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. Introduction

Fuzzy set theory introduced by Zadeh[15] has laid the foundation for the new mathematical theories in the research of
mathematics. Later, The concept “neutrosophic set” was first given by Smarandache[5]. Open mapping and closed
mapping play vital roles in neutrosophic topological space. In 2017, Arokiarani[2] established neutrosophic open map.
Late, Atkinswestley[4] studied Neutrosophic, open map and closed map. In this paper, we studied about neutrosophic beta
omega open mapping, neutrosophic beta omega closed mapping.

I1. Preliminaries

Definition 2.1. [5] Let An be a non-empty fixed set. A neutrosophic set(NS) Gy is an object having the form Gy = {< &,
,uGN(é), o6y (8), Vg (§) >: & € An} where ,uGN(i), oGy(8) and vg (§) represent the degree of membership, degree of

indeterminacy and the degree of nonmembership respectively of each element & €Ay to the set Gn. A neutrosophic set
Gn = {< g,,uGN (), 06y (8), vy (&) > & € An}can be identified as an ordered triple < pg, gy, Vuy> in 170,17 on
AN.

Definition 2.2. [2] For any two sets Gy and Huy,

1. GnEHN ©ugy(8) < uuy (8), a6y (8) < ouy (8) and v (&) = vy (8), & EAN
2. GNNHN = <&, pgy (©) Aty (8), 06y (E) A gy (8), U6y () V upy (8) >

3. GNUHN = < &, ugy(8) V Uy (8), 06y (&) V auy (8), ugy (&) Avyy (8) >

BN = {< & ey (8), 1 06y (8), Ky (8) >1 & EAN}

5 On ={<E&,0,0,1>: & eAn}

6. 1In ={<&,1,1,0>: & EAN}:

Definition 2.3. [14] A neutrosophic topology (NT) on a non-empty set Ay is a family tn of neutrosophic subsets in An
satisfies the following axioms:

1. On,IN E 1N
2. GNl n GN2 C ty for any GNLGNZ C TN
3. UGNiQ‘CN where {GNi: iQJ}Q‘L‘N

Here, the pair (An, tn) iS @ neutrosophic topological space (NTS) and any neutrosophic set in tv is known as a
neutrosophic open set (N-open set) in An. A neutrosophic set Gy is a neutrosophic closed set (N-closed set) if and only if
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its complement Gy is a neutrosophic open set in An.

Definition 2.4. [2] A mapping f : (An, T™n) — (I'n, on) is called neutrosophic open (N-open) if f(Gn) is N-open set in
(I'n,on) for every N-open set Gy in (An,TN).

Definition 2.5. [12] A mapping f : (An, Tn) — (I'n, on) is called neutrosophic beta open (NB-open) if f(Gn) is NB-open
set in (I'n, on) for every N-open set Gy in (An,Tn).

Definition 2.6. [4] A mapping f : (An,tn) — (I'n, on) is called neutrosophic generalizedstar open (NG*-open) if f(Gn)
is NG*-open set in (I'n,on) for every N-open set Gy in (An,Tn).

Definition 2.7. [13] A mapping f : (An, Tn) — (I'n, on) is called neutrosophic pre open ( NP-open) if f(Gn) is NP-
open set in (I'n,on) for every N-open set Gn in (An,Tn).

Definition 2.8. [8] A mapping f : (An,Tn) — (I'n, on) is called neutrosophic generalized open (NG-open) if f(Gn) is
NG-open set in (I'n, on) for every N-open set G in (An,Tn).

Definition 2.9. [10] A mapping f : (An,Tn) — (I'n,on) is called neutrosophic closed (N-Closed) if f(Gn) is N-closed
set in (I'n,on) for every N-closed set Gy in (An,Tn).

Definition 2.10. [4] A mapping f : (An, ©n) — (I'n, on) is called neutrosophic generalized star closed( NG*-closed) if
f(Gn) is NG*-closed set in (I'n,on) for every N-closed set Gy in (AnyTn).

Definition 2.11. [13] A mapping f : (An, Tn) — (I'n, on) is called neutrosophic pre closed (NP-closed) if f(Gn) is NP-
closed set in (I'n, on) for every N-closed setGn in (An,TN).

Definition 2.12. [8] A mapping f: (An, t™n) — (I'n, on) is called neutrosophic generalized closed (NG-closed) if f(Gn) is
NG-closed set in (I'n, on) for every N-closed set Gy in (An,TN).

