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ABSTRACT: The estimation of flood flows is of major importance for the design and management of
hydraulic structures. Two main classes of distributions are used in hydrology frequency analysis:  the class
D of sub-exponential and the class C of regularly varying distributions with a heavier tail. No criteria were
available for the choice between these two classes of fit the most appropriate especially at extreme
values. A Decision Support System (DSS) based on the characterization of the right tail, corresponding to
large return period T, of probability distributions used in frequency analysis, has been developed. The DSS
allows discriminating between the class C and D. It is worth to emphasize that the class selection has a
great importance for the extrapolation to estimate events with large return periods. An illustration of
the DSS approach is presented using the maxima peak flow at the Potomac River, USA (n=80).
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1. INTRODUCTION

Flood Frequency Analysis (FFA) is of particular interest for the design and management of
hydraulic structures. The principal objective of FFA is to obtain robust estimates of the
occurrence of extreme events from a dataset of observations that are independent and identically
distributed (IID). These hypothesis indicate that the observations are independent and they are
generated by the same phenomenon which is assumed to be the same in the future. To check
whether the observations are independent and the data series are stationary and homogeneous
tests such as Wald-Wolfowitz, Kendall and Wilcoxon can be used (Bobée and Ashkar, 1991).

The FFA procedure is related to extreme value theory (EVT), which is often derived from
asymptotic properties according to the Fisher-Tippet theorem (Fisher and Tippet, 1928).
Conventional estimates of flood exceedance quantiles are highly dependent on the underlying
flood frequency distribution. The form the right tail, difficult to estimate from observed data,
is particularly important concerning event with large return periods. Several standard frequency
distributions have been extensively studied in the statistical analysis of hydrologic data. Physical
processes which generate extreme events are rarely considered for the choice of the model
(Kidson et al., 2005; Singh and Strupczewski, 2002) i.e. the theoretical model of observed data
can not be derived from physical consideration. The statistical selection of the most appropriate
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distribution of annual maximum or peaks over threshold series has received widespread attention.
There are no rigid rules governing which type of distribution is most appropriate for a particular
case, and a variety of probability distributions are commonly used as frequency-magnitude
distributions in hydrology.

2. PROBABILITY DISTRIBUTIONS USED IN FFA

Brooks and Carruthers (1953) indicated that the Gumbel distribution (Gumbel, 1942), which is
commonly used in flood frequency prediction, tends to underestimate the magnitude of the
rarest rainfall events. Bernier (1959) suggested the Log-Gumbel distribution for hydrological
series. The Log-Gumbel (i.e. the log of the peak flow follows the Gumbel or EV1 distribution)
distribution is also called Fréchet distribution (Fréchet, 1927) and is known as EV2; a special
case of the Generalized Extreme Value (GEV) distribution. In order to select the adequate
distribution, empirical comparisons are commonly used for a given region. A comparison of
the Lognormal (LN), Gamma (G), Gumbel (EV1), Fréchet (EV2), and Log-Pearson type 3
(LP3) fits for ten USA stream flow stations was presented by Benson (1968). Based on this
study, the USA adopted a uniform approach to flood frequency estimation which consists of
fitting LP3 distribution to the annual peak discharges (US Water Resources Council, 1967).
Although some countries, such as Australia, have adopted the LP3 distribution (Eslamian,
2010), others have selected different distributions, such as the Generalized Extreme Value
(GEV) distribution in the United Kingdom and the Lognormal (LN) in China, (Bobée 1999;
Robson and Reed 1999). Discussions and reviews of the application of these and other statistical
distributions to FFA are given in Stedinger et al. (1993), Bobée and Rasmussen (1995) and Rao
and Hamed (2000). A comparison study for some distributions, given by Koutsoyiannis (2004),
shows that the EV2 distribution is more adequate to represent extreme rainfall series. Halphen
distributions (Halphen type A, type B and Inverse type B, HIB) have been introduced to fit a
large variety of data sets (Halphen 1941; Morlat 1951, 1956). They constitute with their limiting
forms, the Gamma and Inverse Gamma distributions, a complete system to model hydrological
variables. Indeed, the 1 2( , )� �  diagram (Morlat 1956, El Adlouni and Bobée, 2007) makes it
possible to represent this family of distributions and their limiting cases in a plane the same
way as the well-known Pearson system with the 1 2( , )� �  diagram corresponding to the skewness

