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Abstract - The effect of nanofluid parameters over a moving surface in the boundary layer is studied. The model of the fluid considered is 

Williamson and its governing equations are solved by a semi-analytic series solution called as Homotopy Analysis Method (HAM). The 

influence of Williamson parameters Le, Sc and Pr numbers are also studied and depicted through graphs. It has been observed that the 

Williamson parameters have a considerable effect on the heat transfer of nanofluid. Convergence of velocity and temperature is analyzed 

by plotting the 𝒉 curve and Domb-Sykes plot. 

 

Index Terms - Williamson nanofluid, Thermophoresis, Brownian motion, Pseudoplastic fluid, Domb-Sykes plot. 

 

1 INTRODUCTION 

 
All polymeric fluids are treated as Pseudoplastic fluids. Shear-thinning fluids are also referred to as Pseudo plastic fluids. Pseudoplastic 

fluids are one of the important fluids among non-Newtonian fluids. With increasing shear rate, the viscosity of these fluids will decrease. 

Depending on the stress-strain relationship the fluid models are named as Power-law, Carreau, Cross, Ellis, and Williamson models. 

Williamson (1929) proposed a fluid model known as the Williamson fluid model to describe the flow of pseudoplastic fluids. It is a simple 

model to simulate the shear thinning characteristics of non-Newtonian fluids [1].  

 

There has been a growing appreciation for the study of industrial-oriented fluids such as polymeric melts and many other non-Newtonian 

fluids. These fluids does not obey linear relationship between shear stress and rate of strain. They exhibit a rare behaviour which are more 

valuable than Newtonian fluids in nature and technology. Therefore the study of different kinds of non-Newtonian fluid flows has many 

important applications in industry. In the study, we focus on the non-Newtonian fluid of the Williamson model. Non-Newtonian fluids are 

polymeric in nature which in turn is a type of nanofluid.  

 

Nanofluids consists of nanoparticles (<100 nm) suspended in abase fluids such as water, oil and ethylene glycol. The significant heat 

transfer surface between particles and fluids are obtained. The thermal conductivity is the characteristic feature of nanofluid. The nanolayer 

acts as a thermal bridge between the solid nanoparticle and base fluid. In nanofluids, the viscosity of the base fluid affects the Brownian 

motion of nanoparticles which affects the thermal conductivity of the nanofluid. Nanofluids have major advantages in several Biomedical 

applications, such as cancer therapy, safer surgery by cooling, high power lasers, X-ray generators and magnetic cell separation. 

 

Nadeem et al. [2,4,5,6] has explained the effect of Lewis number and Schmidt number on velocity profile for two-dimensional flow. They 

extended the peristaltic flow of chyme in the small intestine of Williamson flow for porous and non-porous surfaces. MHD nanofluid flow 

over a moving surface in the boundary layer region has been studied by Sushma et al. [3]. The MHD flow with heat and mass transfer of 

Williamson nanofluid over a heated surface with a variable thickness under the effect of an electric field is examined by Gossaye Aliy and 

Naikoti [7]. The MHD flow of Williamson fluid with variations in sheet thickness and thermal conductivity was investigated by Srinivas 

Reddy et al. [8]. MHD stagnation point flow exponential stretching sheet in stratified medium presented by Vittal et al. [9] using Keller-

Box method. Unsteady Williamson fluid flow was studied by Bibi et al. [10].  

 

Hamid et al. [11] investigated the two-layer non-Newtonian flow on a wedge. Hashim et al. [12] studied the MHD Williamson over a wedge 

with convection. Ibrahim et al. [13] included the effect of the electric field in the study of Williamson fluid flow over a radially stretching 

surface. Ambreen et al. [14] studied the effect of nanoparticles with boussinesq approximation on rotating disc. Kebede et al. [16] studied 

Williamson fluid with chemical reaction.Sakiadis [17] was the first one to initiate the study of stretching sheet problems. 