Definition 2.13. [11] A neutrosophic set Gy of a neutrosophic topological space (An, tn)is called neutrosophic beta omega
closed (NBw-Closed) if Beln(Gn) & Un whenever ).Gny € Uy and Uy is Nw-Open in (An,Tn).

I1l. Neutrosophic Beta Omega Open Mapping
Definition 3.1. A mapping f: (An,™n) — (I'n,on) IS NPw-open if image of every N-open set of (An,n) iS NBw-
open set in (I'n,on).
Example 3.1. Let AN = {A1, A2, A3}, I'n = {81, 82, 83}, tn = {On, Gn, In}and GN = {On, Hn, In}where Gy = <
7»2 7\.2 7\.2 — 52 82 52
W 0.7’ E) (ﬁ "0.6’ ﬁ) (03 0.2’ 03)>and Hn = <§(ﬁ 0.7’ ﬁ) (E 05’ ﬁ (04 0.3’ 04)> Then 1y and oy
are NTs. Define a mapping f: (An,tn) — (I'nyon) by fu) = 81, @) = 82 and f@is) = 83. Then fis a Npo-
open mapping.
Theorem 3.1. Every N-open mapping is Nfw-open but the converse may not be true.
Proof. Let f : (AN, Tn) — (I'n, On) be any N-open mapping. Let Uy be a N—open set in (An,Tn). Then fUn) is N-open,
since f is N-open. This implies f(Un)iSNBw-open. Hence fis a Npw-open mapping.
Example 3.2. Let An = {A1, Az, 7\.3} I'n = {81, 02, 83}, TN = {ON, Gn, In}and on = {ON, Hn, In}where Gy = <
2 2 2 2 2 2
S5 0ses) (55553) (G5 o 02> and Hn = < (55.02.0%). (0505-5%) (5505 03)> Then m and on
are NTs. Define a mapping f: (AN, tn) — (I'ns on) by f(A1) = 81, f(A2) = 82 and f(A3) = 3. Then f is a NBw-open
mapping. But f is not a N-open mapping, since Gy is N-openin (An,tn) but f(Gn) is not N-open in (I'n,0n).
Theorem 3.2. Every NG*-open mapping is a NBw-open mapping but not conversely.
Proof. Let Uy be a N-open set in (An, ) and f be a NG*-open mapping. Then f(Un) is NG*-open. This implies fUn) is
NBw-open. Hence fis a NBw-open mapping.
Example 3.3. Let Ay = {7\.1, 7\.2, 7\.3} I'n = {81, 82, 83} TN = {ON, GN, 1N}and ON = {ON, HN,lN}where Gn =<
}\,2 7»2 7»2 — 82 b2 62
E 04’ E) (E 0.4’ E) (08 0.7’ 08)> and Hn = <§(E 0.2’ E) (E 0.4 E) (07 0.7’ 06)> Then v and oy

are NTs. Define a mapping f: (An,tn)— (I'nyon) by fQu) = 81, TQ2) = d2and fQs) = 3. Then f is a Npw-open
mapping. But fis not a NG*-open mapping, since Gy is N-open in (An,tn) but f(Gn) is not NG=-open in (I'n,0N).
Theorem 3.3. Every NP-open mapping is a Nfm-open mapping but not conversely.
Proof. Let Uy be a N-open set in (An, Tn) and f be a NP-open mapping. Then f(Un)is Npw-open. This implies fUn) is
NBw-open. Hence fis a NBw-open mapping.
Example 3.4. Let Ay = {7\.1, 7\.2, 7\.3} I'n = {61, 62, 63} TN = {ON, GN, 1N}and ON = {ON, HN,lN}where Gn =<
Az Az ha 51 8 83 8, b3 31 8y

(52502) (G a502) (oo a2)> and Hn = <5 (2.52.2). (3555 53) - (5555 52)> Then s and on
are NTs. Define a mapping f : (An,Tn) — (I'nyon) by fQu) = 81, fQ2) = 82 and f@s) = 83. Thenfis a Npw-open
mapping. But f is not a NP-open mapping, since Gy is N-open in (An, tn)but fGn) is not NP-open in (I'n,0n).
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Theorem 3.4. Every NB-open mapping is a Nfw-open mapping but not conversely.