and kurtosis coefficients. The 1 2( , )� � diagram is defined by the moment ratios � �1 ln /A G� �

and � �2 ln /G H� � , where A, H, and G are the arithmetic, harmonic and geometric means,

respectively (Bobée et al., 1993). For any sample, the corresponding 1 2( , )� �  point is associated
to one and only one member of the Halphen family or their limiting cases.

Werner and Upper (2002) presented a classification of a distributions with respect to their
tail behaviour and more details are given by (El Adlouni et al., 2008). These classes of distributions
are nested ( )A B C D E� � � � :

E : distributions with non-existence of exponential moments

D : sub-exponential distributions

C : regularly varying distributions
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B : Pareto type tail distributions

A : �-stable (non-normal) distributions

In FFA, the annual maximum flow datasets which are generally independent and identically

distributed are concerned. Indeed, let 1 2; ; ; pY Y Y�  be a sequence of daily flow, then the sample

maximum X is defined as � �1 2max ; ; ; pX Y Y Y� �  and 365.p �  Distributions that are usually

used in FFA belong to the classes C and D. However, the class E will be also considered in the
DSS for more generality. Indeed, even if the proposed approach is illustrated in the case of
extremes in hydrology, its use is valid for any series of observations that are IID. Distributions
that are widely used in hydrology to represent maximum annual flow series are:

• Class C (regularly varying distributions): Fréchet (EV2), Halphen Inverse type B (HIB),
Log-Pearson type 3 (LP3), Inverse Gamma (IG).

• Class D (sub-exponential distributions): Halphen type A (HA), Halphen type B (B),
Gumbel (EV1), Pearson type 3 (P3), Gamma (G).

Figure 1 presents exponential (E), sub-exponential (D) and regularly varying (C)
distributions. Distributions are ordered from light tailed (from the left) to heavy tailed (to the
right). The limiting cases (bottom squares) represented by distributions in the limits of classes.
The tail of the class C distributions is heavier than that of the class D distributions, which is
heavier than that of the class E. Thus, estimated quantiles can be ordered equivalently. Indeed,
for a given sample, the T-event corresponds to the quantile of the probability of non-exceedance

1 1p T� �  estimated by distributions of the classes C, D and E, are QT (C), QT (D) and
QT (E) respectively, which verify the following relation: QT (E) < QT (D) < QT (C).

Figure 1: Distributions Ordered with Respect to
Their Right Tails (El Adlouni et al., 2008)

The importance of the tail behaviour was illustrated by Hubert and Bendjoudi (1996) who
showed that the event of return period 1000T � estimated by the normal distribution
corresponds to T = 100 years when the power type tail distribution is the most adequate to fit
precipitation data series. Figure 2 shows that quantile estimated by the HIB distribution (class C)
is larger than that of the Lognormal and the distribution P3 (class D) even if they have the
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same statistical characteristics (mean and variance). The difference is more important for a
large non-exceedance probability (high return period). This comparison illustrates the importance
of tail behaviour determination to estimate large return period quantiles. Indeed, the 1000-
return period estimated from the P3 distribution correspond to the flow of return period 200 years
when the HIB distribution is fitted.

Figure 2: Comparison of the HIB, LN and PIII Fits for
the Annual Peak Flood at Potomac River

Remark

The Lognormal distribution (LN) does not belong to any of these two classes C or D. It has an
asymptotic behaviour which is in the frontier of the classes C and D (Figure 1). Indeed, the LN
tail is lighter (respectively, heavier) than that of a distribution of the class C (respectively, class
D). Thus, the quantiles (QT) estimated by a distribution belonging to the classes C, D and the
LN, verify the following relation:

QT (D) < QT (LN) < QT (C). Consequently:

• If the parent distribution is regularly varying (class C), and the LN distribution is
considered for the fit, thus the estimated quantile, for a fixed return period, will be
lower than the real value and there is a risk to underestimate this quantile;

• If the true distribution is sub-exponential (class D), and the LN distribution is considered
for the fit, thus the estimated quantile, for a fixed return period, will be higher than the
real value and there is a risk to overestimate this quantile.