 

Abualnaja et al. [26] presented two-dimensional steady flow by Williamson constitutive model past a nonlinear exponential stretching sheet 

theoretically and the system of nonlinear ordinary differential equations solved using Homotopy Perturbation Method (HPM). Gireesha et 

al. [27] studied the flow of Williamson fluid in a microchannel, considering the effect of thermal radiation, heat source, slip regime and 

convective boundary. Dawar et al. [28] investigated the Williamson nanofluid flow through a nonlinear stretching plate and analyzed the 
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global influence of the Williamson parameter. Subbarayudu et al. [29] presented a report on Brownian motion and thermophoresis 

characteristics subject to MHD Williamson fluid model by assuming the flow as unsteady and also considered blood as Williamson fluid, 

over a wedge with radiation. The resulting equations are solved using RK 4th order method along with the Shooting technique.  

 

In this paper, we are analyzing the Williamson fluid model of nanofluid in the boundary layer region. The distribution of the paper is as 

follows: section 2 involves Mathematical formulation of the problem, Method of solution of the problem is explained in section 3, results 

are discussed in section 4 and graphs and tables are included in section 5. 

 

2 FORMULATION 

 

The two-dimensional steady-state incompressible fluid flow of Williamson nanofluid is considered under the influence of Brownian motion 

and thermophoresis on the boundary layer flow over a moving surface, whose velocity is taken as 𝑈𝑤 = 𝜆1𝑈, 𝜆1 > 0 is the velocity of 

the plate is in the positive direction and 𝜆1 < 0 is the velocity of the plate is in the negative direction. The flow along the 𝑦 co-ordinate 

is measured perpendicular to the moving surface. 𝑈𝑤 is the fluid velocity, 𝑇𝑤 is the temperature, 𝐶𝑤 is the nanoparticle concentration 

near the surface.  

The fundamental governing equations of Williamson nanofluid are given by [2] 

 

 ∇ ⋅ 𝑉⃗ = 0,   (1) 

 𝜌
𝑑𝑉⃗⃗ 

𝑑𝑡
= ∇ ⋅ 𝜎 + 𝜌𝑏⃗ , (2) 

 𝜌𝑐 (
𝜕𝑇

𝜕𝑡
+ 𝑉⃗ ⋅ ∇𝑇) = ∇ ⋅ 𝑘∇𝑇 + 𝜌𝑝𝑐𝑝 × (𝐷𝐵∇𝐶 ⋅ ∇𝑇 + 𝐷𝑇

∇𝑇⋅∇𝑇

𝑇∞
), (3) 

 
𝜕𝐶

𝜕𝑇
+ 𝑉⃗ ⋅ ∇𝐶 = ∇ ⋅ (𝐷𝐵∇𝐶 + 𝐷𝑇

∇𝑇

𝑇∞
), (4) 

where 𝑉,⃗⃗  ⃗ is the velocity, 𝜌, is the density of the fluid, 𝜎,⃗⃗  ⃗ is the stress, 𝑏⃗ , is the force per unit volume, 𝜌𝑐 and 𝜌𝑝𝑐𝑝  are the heat 

capacities of nanofluid and nanoparticles, 𝑇, is the temperature, 𝑘, is the thermal conductivity of nanofluid, 𝐷𝐵 , is Brownian diffusion 

coefficient, 𝐷𝑇 , is thermophoretic diffusion coefficient, 𝑇∞, is the ambient fluid temperature and  𝐶, is nanoparticle volumetric fraction. 

Cauchy stress tensor 𝜎  for Williamson fluid [15] is defined as follows  

 𝜎 = −𝑝𝐼 + 𝜖 , (5) 

where 𝑝 is the pressure, 𝐼 is the stress invariant and 𝝐⃗  is the extra stress tensor. 