Proof. Let Uy be a N-open set in (An, T~) and f be a Nf-open mapping. Then f(Un)is NB-open. This implies fUn) is
NBw-open. Hence fis a NBw-open mapping.

Example 35 Let AN = {7\.1, 7\.2, 7L3} I'n = {51, 52, 53} TN = {ON, GN, 1N}and ON = {ON, HN,lN}Where GN =<
L2 )( 12 ) (—k—z—)>and Hn _<§(25—25—3) (ﬁ8—25—3) (6—15—2§)>. Then Ty and

H 01’01/’\02’02’02/’ ‘08’08’08 02’02’01/’ \06’06°07/\0.7’06°0.7
on are NTs. Define a mapping f : (An,tn) — (I'nyon) by f@u) = 81, fQ2) = 82 and f@Qz) = d3. Then fis a
NBw-open mapping. But fis not a NB-open mapping, since Gy is N-open in (An, tn) but f(Gn) is not NB-open in (I'n,
GN).
Remark 3.1. NG-open mapping and Nfm-open mapping are independent.

Example 3.6. Let An = {A1, Ao, 7»3} I'n = {01, 02, 83} TN — {ON, Gn, 1N}and ON = {ON, HN,lN}Where Gn =<

2 2 2 j— 2 2 2
e(355253) (G5 0553) (5555 03)> and Hu = <(3%,02.3%). (55 05.5%) (G5 2% 63)> Thenw and o
are NTs. Define a mapping f : (An, ™) — (I'n, on) by f(A1) = 81, f(A2) = 32 and f(A3) = 83. Then T is a NG-open
mapping. But f is not a Npw-open mapping, since Gy is N-openin (An,tn) but f(Gn) is not NBw-open in (FN,csN).

Example 3. 7 Let AN = {7\.1, 7\.2, 7L3} I'n = {61, 62, 63} TN = {ON, GN, 1N}and ON = {ON, HN,1N}Where GN =<

( 22 ) ——2—)(——2—)>andHN—<§( B2 ) ——2—)(——2—)> Then ty and
05’04’05 0.5°0.5° 0.5 0.6 0.6 0.6 0.8’0.7’0.8 0.6 0.5 0.6 0.4°0.3 0.4

on are NTs. Define a mapping f : (An, tn) — (I'n, on) by (A1) = 81, f(A2) = 62 and f(A3) = 3. Then f is a Npw-open
mapping. But f is not a NG-open mapping, since Gy is N-openin (An,tn) but f(Gn) is not NG-open in (I'n,on).

Theorem 3.5. A mapping f : (An,t™n) — (I'n, on) IS NBw-open if and only if forevery N-open set Gy of (An,Tn),
fantn(Gn)) ENBointnFGn)).

Proof. Necessity: Let f be a NBw-open mapping and Gy is a N-open set in (An, tn). Now intn(Gn) = Gy which implies
that fintn(Gn) S f(Gn). Since f is a NBw-open mapping, fintn(Gn) is NPw-open set in (I'n, on) such that fintn(Gn) S
fGn). Therefore fintn(Gn)) € NBointn(FGn)).

Sufficiency: For the converse, suppose that Gy is a N-open set of (An,tn). Then f(Gn) = FIntn(Gn)) € NBwintn(FGN)).
But NBwintn(f(Gn)) < F(Gn). Consequently, f(Gn) = NBointn(F(Gn)) which implies that f(Gn) is a NBw-open set of (I'n,
on) and hence f'is a NBw-open.

Theorem 3.6. If f : (An,Tn) — (I'n, on) is a NBw-open mapping then inty@F ~1(Gn)) € f 1(NBwintn(Gn)) for every
neutrosophic set Gn of (I'n,on)-

Proof. Let Gy is a neutrosophic set of (I'n, on). Then inty(F ~2(Gn)) is a N-open setivAn, ). Since f is NPw-open,
f(intn(F1(Gn)) is NBw-open in (I'n, on). Hence by theorem 3.5., fintnf1(Gn)) € NBointy(FfE1(GN)) S NBwinty(Gn).
ThusintyF1(Gn)) € FI(NBointn(GN)).

Theorem 3.7. A mapping T : (An,Tn)—(I'n, on) 1S NPw-open if and only if for eachneutrosophic set Gy of (I'n, on)
and for each N-closed set Uy of (An,Tn) containing f-2(Gy), there is a NBw-closed Vy of (I'n,on) such that Gy € Vi
and fﬁl(VN) c Uyn.

