International Journal of Mechanical Engineering

Applications Of Analytic Functions Related To Mittag-Leffler Function

Akanksha Sampat Shinde

Department of Mathematics, VPM's BN Bandodkar College of Science, Thane West - 422 601, Maharashtra, India. akankshashinde1202@gmail.com

ABSTRACT

For analytic function f in the open unit disc E, a linear operator defined by Mittag-Leffler function is introduced. The object of the present paper is to study some properties for $D_{\lambda}^{m}(u,\tau)f(z)$ belonging to some classes by applying the concept of Jack's lemma. Subordination relations are introduced.

Keywords and phrases: : analytic function, starlike, differential operator, Mittag-Leffler function, Jack's lemma.

2010 Mathematics Subject Classification: 30C45.

1 INTRODUCTION

Let A denote the class of all functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, (1.1)

in the open the unit disk $E = \{z : |z| < 1\}$. Let S be the subclass of A consisting of univalent functions and satisfy the following usual normalization condition f(0) = 0 and f'(0) = 1. We denote by S the subclass of A consisting of f(z) which are all univalent in E. A function $f \in A$ is a starlike function of the order v, $v(0 \le v < 1)$ if it satisfy

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > v, \quad (z \in E), \tag{1.2}$$

we denote by this class $S^*(v)$. A function $f \in \mathbf{A}$ is a convex function of the order v, v $(0 \le v < 1)$ if it satisfy

$$\Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > v, \ (z \in E)$$
 (1.3)

we denote this class with K(v). For $f \in A$ given by (1.1) and g(z) given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$
 (1.4)

their convolution (or Hadamard product), denoted by (f * g), is defined as

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z), \quad (z \in E)$$
 (1.5)

Note that $f * g \in \mathbf{A}$. The following defines the familiar Mittag-Leffler func-tion $E_{\upsilon}(z)$ introduced by Mittag- Leffler [4] and its generalization $E_{\upsilon,\tau}(z)$ introduced by Wiman [9].

$$E_{v}(z) = \sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(vn+1)}$$

and

$$E_{v,\tau}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(vn+\tau)}$$

where $v, \tau \in \mathbb{C}$, $\Re(v) > 0$ and $\Re(\tau) > 0$. We define the function $Q_{u,\tau}(z)$ by $Q_{v,\tau}(z) = z\Gamma(\tau) E_{v,\tau}(z)$.

Now, for $f \in A$, we define the following differential operator $D^m_\lambda(\upsilon,\tau) f : A \to A$ by

$$D_{\lambda}^{0}(\upsilon,\tau)f(z) = f(z) * Q_{\upsilon,\tau}(z)$$

$$D_{\lambda}^{1}(\upsilon,\tau)f(z) = (1-\lambda)(f(z) * Q_{\upsilon,\tau}(z)) + \lambda z(f(z) * Q_{\upsilon,\tau}(z))'$$

$$\vdots$$

$$D_{\lambda}^{m}(\upsilon,\tau)f(z) = D_{\lambda}^{1}(D_{\lambda}^{m-1}(\upsilon,\tau)f(z)).$$

If f is given by (1.1) then from the definition of the operator D^m_λ f it is easyto see that

Copyrights @Kalahari Journals

Vol.7 No.07 (October, 2022)

$$D_{\lambda}^{\mathrm{m}}(\upsilon,\tau) f(z) = z + \sum_{n=2}^{\infty} \emptyset_{\mathrm{n}}^{\mathrm{m}}(\lambda,\upsilon,\tau) a_{n} z^{n},$$
(1.6)

where

$$\phi_n^m(\lambda, v, \tau) = \frac{\Gamma(\tau)}{\Gamma(v(n-1)+\tau)} [\lambda(n-1)+1]^m.$$
(1.7)

Note that

1. when v = 0 and $\tau = 1$, we get Al-Oboudi operator [1].

2. when $\upsilon = 0$, $\tau = 1$ and $\lambda = 1$, we get Salagean operator [7].

3. when m = 0, we get $E_{\upsilon,\tau}(z)$, Srivastava et al. [8]. Now, by making use of the differential operator $D_{\lambda}^{m}(\upsilon,\tau)$ f, we define a new subclass of functions belonging to the class A.