For 0 ≤ 𝑦 ≤ ℎ, the pressure gradient is always negative, then  

 𝜖 = [𝜇∞ +
(𝜇0−𝜇∞)

1−Γ𝛽̇
] 𝜏1, (6) 

 where  

 
𝛽̇ = √

1

2
𝛿,

𝛿 = 𝑡𝑟𝑎𝑐𝑒(𝜏1
2),

 (7) 

where 𝜏1 is the first Rivlin-Erickson tensor, 𝜇0 is limiting viscosity at zero, 𝜇∞ is limiting viscosity at infinite shear rate. For 𝜇∞ = 0 

and Γ𝛽̇ < 1 equation (6) can be written as  

 𝜖 = [
𝜇0

1−Γ𝛽̇
] 𝜏1, (8) 

or by using binomial expansion, we get  

 𝜖 = 𝜇0[1 + Γ𝛽̇]𝜏1, (9) 

Substituting the equations (5) and (9) in equations (1) to (4), we get 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (10) 

  

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2 + √2𝜈Γ
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2, (11) 

  

 𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝜌𝑝𝑐𝑝

𝜌𝑐
(𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

), (12) 

  

 𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2, (13) 
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where 𝑢  and 𝑣  are velocity components in 𝑥 𝑎𝑛𝑑  𝑦  direction, 𝜈  is the kinematic viscosity and 𝛼  is the thermal diffusivity of 

nanofluid. 

The corresponding boundary conditions are  

𝑢 = 𝜆1𝑈, 𝑣 = 0, 𝑇 = 𝑇𝜔 , 𝐶 = 𝐶𝜔  at  𝑦 = 0;     𝑢 → 𝑈, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞  as  𝑦 → ∞. (14) 

 

The following similarity transformations are used to reduce the governing equations into a system of ordinary differential equations.  

 Ψ = √(2𝑈𝜈𝑥)𝐹(𝜂), Θ(𝜂) =
𝑇−𝑇∞

𝑇𝜔−𝑇∞
, Φ(𝜂) =

𝐶−𝐶∞

𝐶𝜔−𝐶∞
, 𝜂 = 𝑦√

𝑈

2𝜈𝑥
. (15) 

Stream function Ψ is defined as  

 𝑢 =
𝜕Ψ

𝜕𝑦
  and  𝑣 = −

𝜕Ψ

𝜕𝑥
. (16) 

Using equation (15) in equations (11) - (13) we get the following system of ordinary differential equations  

 𝐹′′′ + 𝐹𝐹′′ + 𝜆𝐹′′𝐹′′′ = 0, (17) 

  

 Θ′′ + 𝑃𝑟𝐹Θ′ +
𝑁𝑐

𝐿𝑒
Φ′Θ′ +

𝑁𝑐

𝐿𝑒×𝑁𝑏𝑡
Θ′2 = 0, (18) 

  

 Φ′′ + 𝑆𝑐𝑓Φ′ +
1

𝑁𝑏𝑡
Φ′′ = 0, (19) 

where prime denotes the derivative with respect to 𝜂,   𝜆 = Γ
𝑈

3
2

√𝜈𝑥
; Non Newtonian Williamson parameter, 𝑃𝑟 =

𝜈

𝛼
; Prandtl number, 𝐿𝑒 =

𝛼

𝐷𝐵
; Lewis number, 𝑆𝑐 =

𝜈

𝐷𝐵
; Schmidt number, 𝑁𝑐 =

𝜌𝑝𝑐𝑝

𝜌𝑐
(𝐶𝜔 − 𝐶∞); Heat capacities ratio and   𝑁𝑏𝑡 =

𝐷𝐵𝑇∞(𝐶𝜔−𝐶∞)

𝐷𝑇(𝑇𝜔−𝑇∞)
; Diffusivity ratio. 

The boundary conditions (14) becomes 

 𝐹 = 0, 𝐹′ = 𝜆1, Θ = 1,Φ = 1  𝑎𝑡  𝜂 = 0, 
 𝐹′ = 1, 𝜃 = 0,Φ = 0  𝑎𝑠  𝜂 → ∞. (20) 

 

 

3 SOLUTION METHODOLOGY 

 
Equations (17) to (19) under the condition (20) are solved using the homotopy analysis method and the method is described below.  

 

 

HOMOTOPY ANALYSIS METHOD: 

 
This method is proposed by French Mathematician Jules Henry Poincare. Homotopy is a basic concept in topology, based on this the 

homotopy analysis method (HAM) was first developed by Shijun Liao [18-24]. HAM is independent of any small/large physical parameters. 