Proof. Necessity: Suppose that f is a NBw-open mapping. Let Gn be the neutrosophicset of (I'n,on) and Uy is a N-
closed set of (An,tn) such that f2(Gn)S Un. ThenVn = (fUNS))C is NBw-closed set of (I'n,on) such that f1(Vn) S
Un.

Sufficiency: For the converse, suppose that Fy is a N-open set of (An, tn). Then (FY((fFn)C S Fn© and FnC is N-
closed set in (An, Tn). By hypothesis there is a NBw-closed set Vi of (I'n,on) such that (f(FN)© € Vn and f1(Vn) €

nC. Therefore Fy € F1(VN)C.Hence VN© € f(Fn) € F(F1(VN)C) € VNE which implies f(Fn) = VNC. Since VCis
NpBw-open set of (I'n,on). Hence f(Fn) is NBw-open in (I'n,on) and thus f isNBw-open mapping.

Theorem 3.8. A mapping f : (An, Tn) — (I'n, On) is NBw-open if and only if f 2(NBwcl(Gn)) € cl(f 1(Gn)) for every
neutrosophic set Gy of (I'n,on).

Proof. Necessity: Suppose that f is a NBw-open mapping. For any neutrosophic set Gy of (I'n, on), F3(Gn) < cl(f
“1(Gn)). Therefore there exists a NPw-closed set Fyin (I'n,on) such that Gy € Fyand f1(Fy) € cl(f2(Gn)). Therefore,
we obtain thatf "{(NBwcl(Gn)) € f ~X(Fn) S cl(fX(Gn)).

Sufficiency: For the converse, suppose that Gy is a neutrosophic set of (I'n, on) and Fn is a N-closed set of (An, )

containingf }(Gn). Put Hn = cIn(Gn). Then we have Gn € Hy and Hn is NBw-closed andf *(Hn) € cl(f X(Gn)) € Fn.
Then by theorem 3.3, f is NBw-open mapping.

Theorem 3.9. If f : (An,Tn) — (I'nvyon)and g : (I'n,on) — (2, dn) be twoneutrosophic mappings and gof : (An, Tn) —
(Qn, On) is NBw-open. If g : (I'n, on) — (Qy, On) IS NPw-irresolute then fis NBw-open mapping.

Proof. Let Hy be a N-open set of neutrosophic topological space (Aw, tn). Then (gof)(Hn) is NPw-open set of Qy
because gof is NPw-open mapping. Now since g : (I'n,on) — (Qy, ¢n) is NBow-irresolute and (gof)Hn) is NBw-open set of
Qn, 91 (gof(HN)) = f(Hn) is NBw-open set in neutrosophic topological space (I'n,on). Hence f is NBw-open mapping.
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Theorem 3.10. If f : (An,Tn) — (I'nvyon) is @ N-open mapping and g : (I'n,on) — (2, On) iS NPw-open mappings
then gof : (An,Tn) — (Q, On) IS NBw-open.

Proof. Let Hy be a N-open set of a neutrosophic topological space (An,tn). Then f(Hn)is N-open set of (I'n, on) because
f is neutrosophic open mapping. Now since g : (I'n, on) — (Qy, ¢n) is NBo—open, g(f(Hn)) = (gof)(Hn) is NBw-open set.
Hencegof is NBw-open mapping.

Theorem 3.11. If f : (An,Tn) — (I'nvyon) and g @ ('n,on) — (Qy, ¢n) 1S NBo-open mappings such that (I'n,on) i
Tnpo-space then gof : (An,Tn) — (Qy, dn) 1S NPw-open.

Proof. Let Hy be a N-open set of neutrosophic topological space (An,tn). Thenf(Hn) is NBw-open set of (I'n, on) because f
is NBw-open mapping. Now since (I'n, on) iS Twpe-Spaces, f(Hn) is N-open set of (I'n, on). Therefore g(f(Hn)) =
(gof)(Hn) is NBw-open set of Qy because g : (I'n,on) — (Qn, On) IS NBw-open. Hence gof is NBw-open mapping.
Theorem 3.12. If f : (An,Tn) — (I'nyon) IS NG-openand g : (I'n,on) — (Qy, dn)is NPw-open mappings such that (I'n,
on) is neutrosophic T12- space then gof : (An, Tn) — (Qn, dn) is NBw-open.

