[crossRef]
- [2] Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclass of bi-univalent function Filomat (2013), 27, 1165-1171. [CrossRef]
- [3] Hayami, T.; Owa, S. coefficient bounds for bi-univalent function. Panam. Am. Math. (2012), 22, 15–26.
- [4] Lashin, A.Y. Coefficient estimate for two subclasses of analytic and bi-univalent function. Ukr.Mth.J.(2019), 70, 1484-1492.
- [5] Lshin, A.Y.; El-Eman, F.Z. Faber polynomial coefficient for certain subclasses of analytic and bi-univalent functions. Turk.J.Math. (2020), 44, 1345-1361. [CrossRef]
- [6] Magesh,N.;Rosy,T.;Varma,S. *Coefficient estimate probelm for a new subclass of bi-univalent functions*.J.Complex Anal.(2013), 2013, 474231.
- [7] Srivastava,H.M.;Mishra,A.K.;Gochhayat,P. Certain subclasses of analytic and bi-univalent function Appl.Math.Lett. 2010,23 1188-1192.[CrossRef]
- [8] Murugusundaramoorthy,G.;Magesh,N.;Prameela,V. *Coefficient bounds for certain subclasses of bi-univalent function* Abstr.Appl.Anal. (2013),2013, 573017.[CrossRef]

[9] Porwal,S.;Darus,M. On a new subclass of bi-univalent functions. J.Egypt.Math.Soc. (2013),21, 190-193.[CrossRef]

[10] Hamidi,S.G.;Jahangiri,J.M. Faber polynomials coefficients of bi-subordinate functions.C.R.Math 2016,354,365-370.[CrossRef].