In the DSS, and to have a safer choice, LN is considered by default as a distribution of the
class D. However, the user could make a different decision and associate it to the class C.
Research work has been done to determine powerful tools to test log-normality (Martel
et al., 2011).
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The majority of distributions used in the FFA are available in HYFRAN (CHS, 2002 and
Hubert, 2005) software to fit data sets that are independent, homogenous and stationary (IID
hypotheses). To select the most adequate fit, the Akaike (AIC, Akaike, 1974) and Bayesian
(BIC, Fortin et al., 1998) Information Criteria are available in HYFRAN. These criteria and
classical tests, give more weight to the central part of the sample. However, discrepancies
between different models are significant for rare events (i.e. corresponding to large return
periods). To solve this problem, a Decision Support System (DSS) is developed to help to the
selection of the most appropriate class of distributions, with respect to extreme values.

The methods developed in the DSS allow the identification of the most adequate class of
distribution (Figure 1) to fit a given sample, especially for extremes. These methods are
(Figure 3):

• The Log-Log plot: used to discriminate between on the one hand the class C and on
the other hand the classes E and D;

• The mean excess function (MEF) to discriminate between the classes D and E; and

• Two statistics: Hill’s ratio and modified Jackson statistic, for confirmatory analysis of
the conclusions suggested by the previous two methods.

Note that, the class E is also considered in the DSS for more generality and the approach
can be used for any series of observations that are IID.

Figure 3: Diagram for Class Discrimination used in the DSS
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More theoretical details of this classification and the criteria are available in El Adlouni et al.
(2008).

In the four following sections, the details of the integration of these criteria to the DSS of
HYFRAN-PLUS software are presented.

3. LOG-LOG PLOT

The log-log plot is based on the fact that the survival function � � � �F u P X u� � , is given by

� � � � � �exp /F u P X u u� � � � �  for exponential tail with mean �; for regularly varying
distribution with tail index �, F  is equivalent to (for large quantile):

� �
1

1
1

1
( )

1u
u

x
F u P X u C dx C C u

x

����� ���
�

� �
� � � � �� �� �� �

�

(with 1� � , which is equivalent to finite mean).

Therefore, taking the logarithm we have for regularly varying distributions

� � � � � �1log log 1 logP X u C u� � � � �� �� � . This suggests that, for the log-log plot, the tail
probability is represented by a straight line for power-law (or regularly varying distributions,
class C) but not for the other sub-exponential or exponential distributions (class D or E).

As illustrated in Figure 4, the curve represented in the Log-Log plot corresponds to a
straight line for the distributions of the class C i.e. Fréchet (EV2), Halphen type IB (HIB), Log-
Pearson type 3 (LP3) and Inverse Gamma (IG), but not for sub-exponential or exponential
type tails (class D or E). When the diagram is not linear we suggest the use of the Mean
Excess Function (MEF) to discriminate between the classes D and E.

Figure 4: Illustration of the Log-Log Plot to Characterize
the Regularly Varying Distributions
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To check the linearity of the curve in the log-log diagram, a test on the associated coefficient
of correlation is considered. Simulation studies allow the determination of critical values (rc)
corresponding to significance levels of 5% and 1%, to test the HYPOTHESIS H0: THE DATA
FOLLOW A DISTRIBUTION OF THE CLASS C (i.e. THE CURVE IS LINEAR). The hypothesis
H0 is equivalent to H0�: THEORETICAL VALUE OF THE COEFFICIENT OF CORRELATION
� = 1. These critical values are calculated according to the size N of the sample (30 � N � 200).
Note that the decisions given by the DSS are based, by default, on the significance level 5%.