Proof. Let Hy be a N-open set of neutrosophic topological space (An,tn). Then f(Hn)is NG-open set of (I'n, on) because
f is NG-open mapping. Now since (I'n, on) is neutrosophic T, /,-space, f(Hn) is N-open set of (I'n, on). Therefore
g(f(Hn)) =(gof)(Hn) is NPw-open set of Qy because g : (I'n, on) — (2, ¢n) IS NPw-open. Hence gof is NBw-open
mapping.

IV. Neutrosophic Beta Omega Closed Mappings

Definition 4.1. A mapping f : (An,Tn) — (I'n,on) is called neutrosophic beta closed (NB-closed) if f(Gn) is NB-closed
set in (I'n,on) for every N-closed set Gy in (An, ).

Definition 4.2. A mapping f : (An,Tn) — (In, On) IS NPw-closed if image of every Nclosed set of (An,tn) IS NBw-
closed set in (I'n,onN).

Example 4.1. Let Ay = {7\1, Ao}, I'no = {81, 82}, tn = {On, Gn, In} and on = {On, Hn, In} where Gy = <
(07 07) (07 06) (03 02) and HN - <§ (07 07) (06 05) (04 03)> Then ™ and Oon aré NTs. Deflnea

mapping f : (An,tn)— (I'nson) by fQu) = d1and fQ2) = 82. Then fis a NBw-closed mapping.

Theorem 4.1. Every N-closed mapping is NBw-closed but the converse may not be true.

Proof. Let f : (An, tn) — (I'n, On) be any N-closed mapping. Let Uy be a N-closed set in (An, t~). Then f(Uy) is N-
closed, since f is N-closed. This implies f(Un) is NBw-closed. Hence f is a Npw-closed mapping.

Example 42. Let AN = {7\.1, 7\.2} I'n = {51, 82}, TN = {ON, GN, 1N} and ON = {ON, HN, 1N} where Gn =<
2 1 51 82 51 82
i(06 07) (07 06) 03 02) >and Hn = <&, (_’_)’ ( ) (04 03) >. Then v and oy are NTs. Define a

0.7 0.7 0.6’ 0.5
mapping f : (An,Ttn)— (I'nyon) by f@u) = 81and fQ2) = 82. Then fis a NBw-closed mapping. But fis not a N-
closed mapping, since Gy is N-closed in (An,tn) but f(Gn) is not N-closedin(I'n,on).

Theorem 4.2. Every NG™-closed mapping is a NBw-closed mapping but not conversely.

Proof. Let Uy be a N-closed set in (An,tn) and fbe a NG™-closed mapping. Then f(Uy) is NG*-closed. This implies
f(Un) is NBw-closed. Hence f is a NBw-closed mapping.

Example 4.3. Let AN = {7\.1, 7\.2} I'n = {81, 82} TN = {ON, GN, 1N} and ON {ON, HN, 1N} where GN =<
(04— 03) (04— 04) (08 08)>and HN _<§ (03 03) (03 03) (07 06)> ThenTN andGN are NTs. Deflnea

mapping T : (An,Tn)— (I'nyon) by fQu) = d1and fQ2) = §2. Then fis a NBw-closed mapping. But fis nota NG™-
closed mapping, since Gy is N-closed in (An,tn) but fGn) is not NG™-closed in (I'n,on).

Theorem 4.3. Every NP-closed mapping is a NBw-closed mapping but not conversely.

Proof. Let Uy be a N-closed set in (An,Tn) and f be a NP-closed mapping. Then f(Un) is NBw-closed. This implies
f(Un) is NPw-closed. Hence fis a NBw-closed mapping.

Example 4.4. Let Ay = {7\.1, Mo}, I'no = {81, 82}, tn = {On, Gn, In} and on = {On, Hn, In} where Gy = <

(02 03) (02 03) (06 07) >and Hy = <&, (01 02) (01 02) (07 0.8 >. Then v and oy are NTs. Define a
mapping f : (An,Tn) — (I'n,on) by f(A) = 81and f(A2) = 82. Then fis a NBw-closed mapping. But fis nota NP-
closed mapping, since Gy is N-closed in (An,tn) but fGn) is not NP—closed in (I'n,on).

Theorem 4.4. Every NB-closed mapping is a NBw-closed mapping but not conversely.