Definition 1.1. Let a function $f \in A$. Then $f \in D_{\lambda}^{m}$ $(v, \tau) f(z)$ if and only if

$$\Re\left\{\frac{z\left(\mathrm{D}_{\lambda}^{m}(\upsilon,\tau)\,f(z)\right)'}{\mathrm{D}_{\lambda}^{m}(\upsilon,\tau)\,f(z)}\right\} > \varrho, \quad z \in E, 0 \leq \varrho \leq 1.$$

$$(1.8)$$

Let f and g be analytic in E. Then f is said to be subordinate to g if there exists an analytic function ω satisfying $\omega(0) = 0$ and $\omega(z) < 1$, such that $f(z) = g(\omega z), z \in E$. We denote this subordination as f(z) < g(z) or $(f < g), z \in E$. The basic idea in proving our result is the following lemma due to Jack [2] (also, due to Miller and Mocannu [3]).

Lemma 1.2. Let $\omega(z)$ be analytic in E with $\omega(0) = 0$. Then if $|\omega(z)|$ attains its maximum value on the circle |z| = r at a point z_0 in E then we have $z_0 \omega'(z) = k \omega(z_0)$, where $k \ge 1$ is a real number.

2 MAIN RESULTS

In the present paper, we follow similar works done by Shireishi and Owa [6] and Ochiai et al. [5], we derive the following result.

Theorem 2.1. If
$$f \in A$$
 satisfies $\Re \left\{ \frac{z \left(D_{\lambda}^{m}(\upsilon,\tau) f(z) \right)'}{D_{\lambda}^{m}(\upsilon,\tau) f(z)} \right\} < \frac{\varrho^{-3}}{2(\varrho-1)}, \ z \in E \text{ for some } \varrho \ (-1 < \varrho \leq 0) \text{ then } \frac{D_{\lambda}^{m}(\upsilon,\tau) f(z)}{z} < \frac{1+\varrho z}{1-z}, \ z \in E.$

This implies that

$$\Re\left\{\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}\right\} > \frac{1-\varrho}{2}.$$

Proof. Let us define the function $\omega(z)$ by $\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z} = \frac{1-\varrho\omega(z)}{1-\omega(z)}, (\omega(z) \neq 1).$

Clearly, $\omega(z)$ is analytic in E and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in E. Since

$$\frac{z(D_{\lambda}^{m}(v,\tau)f(z))'}{D_{\lambda}^{m}(v,\tau)f(z)} = \frac{-\varrho z\omega'(z)}{1-\varrho\omega(z)} + \frac{z\omega'(z)}{1-\omega(z)} + 1,$$

we see that

$$\Re\left\{\frac{z\left(\mathrm{D}_{\lambda}^{\mathrm{m}}(\mathbf{u},\mathbf{\tau})f(z)\right)'}{\mathrm{D}_{\lambda}^{\mathrm{m}}(\mathbf{u},\mathbf{\tau})f(z)}\right\} = \Re\left\{\frac{-\varrho z\omega'(z)}{1-\varrho\omega(z)} + \frac{z\omega'(z)}{1-\omega(z)} + 1\right\}$$

$$< \frac{\varrho - 3}{2(z-z)}, (\mathcal{Z} \in E)$$

for $-1 < \varrho \le 0$. If there exists a point $z_0 \in E$ such that $\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1$, then Lemma 1.2, gives us that $\omega(z_0) = \mathrm{e}^{i\theta}$ and $z_0\omega'(z_0) = \mathrm{k}\omega(z_0)$, $k \ge 1$.

Thus we have

$$\frac{z_0(D_{\lambda}^{m}(\upsilon,\tau) f(z_0))'}{D_{\lambda}^{m}(\upsilon,\tau) f(z_0)} = \frac{-\varrho z_0 \omega'(z_0)}{1 - \varrho \omega(z_0)} + \frac{z_0 \omega'(z_0)}{1 - \omega(z_0)} + 1$$

$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \varrho e^{i\theta}}.$$

It follows that

$$\Re\left\{\frac{1}{1-\omega(z_0)}\right\} = \Re\left\{\frac{1}{1-e^{i\theta}}\right\} = \frac{1}{2}$$

and
$$\Re\left\{\frac{1}{1-\omega(z_0)}\right\} = \Re\left\{\frac{1}{1-\rho e^{i\theta}}\right\} = \frac{1}{2} - \frac{1-\varrho^2}{2(1+\varrho^2-2\rho\cos\theta)}$$
.

