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ABSTRACT

For analytic function f in the open unit disc E, a linear operator defined by Mittag-Leffler function is
introduced. The object of the present paper is to study some properties for D" (v, T)f (z) belonging to some
classes by applying the concept of Jack’s lemma. Subordination relations are introduced.

Keywords and phrases: : analytic function, starlike, differential operator, Mittag-Leffler function, Jack’s

lemma.

2010 Mathematics Subject Classification: 30C45.

1 INTRODUCTION
Let A denote the class of all functions f (z) of the
form

f(@) = 3+ 2Xn=2a,3", (L1)

in the open the unit disk E ={z : || < 1} . Let She
the subclass of A consisting of univalent functions
and satisfy the following usual normaliza-tion
condition f (0) = 0 and f'(0) = 1. We denote by
S the subclass of A consisting of f (z) which are all
univalent in E. A function f € A is a starlike
function of the order v, v(0 < v < 1) if it satisfy

R {Z}f(—(j)} >v, (z€E), (12

we denote by this class S” (v) . A function f € A
is a convex function of the order v, v (0 <v < 1) if
it satisfy

2" (@)
R{1+ f,(z)}>u, (ze E) (13

we denote this class with K (v). For f € A given
by (1.1) and g(z) given by

9(2) =z +Xn=p bpz™  (14)

their convolution (or Hadamard product), denoted
by (f* g), is defined as
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(f*9)(3) =2+ Y=g anbpz™ = (g *
@), (z€E) (1.5)

Note that f x g € A. The following defines the
familiar Mittag-Leffler func-tion E,(z) introduced
by Mittag- Leffler [4] and its generalization
E, () introduced by Wiman [9].

[ee)

E,(z) = Tomn+ D

n=0
and

[ee)

E = z"
VT (z) = m

n=0

where v, 7€ C, R (v) > 0and R (1) > 0. We define
the function Q,, () by Q, :(3) = zI'(7) E, ().

Now, for f € A, we define the following differential
operatorD}! (u,T) f: A — A by
DYV, Df(2) = f(2) * Qy~(2)
D; (v, Df(z) = (1 = D (f(3) * () + 13(f(2)
* Qv,r(z)?’

DI (v, Df(z) = DY (v, D)f(2)).

If fis given by (1.1) then from the definition of the
operator D" f it is easyto see that
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DY (v, D) f(2) = 3+ En=, 7' (A v, Da,z™,

(1.6)
where
r
¢r|!]‘| (A,U, Z') =ﬁ[ﬂ(n— 1) + 1]m
@7
Note that

1. whenv=0and 7 =1, we get Al-Oboudi operator
[1].

2. whenv=0,71=1and A = 1, we get Salagean
operator [7].

3. whenm =0, we get E, ;(z), Srivastava et al. [8].
Now, by making use of the differential operator
D} (v, ) f, we define a new subclass of functions
belonging to the class A.

Definition 1.1. Let a function f € A. Then f € DY
(v, 1) f (%) ifand only if

DI (v, '

{w >0, 2z€E0<p <1

(1.8)

DY (v,1) f (=)

Let f and g be analytic in E. Then f is said to be
subordinate to g if there exists an analytic function
o satisfying w(0)= 0 and ®(z) < 1, such that
f(z)=9g (w3z), z € E. We denote this subordination
asf(z) <g(z)or(f<g), z€E. The basic idea
in proving our result is the following lemma due to
Jack [2] (also, due to Miller and Mocannu [3]).

Lemma 1.2. Let w(z) be analytic in E with w(0)
= 0. Then if |o(z)| attains its maximum value on
the circle |z| = r at a point 3, in E then we have
Zo ' (3) = k w(zy), where k> 1 is areal number.

2 MAIN RESULTS

In the present paper, we follow similar works done
by Shireishi and Owa [6] and Ochiai et al. [5], we
derive the following result.