Proof. Let Uy be a N-closed set in (An, Tn) and f be a NB-closed mapping. Then f(Un) is NB-closed. This implies f(Un) is
NBw-closed. Hence fis a NBw-closed mapping.

Example 4.5. Let An = {A1, A2}, I'n = {81, 62}, tn = {On, Gn, In} and on = {On, Hn, In} Where Gy = <

(01 01) (02 02) (08 08)>and HN = <§ (02 01) (06 07) (06 07)> ThE,‘ﬂ‘L'N and Oon are NTs. Define a
mapping f : (An,tn) — (I'nyon) by fQu) = d1and fQl) = 82. Then fis a NBw-closed mapping. But f is not a Nf3-
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closed mapping, since Gy is N-closed in (An, Tn) but f(Gn) is not NB-closed in (I'n,on).
Remark 4.1. NG-closed mapping and Nfw-closed mapping are independent.

Example 4.6. Consider the example 4.1, Then f is a NBw-closed mapping. But f is not a NG-closed mapping, since Gy is N-
closed in (An,tn) but f(Gn) is not NG-closedin (I'n,on).

Example 4.7. Consider the example 3.7, Then f is a NG-closed mapping. But f is nota NBw-closed mapping, since Gy
is N-closed in (An, Tn) but f(Gn) is not NBw-closedin (I'n,on).

Theorem 4.5. If T : (An,tn) — (I'nson) is NPo-closed and (I'n,on) iS Tnpo-Space. Then f is N-closed map.

Proof. Let f: (An, T™n) — (I'n, on) be NBw-closed map. Let Fy be N-closed set in (An, T~). Then f "}(Fn) is Npo-
closed in (I'n, on). Since (I'n, on) is Tnpo-space, T(Fn) is N-closed in (I'n,on). Hence fis N-closed map.

Theorem 4.6. A map f: (An, tn) — (I'n, on) is NBw-closed iff for each neutrosophic set Gy of (I'n, on) and for each
neutrosophic open set Uy such that f1(Gn) € Un, there is a NBw-open set Vn of (I'n,on) such that Gy € Vn and f
71(VN) c Un.

Proof. Suppose f is NBw-closed map. Let Gy be a neutrosophic set of (I'n, on) and Uy be a N-open set of (An,Tn) such that f
“1(GN) € Un . Then VN = (I'nyon) - FUNCS) is a NBw-open set in (I'n, on) such that Gy € Vy and (V) € Un.
Conversely, suppose that Fy is a N-closed set of (An, tn). Then f “X(f(FN©)) € Fn© and Fn© is N-open. By hypothesis,
there is a NPw-open set Vy of (I'n,on) such that Fy© € Vi and F71(Vn) € FnC. Therefore Fy € 1(VnC). Hence V\©
c(Fn) € ff 1VnN© ) < VS which implies f(Fn) = VNC. Since VAC is NBw-closed, f(Fn) is NBoC and thus fis a
Npw-closed map.

Proposition 4.1. If f : (An,tn) — (T'nson) @and g @ (T'nson) — (Qy, ) areNBo-closed maps with (I'n, on) IS @ Txge-
space, then g : (An, T™n) — (Qy, ©n) is also a NBw-closed map.

Proof. Let Fy be closed set in (A, tn). Since fis NBw-closed map, f(Fn) is NBw-closed in (I'n,on) . Since (I'n,on) iS @
Tnpo-space, F(Fn) is closed in (I'n,on). Since g is NBw-closed map, g(f(Fn)) =(gof)(Fn) is NBw-closed in (Qy, ®n). Thus
gof is a NBw-closed map.

Theorem 4.7. Let T : (An,tn) — (I'n,on) be a map from a space (An,tn) to a Tnpgo-Space (I'n, on). Then the following
are equivalent.

(i). f is NPo-closed.
(i). T is closed.

Proof: (i) = (ii) : Let Fn be closed in ( An,Tn). By(i) f(Fn) is NBw-closed in (I'n,on) - Since (I'n,on) IS @ Tnpo-
space, f(Fn) isclosed in (I'n,on). Therefore f is closed.

(ii) = (i) : Let Fn be closed in (An,tn). By(ii) f(Fn) is closed in ( I'n,on).Since every closed set is NBw-closed, f(Fn) is
NBw-closed in (I'n,on). Thereforef is NBw-closed.
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