It provides us great freedom and flexibility to choose equation-type and solution expression of higher-order approximation equations and 

is a convenient way to guarantee the convergence of the series solution. He also proved some lemmas and theorems about the homotopy-

derivative and deformation equations. Abbasbandy applied HAM to obtain the solution of nonlinear equations arising in the heat transfer 

field [25].  

 

The coupled nonlinear equations for this problem are  

 

 𝑁[𝐹(𝜂)] = 𝐹′′′ + 𝐹𝐹′′ + 𝜆𝐹′′𝐹′′′, (21) 

 

  𝑁[Θ(𝜂)] = Θ′′ + 𝑃𝑟𝐹Θ′ +
𝑁𝑐

𝐿𝑒
Φ′Θ′ +

𝑁𝑐

𝐿𝑒×𝑁𝑏𝑡
Θ′2, (22) 

  

 𝑁[Φ(𝜂)] = Φ′′ + 𝑆𝑐𝐹Φ′ +
1

𝑁𝑏𝑡
Θ′′. (23) 

To apply the homotopy analysis method to the problem considered, we first select the auxiliary linear operator as follows to get initial 

approximations.  

 𝐿𝐹(𝐹) =
𝜕3𝐹

𝜕𝜂3 +
𝜕2𝐹

𝜕𝜂2, (24) 

  



 
 

 Copyrights @Kalahari Journals                                         Vol.7 No.2 (February, 2022) 

International Journal of Mechanical Engineering 

1726 
 

 𝐿Θ(Θ) =
𝜕2Θ

𝜕𝜂2 +
𝜕Θ

𝜕𝜂
, (25) 

  

 𝐿Φ(Φ) =
𝜕2Φ

𝜕𝜂2 +
𝜕Φ

𝜕𝜂
. (26) 

 

 Solving (24) - (26) we get the initial approximation as follows.  

 𝐹0 = (𝜆1 − 1) + 𝜂 + (1 − 𝜆1)𝑒
−𝜂, (27) 

  

 Θ0 = 𝑒−𝜂 , (28) 

  

 Φ0 = 𝑒−𝜂 . (29) 

 

 Then using HAM, we construct the zeroth-order deformation equations as follows [18].  

 (1 − 𝑝)𝐿[𝐷(𝜂, 𝑝) − 𝐹0(𝜂)] = ℎ𝑝 [
𝜕3𝐷

𝜕𝜂3 + 𝐷
𝜕2𝐷

𝜕𝜂2 + 𝜆
𝜕2𝐷

𝜕𝜂2

𝜕3𝐷

𝜕𝜂3], (30) 

  

 (1 − 𝑝)𝐿[𝐸(𝜂, 𝑝) − Θ0(𝜂)] = ℎ𝑝 [
𝜕2𝐸

𝜕𝜂2 + 𝑃𝑟𝐸
𝜕𝐸

𝜕𝜂
+

𝑁𝑐

𝐿𝑒

𝜕𝐺

𝜕𝜂

𝜕𝐸

𝜕𝜂
+

𝑁𝑐

𝑁𝑏𝑡×𝐿𝑒
(
𝜕𝐸

𝜕𝜂
)
2

], (31) 

  

 (1 − 𝑝)𝐿[𝐺(𝜂, 𝑝) − Φ0(𝜂)] = ℎ𝑝 [
𝜕2𝐺

𝜕𝜂2 + 𝑆𝑐𝐷
𝜕𝐺

𝜕𝜂
+

1

𝑁𝑏𝑡

𝜕2𝐸

𝜕𝜂2]. (32) 

 And the boundary conditions are  

 𝐷(0, 𝑝) = 0, 𝐷𝜂(0, 𝑝) = 𝜆1, 𝐷𝜂(∞, 𝑝) = 1, (33) 

  

 𝐸(0, 𝑝) = 1, E(∞, 𝑝) = 0, (34) 

  

 𝐺(0, 𝑝) = 1, G(∞, 𝑝) = 0. (35) 

 When 𝑝 = 0, we have from (30) - (32)  

 𝐷(𝜂, 0) = 𝐹0(𝜂) (36) 

  