Therefore, we have

$$\Re\left\{\frac{z_0(\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)\,\mathrm{f}\,(z_0))'}{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)\,\mathrm{f}\,(z_0)}\right\} = 1 - \frac{k(\varrho^2-1)}{2(1+\varrho^2-2\varrho\mathrm{cos}\theta)}.$$

This implies that
$$-1 < \varrho \le 0$$
, $\Re\left\{\frac{z_0(D_{\lambda}^m(\upsilon,\tau)f(z_0))'}{D_{\lambda}^m(\upsilon,\tau)f(z_0)}\right\} \ge 1 + \frac{(1-\varrho^2)}{2(\varrho-1)^2} = \frac{\varrho-3}{2(\varrho-1)}.$

This contradicts the condition in the theorem. Then there is no $z_0 \in E$ such that $|\omega(z_0)| = 1$ for all $z \in E$, that is $\left(\frac{D_{\lambda}^m(\upsilon,\tau)f(z)}{z}\right) < \frac{1+\varrho z}{1-z}$, $z \in E$.

Further more, since

$$\omega(z) = \frac{\frac{D_{\lambda}^{m}(\upsilon, \tau) f(z)}{z} - 1}{\frac{D_{\lambda}^{m}(\upsilon, \tau) f(z)}{z} - \varrho}, \quad z \in E.$$

and $|\omega(z)| < 1$, $(z \in E)$, we conclude that $\Re\left\{\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}\right\} > \frac{1-\varrho}{2}$.

Taking $\varrho = 0$ in the Theorem 2.1, we have the following corollary.

Corollary 2.2. If $f \in A$ satisfies

$$\Re\left\{\frac{z\left(D_{\lambda}^{m}(\upsilon,\tau)f(z)\right)'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)}\right\} > \frac{3}{2}, \qquad z \in E$$

Vol.7 No.07 (October, 2022)

then
$$\frac{D_{\lambda}^{m}(\upsilon,\tau) f(z)}{z} < \frac{1}{1-z}, \quad z \in E$$
 and
$$\Re\left\{\frac{D_{\lambda}^{m}(\upsilon,\tau) f(z)}{z}\right\} > \frac{1}{2}, \quad z \in E$$

Theorem 2.3. If $f \in A$ satisfies

$$\Re\left\{\frac{z\left(D_{\lambda}^{m}(\upsilon,\tau)f(z)\right)'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)}\right\} > \frac{3\varrho - 1}{2(\varrho - 1)}, \quad z \in E$$
for some ϱ (-1 < ϱ \le 0) then $\frac{z}{D_{\lambda}^{m}(\upsilon,\tau)f(z)} < \frac{1+z}{1-z}$,
$$z \in E$$
and
$$\left|\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z} - \frac{1}{1-\varrho}\right| < \frac{1}{1-\varrho}, \quad z \in E.$$

This implies that $\Re\left\{\frac{D_{\lambda}^{m}(v,\tau)f(z)}{z}\right\} > 0$, $z \in E$.

Proof. Let us define the function $\omega(z)$ by

$$\frac{z}{D_{\lambda}^{m}(\upsilon,\tau)f(z)} = \frac{1-\varrho\omega(z)}{1-\omega(z)}, \ (\omega(z) \neq 1).$$
(2.1)

Then, we have $\omega(z)$ is analytic in E and $\omega(0) = 0$. We want to prove that $|\omega(z)| < 1$ in E. Differentiating equation (2.1), we obtain

$$\frac{z(D_{\lambda}^{m}(\upsilon,\tau)f(z))'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)} = \frac{-z\omega'(z)}{1-\omega(z)} + \frac{\varrho z\omega'(z)}{1-\varrho\omega(z)} + 1,$$

$$\Rightarrow \Re\left\{\frac{z(D_{\lambda}^{m}(\upsilon,\tau)f(z))'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)}\right\}$$

$$= \Re\left\{\frac{-z\omega'(z)}{1-\omega(z)} + \frac{\varrho z\omega'(z)}{1-\varrho\omega(z)} + 1\right\}$$

$$> \frac{3\varrho - 1}{2(\varrho - 1)}, \quad (z \in E),$$

for $(-1 < \varrho \le 0)$. If there exists a point $(z_0 \in E)$ such that Lemma 1.2, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0), k \ge 1$. Thus we have

$$\frac{z_0(D_{\lambda}^{m}(v,\tau) f(z_0))'}{D_{\lambda}^{m}(v,\tau) f(z_0)}$$

$$= \frac{-z_0 \omega'(z_0)}{1 - \omega(z_0)} + \frac{\varrho z_0 \omega'(z_0)}{1 - \varrho \omega(z_0)} + 1$$