Theorem 2.1. If f € A satisfies® {M}

DY (v,7) f (3)
2(";_31), zeEfor some o (-1 < @ < 0) then

DRWOf@ _ 1+es
3 1-3

, z€E.

This implies that
DI (v, 1-
m{ x (u T)f(Z)} S e
3z 2
Proof. Let us define the function w(z) by

DY (vDf(z) _ 1-ow(3)
2 T 1-0(z) (w(z) #1).
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Clearly, w(z)is analytic in E and w(0)= 0. We
want to prove that |w(z)| < 1in E. Since

zDXWDf ) _ —ezw'(s) = zw'(3) 1
D' (v, 1) f (2) 1-ew(z) 1-ow(z)
we see that
s(PRODS@)) _ o, (-ez0'(2) | z0'(2)
ER{ DY (v,1) f (2) } =R { 1-ow(3) + 1-w(z) + 1}
0-3
< 2(@_1),(.5 €eE)
for —1 < @ < 0. If there exists a point 5, € E such
that| r&?xllw(z)l = |w(zy)| = 1,then  Lemma
Z|=1%0

1.2, gives us that w(z,) = e and zow'(z,) =
k(D(Zo), k>1.

Thus we have
Zo(Dxm(U'T)f(Zo))’ _ —0z00' (39)  zow'(Zo)
D' (v, T) f (20) 1-ow(zp) 1-w(z)
= 1 + k
It follows that

f’*{%(zo)}: ‘R{l_—le@e}%

and ER{

1-e®  1-ge®® "

)= M) =i e
1-w(z0) - 1-ge® T2 2(1+02-20c0s8)
Therefore, we have

k(e® - 1)
2(1+ @2 —20cos0)’

% {zo (DY, 1) f (zO))’} _
DI (v, T) f (30)

This implies that —1 < o < 0, % {W} >
A LT 0

(1-0%) _ o3
2(e-1)?  2(e-1)’

This contradicts the condition in the theorem. Then
there is no z, € E such that |o(z,)| = 1 forall z €

E, that is (Dl (‘"ZT” (Z)) < Lres

1-3
Further more, since
DFWOfE

z
DY¥'(v, 1) f (z) ’
—z ¢
and |o(z)] < 1, (z € E), we conclude that

, 2 €E.

z€E.

w(z) =

Taking @ = 0 in the Theorem 2.1, we have the
following corollary.

Corollary 2.2. If f € A satisfies
R z(D (v, T)f(Z)),
DX (v, D) f ()
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then
D (v, 1
roof@ 1,
3z 1—-3
and
DM (v, 1

Theorem 2.3. If f € A satisfies
Z(D;‘?(U, r)f(z))’ - 30—1
DX'(v, D) f (2) 2(e—-1)’

z 1+ 3z
for some o ( 1<Q§o)thenm =,

R zekE

z€eE
and
DY(vDf(e) 1 1

z 1—Q’ 1-¢’

z€E.

This implies that R {M

}>O, z€ekE.

Proof. Let us define the function w(z) by

4 _ 1-ow(3)
0@~ 1 (@@ #1.
2.1)

Then, we have w(3z) is analytic in E and w(0) = 0.
We want to prove that |w(z)] < 1 in E.
Differentiating equation (2.1), we obtain
sDXWDf () _ —z0'(z) 03w (3)
DY (v, 1) f () (1—0)(Z) 1)— ew(z)
z(DY' (v, 1) f (2))’
”ER{ DI, 0 f (2) }
=§R{—zw’(z) 0zw'(2) 1}

1-w(z) 1-ow(z)
30—1 E
20=1D)’ (z€ekE),
for (—1 < g < 0). If there exists a point (g, € E)
such that Lemma 1.2, gives us that w(z,) = e
and zow'(3g) = kw(zy), k > 1. Thus we have
zo(D3' (v, D) f (30))’
DY (v, 1) f (o)
_ “%00'(30) | 0500 (%)
1-w(z) 1-ew(z)
k k