 𝐸(𝜂, 0) = Θ0(𝜂) (37) 

  

 𝐺(𝜂, 0) = Φ0(𝜂) (38) 

 when 𝑝 = 1, we have from (30) - (32)  

 𝐷(𝜂, 1) = 𝐹(𝜂) (39) 

  

 𝐸(𝜂, 1) = Θ(𝜂) (40) 

  

 𝐺(𝜂, 1) = Φ(𝜂) (41) 

 

Thus as p varies from 0 to 1, the solution varies from initial guess 𝐹0(𝜂), Θ0(𝜂)  and  Φ0(𝜂) to the exact solution 𝐹(𝜂), Θ(𝜂)  and  Φ(𝜂) 

respectively. 

 

For 𝐷(𝜂, 𝑝), 𝐸(𝜂, 𝑝) and 𝐺(𝜂, 𝑝) Maclaurin’s series expansion are given by  

 

 𝐷(𝜂, 𝑝) = 𝐷(𝜂, 0) + ∑∞
𝑘=1

𝑝𝑘

𝑘!

𝜕𝑘𝐷(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

, (42) 

  

 𝐸(𝜂, 𝑝) = 𝐸(𝜂, 0) + ∑∞
𝑘=1

𝑝𝑘

𝑘!

𝜕𝑘𝐸(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

, (43) 

  

 𝐺(𝜂, 𝑝) = 𝐺(𝜂, 0) + ∑∞
𝑘=1

𝑝𝑘

𝑘!

𝜕𝑘𝐺(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

. (44) 
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 Defining  

 

𝐹0(𝜂) = 𝐷(𝜂, 0) = 𝜙0(𝜂),

ϕ𝑘(𝜂) =
1

𝑘!

𝜕𝑘𝐷(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

,
 (45) 

  

 

Θ0(𝜂) = 𝐸(𝜂, 0) = 𝜓0(𝜂),

𝜓𝑘(𝜂) =
1

𝑘!

𝜕𝑘𝐸(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

,
 (46) 

  

 

Φ0(𝜂) = 𝐺(𝜂, 0) = 𝜉0(𝜂),

𝜉𝑘(𝜂) =
1

𝑘!

𝜕𝑘𝐺(𝜂,𝑝)

𝜕𝑝𝑘 |
𝑝=0

.
 (47) 

 

 Using equations (45) - (47) equations (42) - (44) can be written as  

 𝐷(𝜂, 𝑝) = 𝜙0(𝜂) + ∑∞
𝑘=1 𝜙𝑘(𝜂)𝑝𝑘 , (48) 

  

 𝐸(𝜂, 𝑝) = 𝜓0(𝜂) + ∑∞
𝑘=1 𝜓𝑘(𝜂)𝑝𝑘, (49) 

  

 𝐺(𝜂, 𝑝) = 𝜉0(𝜂) + ∑∞
𝑘=1 𝜉𝑘(𝜂)𝑝𝑘 . (50) 

 

The linear differential operator 𝐿 and the non-zero auxiliary parameter ℎ are selected such that the solution converges at 𝑝 = 1.  

Hence the convergence region of the above series depends on 𝐿 and ℎ.  

 

 𝐹(𝜂) = 𝜙0(𝜂) + ∑∞
𝑘=1 𝜙𝑘(𝜂), (51) 

  

 Θ(𝜂) = 𝜓0(𝜂) + ∑∞
𝑘=1 𝜓𝑘(𝜂), (52) 

  

 Φ(𝜂) = 𝜉0(𝜂) + ∑∞
𝑘=1 𝜉𝑘(𝜂). (53) 

 

Here 𝜙𝑚,  𝜓𝑚 and 𝜉𝑚 are unknowns to be determined. Differentiating equations (30), (31) and (32) , 𝑚 times about the embedding 

parameter 𝑝, using Leibnitz theorem , setting 𝑝 = 0 and dividing by 𝑚!, we get  

 

 𝐿𝐹[𝜙𝑚 − 𝜒𝑚𝜙𝑚−1] = ℎ𝑟𝑚(𝜂), (54) 

  