If the hypothesis H0 is rejected, at the significance level 5%, the use of the mean excess
function plot (MEF) are suggested. However the critical value at the significance level 1% is
also given for more flexibility and to allow the user to make another decision than that based,
by default, on the significance level 5%.

Indeed, if the observed correlation coefficient (ro) is greater than critical value (rc) at the
significance level 5%, then it is concluded that it is not significantly different from 1 at the
significance level 5 % and the hypothesis H0 of linearity is accepted at this level. In this case,
the most adequate choice corresponds to the class C of regularly varying distributions (power-
law type): HIB, EV2, LP3, IG.

4. THE MEAN EXCESS FUNCTION DIAGRAM (MEF)

The mean excess function method is based on the function � � � �|e u E X u X u� � � . This

function is constant for exponential tail distributions � �( )e u � � . However, in the case of

regularly varying distribution with tail index � �2� � � : � � � �
.

2

u
e u �

� �
 The Mean Excess

Function (MEF) allows discriminating between the class D (sub-exponential distributions) and
the class E (Exponential distribution). Indeed, the curve presented in the MEF diagram is linear
for high observed values for distributions of both classes D and E. If in addition, the slope of
this curve is (Figure 5):

• Equal to zero, the most adequate distribution belongs to the class E (Exponential law);

• Strictly positive, the most adequate distribution belongs to the class D of sub-exponential
distributions: HA, EV1, HB, P3 and G.

Note that, in the DSS, this method should be used after the log-log plot method. Indeed, if
the assumption H0 of the log-log plot method is rejected (distribution does not belongs to the
class C of regularly varying distributions and then it belongs to class D) FME method allows
testing whether the distribution is exponential or not.

The use of this diagram in the DSS is based on the slope of the MEF curve for the
observations that exceed the median (50% of the highest observed value of the sample because
it is an asymptotic test).

Simulation studies allow the determination of critical values of the slope corresponding to
significance levels of 5 and 1 %, to test the HYPOTHESIS H0: THE DATA FOLLOW A
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DISTRIBUTION OF THE CLASS E (i.e. THE SLOPE OF THE MEF IS EQUAL TO ZERO).
These critical values are calculated according to the size N of the sample (30 � N � 200). Note
that the decisions given by the DSS are based, by default, on the significance level 5 %.

When the hypothesis H0 is accepted, it is suggested the use of the Exponential distribution
(class E). However, when it is rejected at the significance level 5 %, the use of a distribution of
the class D (HA, EV1, HB, P3, G) is suggested.. Note that the critical values at the significance
level 1 % are given for more flexibility and to allow the user to make possibly another decision
than that recommended, by default, for the significance level of 5%.

5. HILL’S RATIO PLOT

The Hill ratio is defined by

� �
� �

� � � �
1

1
log /

n

i ni
n n n

i n i ni

X x
a x

X x X x

�

�

� �
�

� �

�
�

where � �
1   if       

0   if      
i n

i n
i n

X x
X x

X x

��
� � � � ��

.

This method is based on the fact that na is a consistent estimator of � if the tail is regularly
varying (Class C) with tail index � (Hill, 1975). In the expression of the Hill ratio, nx  is chosen

to be large such that � � 0nP X x� �  and � �nnP X x� �� , and I is the indicator function.
The standard Hill estimator, of the tail index, corresponds to the particular case where the

observations are ordered � � � �1 nX X� ��  and � �1 ,
nn kx X ��  where nk is an integer which tends

to infinity as n tends to infinity.

Figure 5: Mean Excess Function for (a) Exponential and
(b) Sub-exponential Distributions
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In practice, the values of the function � �n na x  are plotted as function of nx  and the user is

looking for some stable regions from which � �n na x  can be considered as an estimator of �.
Figure 6, presents the Hill ratio plot for a sample varying (6-a) and sub-exponential (6-b)
distributions.