=1+

>

+1

1—e® 1—ge®

Therefore, we have
R {Zo(Din (U,T)f(zo))'}
DY (v, T) f (o)
k(e* - 1)
2(1+ % — 20cos0)’

=1+

This implies that, for -1 <p <0,
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R {Zo (DT(U.T)f(Zo))’}
D;\n(vl T)f(zo)
_ k(1-0%)
=1- 2(1+ % — 2¢0cos0)’
30—1
2(e-1)

This contradicts the condition in the theorem.
Hence, there isno z, € E
such that |w (z,)| = 1 for all z € E, that is
4 - 1+ 3
DD f(z) 11—z’

DR D)

z€FE.

Furthermore, sincew(z) = z€E

3
1_QDAm(U.T)f(Z) ’

and |w(z)| <1, (z € E) we concludze that
DY'(v,7) f () 1 1

b4 1—-90| 1-0¢

, zekE

which implies that 9t {22124 > 0, z ¢ .

We complete the proof of the theorem.
By setting o = 0 in Theorem 2.3, we readily obtain
the following.

Corollary 2.4. If f € A satisfies

2P D)) 1
ER{ DU, D f (2) }>2, z€eE.
then
3z - 1+ 3 E
DPvDf(z)  1-z &
and

DI (v, D) f (3)
Z

1‘<1, zek

Theorem 2.5. If f € A satisfies
{Z(DK’(U. of (Z))’} L@2-nN-C+y)

DX'(v, D) f (2) 2-1) ’
zek.
for someg (-1 << 0)and 0 <y <1 then
1

DY Df)\ _ 1+ ez
3 1—3
This implies that

m((%)) - o
z 2

Proof. Let us define the function w(z) by
DI (v, 1- 4
NCRN I < Qw(Z)) w(z) % 1.

3 1—-w(z)

, zekE.
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Clearly, w(z) is analytic in E and w(0)) = 0. We
want to prove that |w(z)| < 1in E. Since

(D7 (v, D (@) _ <zw’(z) B sz’(z)>
DPv,Df() \1-wk@ 1-ew(k)
We see that
{z (D' (v, 1) f (z))'}
D' (v, 1) f ()

_ zw'(a)  0zw'(3)

N iR{y (1 —w(@ 1- Qw(Z)> " 1}
eC-N-02+y)

2e-1 7

z€ekE,

foro (-1 <o <0)and 0 <y < 1. If there exists a
point (3, € E) such that| rlnellxlla)(z)l =
Z|=(20

lw(zo)| =1,

then by Lemma 1.2, gives us that w(z,) = e*® and
Zow' (3y) = kw(zy), k> 1.

Thus we have
zo(D} (0,0 f (20))"
DD f(z0)

=1+

<sz’(zO) 3 Qsz’(zo)>+ L
1-w(z) 1-ow(z)
k k

1-e®  1-ge®®

Therefore, we have
{ZO(D;\H(U,T)J[(ZO))’}
D' (v, 1) f (Z0)
3 yk(1 - 0?)
=1t 2(1+ % —20cosB)’

Thus implies that, for o (-1 <p<0)and 0 <y <1
ER{zo(D’{‘(u,r)f(zo))’} L e2-n-e+n
DY(v,Df(z0) )~ 2e-1)

This contradicts the condition in the theorem.
Hence, there is no 3, € E such that |w (z,)] = 1 for
all z e E, thatis

1
D™ (v, y 1-—
<x(vr)f(z)> - & L eE
3z 1—-3
Furthermore, since
1
(Dﬁ’(u, D@,
3z

w(zg) = T
(Dx (v, ;)f(Z) )V —o
and |w (z)| < 1, (z € E), we conclude that
1
n(LEDI@ Y 1o

z 2
we complete the proof of the theorem.

,Z €L,
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