$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \varrho e^{i\theta}}$$

Therefore, we have

$$\Re\left\{\frac{z_0\left(D_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z_0)\right)'}{D_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z_0)}\right\}$$
$$=1+\frac{k(\varrho^2-1)}{2(1+\varrho^2-2\varrho\cos\theta)}$$

This implies that, for $-1 < \varrho \le 0$,

$$\Re \left\{ \frac{z_0 \left(D_{\lambda}^{\mathrm{m}}(\upsilon, \tau) f(z_0) \right)'}{D_{\lambda}^{\mathrm{m}}(\upsilon, \tau) f(z_0)} \right\}$$

$$= 1 - \frac{k(1 - \varrho^2)}{2(1 + \varrho^2 - 2\varrho \cos \theta)}.$$

$$\leq \frac{3\varrho - 1}{2(\varrho - 1)}.$$

This contradicts the condition in the theorem. Hence, there is no $z_0 \in E$

such that $|\omega(z_0)| = 1$ for all $z \in E$, that is

$$\frac{z}{D_{\lambda}^{m}(\upsilon,\tau)f(z)} < \frac{1+z}{1-z}, \quad z \in E.$$
Furthermore, $\operatorname{since}\omega(z) = \frac{1-\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}}{1-\frac{\varrho D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}}, \quad z \in E$

and $|\omega(z)| < 1$, $(z \in E)$ we conclude that

$$\left|\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z} - \frac{1}{1-\varrho}\right| < \frac{1}{1-\varrho}, \quad z \in E$$

which implies that $\Re\left\{\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}\right\} > 0$, $z \in E$. We complete the proof of the theorem. By setting $\varrho = 0$ in Theorem 2.3, we readily obtain the following.

Corollary 2.4. If $f \in A$ satisfies

$$\Re\left\{\frac{z(\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z))'}{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z)}\right\} > \frac{1}{2}, \qquad z \in E.$$

then

$$\frac{z}{D_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z)} < \frac{1+z}{1-z}, \qquad z \in E.$$

and

$$\left| \frac{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau) f(z)}{z} - 1 \right| < 1, \qquad z \in E$$

Theorem 2.5. If $f \in A$ satisfies

$$\Re\left\{\frac{z(D_{\lambda}^{m}(\upsilon,\tau)f(z))'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)}\right\} < \frac{\varrho(2-\gamma)-(2+\gamma)}{2(\varrho-1)},$$

$$z \in E.$$

for some $\varrho \ (-1 < \varrho {\le 0})$ and $0 < \gamma {\le 1}$ then

$$\left(\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}\right)^{\frac{1}{\gamma}} < \frac{1+\varrho z}{1-z}, \qquad z \in E.$$

This implies that

$$\Re\left(\left(\frac{D_{\lambda}^{m}(\upsilon,\tau)f(z)}{z}\right)^{\frac{1}{\gamma}}\right) > \frac{1-\varrho}{2}, \quad z \in E.$$

Proof. Let us define the function $\omega(z)$ by

$$\frac{\mathrm{D}_{\lambda}^{\mathrm{m}}(\mathsf{u},\mathsf{\tau})\,\mathrm{f}(z)}{z} = \left(\frac{1-\varrho\omega(z)}{1-\omega(z)}\right)^{\gamma}\,,\omega(z) \neq 1.$$

Copyrights @Kalahari Journals

Vol.7 No.07 (October, 2022)

Clearly, $\omega(z)$ is analytic in E and $\omega(0)$) = 0. We want to prove that $|\omega(z)| < 1$ in E. Since $\frac{z(D_{\lambda}^{m}(\upsilon,\tau) f(z))'}{D_{\lambda}^{m}(\upsilon,\tau) f(z)} = \gamma \left(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\varrho z\omega'(z)}{1-\varrho\omega(z)}\right) + 1.$