This statistics is used in the DSS to confirm the suggested choice given by the first two
diagrams (the distribution belongs to the class C, D or E).

• If the curve converges to a non-null constant value, the most adequate distribution
belongs to the class C (regularly varying distribution). The recommendation is then to
use of a distribution of the class C: Fréchet (EV2), Halphen Inverse type B (HIB),
Log-Pearson type 3 (LP3), Inverse Gamma (IG).

• If the curve decreases to zero, the distribution belong to the Sub-exponential class
(class D: Halphen type A, Gamma, Pearson type III, Halphen type B, Gumbel); and
the Exponential class (class E: Exponential distribution).

6. JACKSON STATISTIC

This method is presented by Beirlant et al. (2006) and is based on the Jackson statistic (Jackson,
1967). It allows to test whether the sample is consistent with Pareto type distributions. Note
that the distributions of the class C (regularly varying distribution) have asymptotically the
same behaviour as that of the Generalized Pareto distribution. Originally the Jackson statistic
was proposed as a goodness-of-fit statistic for testing exponential behaviour, and given the
link between the Exponential and the Pareto distribution (if X has a Pareto distribution, the

logarithmic transformation � �logY X�  is exponentially distributed) this statistic is used to
assess Pareto-type behavior. The Jackson statistic is further modified by taking into account
the second-order tail behavior of a Pareto-type model. Beirlant et al. (2006) give the limiting
distribution of this statistic with corrected bias version for finite size samples. This adapted
version of the Jackson statistic converges to 2 for power tail type distribution and has an

Figure 6: Generalized Hill Ratio Plot for (a) Regularly-varying and
(b) Sub-exponential Distributions
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irregular behavior for sub-exponential or exponential distributions (Figure 7). In the DSS, the
Jackson statistic is used to characterize distributions of the class C. Indeed, regularly varying
distributions (class C) have asymptotically a power tail.

In the DSS, this method is considered as a confirmatory method for recommended decision
based on the Log-Log and the MEF. So:

• If the curve converges clearly and regularly to 2 (Figure 7-a), the studied distribution
belongs to the class C (regularly varying distribution). The use of: Fréchet (EV2), Halphen
type IB (HIB), Log-Pearson type 3 (LP3), Inverse Gamma (IG) then are then recommended:

• If the curve presents some irregularities and do not converge to 2 (Figure 7-b), then
we recommend the sub-exponential class (class D: Halphen type A, Gamma, Pearson
type III, Halphen type B, Gumbel); or exponential (class E: Exponential distribution).

7. CASE STUDY: POTOMAC RIVER PEAK FLOW

In this section, the annual instantaneous peak flows of the Potomac River at Point of Rocks
for the time period 1895-2006 (water year October-September) are studied. Figure 8 shows
the observed annual peak flow time series. Smith (1987) and Katz et al. (2002) analyzed the
same time series for the time period 1895-1986 and 1895-2000, respectively. To check (IID
hypothesis) whether the observations are independent and if the data series are stationary and
homogeneous we applied, respectively, the Wald-Wolfowitz, Kendall and Wilcoxon tests (Bobée
and Ashkar, 1991). These tests indicated that the observed peak flow data series can be considered
as independent and identically distributed (i.e. stationary and homogeneous).

The log-log plot corresponding to annual peak flow at Potomac is given in Figure 9. The
plot shows that the curve is not perfectly linear, but the correlation coefficient is not significantly
different to 1 at the level 5%. The DSS gives a decision to the user. In the case of the Potomac
peak flows, the decision is displayed in Figure 10 and indicates that the curve is linear especially
for high values of log(u) and thus the distribution belongs to the class C of regularly varying
distributions.

Figure 7: Adapted Jackson Statistic for (a) Regularly Varying and
(b) Sub-exponential Distributions
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Figure 8: Annual Peak Flows of the Potomac River at
Point of Rocks 1895-2006

Figure 9: The Log-log Plot of the DSS for the Potomac
Annual Maximum Flow
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At this stage, the DSS suggests the use of the Hill ratio plot and the Jackson statistic.
These methods are considered for confirmatory analysis of the conclusions suggested by the
previous method. The Hill ratio plot (Figure 11) shows a convergence towards a value different
from zero.