We see that

$$\Re\left\{\frac{z(D_{\lambda}^{m}(\upsilon,\tau)f(z))'}{D_{\lambda}^{m}(\upsilon,\tau)f(z)}\right\}$$

$$= \Re\left\{\gamma\left(\frac{z\omega'(z)}{1-\omega(z)} - \frac{\varrho z\omega'(z)}{1-\varrho\omega(z)}\right) + 1\right\}$$

$$< \frac{\varrho(2-\gamma) - (2+\gamma)}{2(\varrho-1)}, z \in E,$$

for ϱ (-1 < ϱ ≤ 0) and 0 < γ ≤ 1. If there exists a point $(z_0 \in E)$ such that $\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1$, then by Lemma 1.2, gives us that $\omega(z_0) = e^{i\theta}$ and $z_0\omega'(z_0) = k\omega(z_0)$, $k \ge 1$.

Thus we have

$$\frac{z_0(D_{\lambda}^{m}(\upsilon,\tau) \int (z_0))'}{D_{\lambda}^{m}(\upsilon,\tau) \int (z_0)} = \gamma \left(\frac{z_0 \omega'(z_0)}{1 - \omega(z_0)} - \frac{\varrho z_0 \omega'(z_0)}{1 - \varrho \omega(z_0)} \right) + 1$$

$$= 1 + \frac{k}{1 - e^{i\theta}} - \frac{k}{1 - \varrho e^{i\theta}}.$$

Therefore, we have

$$\Re\left\{\frac{z_0(\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)\,\mathrm{f}\,(z_0))'}{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)\,\mathrm{f}\,(z_0)}\right\}$$
$$=1+\frac{\gamma k(1-\varrho^2)}{2(1+\varrho^2-2\rho\mathrm{cos}\theta)}$$

Thus implies that, for
$$\varrho$$
 $(-1 < \varrho \le 0)$ and $0 < \gamma \le 1$

$$\Re\left\{\frac{z_0(D_\lambda^m(\upsilon,\tau)f(z_0))'}{D_\lambda^m(\upsilon,\tau)f(z_0)}\right\} \ge \frac{\varrho(2-\gamma)-(2+\gamma)}{2(\varrho-1)}.$$

This contradicts the condition in the theorem. Hence, there is no $z_0 \in E$ such that $|\omega(z_0)| = 1$ for all $z \in E$, that is

$$\left(\frac{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)\,\mathrm{f}(z)}{z}\right)^{\frac{1}{\gamma}}\prec\frac{1-\varrho z}{1-z},\qquad z\in E.$$

Furthermore, since

$$\omega(z) = \frac{\left(\frac{D_{\lambda}^{m}(\upsilon, \tau) f(z)}{z}\right)^{\frac{1}{\gamma}} - 1}{\left(\frac{D_{\lambda}^{m}(\upsilon, \tau) f(z)}{z}\right)^{\frac{1}{\gamma}} - \varrho}$$

and $|\omega(z)| < 1$, $(z \in E)$, we conclude that

$$\Re\left(\frac{\mathrm{D}_{\lambda}^{\mathrm{m}}(\upsilon,\tau)f(z)}{z}\right)^{\frac{1}{\gamma}} > \frac{1-\varrho}{2}, z \in E,$$

we complete the proof of the theorem.

REFERENCES

- 1. F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math.Sci., 27 (2004), 1429–1436.
- 2. I.S.Jack, Functions starlike and convex of order Q, J. London Math. Soc., 1 (1971), 469-474.
- 3. Miller, S. S.; Mocanu, P. T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl.,65 (1978), 289-305.
- 4. G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), CR Acad. Sci. Paris, 137(1903), 554–558.
- 5. K.Ochiai, Owa, S.; Acu, M., Applications of Jack's lemma for certain subclasses of analytic functins, General Math., 13 (2005), 73-82.
- H. Shiraishi, S.Owa, Starlike and convexity for analytic functions con-cerned with Jack's lemma, J. open problems Compt. Math., , 2 (2009), 37-47.
- 7. G. S. Salagean, Subclasses of univalent functions, Lecture Note in Math. (SpringerVerlag),1013 (1983), 362–372.
- 8. H. M. Srivastava, B. A. Frasin and V. Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci., 11 (2017), 635–641.
- 9. A.Wiman, Uber die Nullstellen der Funktionen $E_a(x)$, Acta Math., 29 (1905), 217 134.