Figure 10: Output of the HYFRAN-PLUS When Executing
The Log-Log Method of the DSS

Figure 11: Hill’s Ratio Plot of the DSS for Confirmatory Analysis
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The adapted Jackson statistic (Figure 12) converges to its mean value 2 which implies that
the studied data series have a power-law distribution (belong asymptotically to the class B
which included in the class C). Both methods confirm that the most adequate distribution to fit
the Potomac maximum peak data belongs to the class C of regularly varying distributions
(EV2, Halphen type Inverse B, Inverse Gamma or Log-Pearson).

Once the class which represents adequately the studied dataset is selected, other criteria
could be used to select the most adequate fit inside of each class. Classical tests and criteria,
such as the Akaike Information Criterion (AIC, Akaike, 1974) or Bayesian Information Criterion
(BIC, Fortin et al., 1998), can be used to select the distribution (EV2, HIB, IG and LP3) within
the selected class. The AIC of the Inverse Gamma distribution is the smallest when compared
to the distributions of the class C (EV2 and Log-Pearson type 3). These criteria are available in
the software HYFRAN (CHS, 2002).

Table 1 presents the output of the Inverse Gamma distribution fit produced by the HYFRAN-
PLUS software, which is the new version of HYFRAN including the Decision Support System
(DSS). Return period events are estimated with their confidence interval at the level 95%. The
software allows also presenting the fit results graphically.

Figure 12: Modified Jackson Statistic of the DSS for
Confirmatory Analysis
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Table 1
Results of the Fit of the Inverse Gamma Distribution to the Annual Peak

Flow at Potomac River

Results of the fitting

Inverse Gamma  (Maximum Likelihood)

Number of observations              112

T q XT Standard               Confidence intervals (95%)
deviation

1000.0 0.9990 896 256 640 1152

200.0 0.9950 557 184 441 761

100.0 0.9900 453 117 223 682

50.0 0.9800 366 72.7 223 508

20.0 0.9500 271 36.7 199 3437

10.0 0.9000 212 20.6 171 252

5.0 0.8000 160 10.9 139 182

3.0 0.6667 126 6.76 113 139

2.0 0.5000 99.7 4.80 90.3 109

8. CONCLUSIONS

Conventionally, for hydrological frequency analysis, a number of theoretical probability functions
are fitted to the sample data and then statistical criteria such as Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC) are used to investigate the best fit. However,
AIC and BIC are based on the likelihood function and thus give large weights to the central part
of the distribution which contains a high proportion of the observations. Given that the main
objective of the frequency analysis is to estimate the quantiles with high return periods (small
probability of exceedance), the best fit should be checked for extremes rather than the center
of the distribution.

In this article, it has been summarized how certain graphical methods used to discriminate
distributions of the classes C, D and E can be used to select the most adequate fit especially for
extremes. Although it is not useful in FFA, the class E is considered for more generality. Indeed
the DSS can be used for any set of observations that are IID. The approach has been developed
in C++ and integrated into the software HYFRAN-PLUS (http://www.wrpllc.com/books/
hyfran.html) to help user to select the most adequate class. Within the selected class, the
criteria such as the Akaike criterion and the Bayesian information may be used to choose the
most adequate distribution.

The Log-normal distribution does not belong to any of the classes C and D. The LN has an
asymptotic behavior which lies in the border of classes C and D (Figure 1). Indeed, the right
tail of the LN distribution is lighter (respectively, heavier) than distributions of the class C
(respectively of the class D). This problem has been recently studied to develop tools to test
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the Log-normality before the use of the DSS and a new version of the diagram (Figure 3) has
been proposed (Martel et al. 2011).

Although HYFRAN and HYFRAN-PLUS have been developed for the fitting of hydrological
data, they can be considered of observations that are independent and identically distributed
(IID).
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