 𝐿Θ[𝜓𝑚 − 𝜒𝑚𝜓𝑚−1] = ℎ𝑠𝑚(𝜂), (55) 

  

 𝐿Φ[𝜉𝑚 − 𝜒𝑚𝜉𝑚−1] = ℎ𝑡𝑚(𝜂). (56) 

  

 where    𝜒𝑚 = {
0, when  𝑚 ≤ 1
1, when  𝑚 > 1        and    

 (57) 

  

𝑟𝑚(𝜂) = 𝜙𝑚−1
′′′ (𝜂) + ∑𝑚−1

𝑘=0 𝜙𝑚−1−𝑘(𝜂)𝜙𝑘
′′(𝜂) + 𝜆∑𝑚−1

𝑘=0 𝜙𝑚−1−𝑘
′′ (𝜂)𝜙𝑘

′′′(𝜂), (58) 

 

       𝑠𝑚(𝜂) = 𝜓𝑚−1
′′ (𝜂) + 𝑃𝑟 ∑𝑚−1

𝑘=0 𝜙𝑚−1−𝑘(𝜂)𝜓𝑘
′ (𝜂) +

𝑁𝑐

𝐿𝑒
∑∞

𝑘=0 𝜉𝑚−1−𝑘
′ (𝜂)𝜓𝑘

′ (𝜂) +    

                                                    
𝑁𝑐

𝑁𝑏𝑡×𝐿𝑒
∑𝑚−1

𝑘=0 𝜓𝑚−1−𝑘
′ (𝜂)𝜓𝑘

′ (𝜂),        (59) 

  

     𝑡𝑚(𝜂) = 𝜉𝑚−1
′′ (𝜂) + 𝑆𝑐 ∑𝑚−1

𝑘=0 𝜙𝑚−1−𝑘(𝜂)𝜉𝑘
′ (𝜂) +

1

𝑁𝑏𝑡
𝜓𝑚−1

′′ (𝜂), (60) 
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with boundary conditions  

 𝜙𝑚(0) = 0, 𝜙𝑚
′ (0) = 0, 𝜙𝑚

′ (∞) = 0, (61) 

  

 𝜓𝑚(0) = 0, 𝜓𝑚(∞) = 0, (62) 

  

 𝜉𝑚(0) = 0, 𝜉𝑚(∞) = 0. (63) 

 

 The HAM series solution for (11) is given by  

 𝐹 = 𝜙0 + 𝜙1 + 𝜙2 + 𝜙3+. .. (64) 

 

 Using MATHEMATICA, we solve (54) to get  𝜙0, 𝜙1, 𝜙2, ... where  

 𝜙0 = (𝜆1 − 1) + 𝜂 + (1 − 𝜆1)𝑒
−𝜂, (65) 

  

𝜙1 =
1

4
(−ℎ + ℎ𝜆 − 2ℎλ1 − 2ℎ𝜆λ1 + 3ℎλ1

2 + ℎ𝜆λ1
2) +

1

4
𝑒−2𝜂 (2𝑒𝜂(3ℎ − ℎ𝜆 − 6ℎλ1 + 2ℎ𝜆λ1 + 3ℎλ1

2 − ℎ𝜆λ1
2) −

ℎ(−1 + λ1)(−1 + 𝜆 + λ1 − 𝜆λ1 + 2𝑒𝜂(−2 + 𝜂2 + 4λ1 + 2𝜂λ1))), (66) 

  

𝜙2 =
1

72
(−18ℎ − 179ℎ2 + 18ℎ𝜆 + 29ℎ2𝜆 + 6ℎ2𝜆2 − 36ℎλ1 + 6ℎ2λ1 − 36ℎ𝜆λ1 − 42ℎ2𝜆λ1 − 18ℎ2𝜆2λ1 + 54ℎλ1

2 + 93ℎ2λ1
2 +

18ℎ𝜆λ1
2 − 3ℎ2𝜆λ1

2 + 18ℎ2𝜆2λ1
2 + 80ℎ2λ1

3 + 16ℎ2𝜆λ1
3 − 6ℎ2𝜆2λ1

3) +
1

72
𝑒−3𝜂(9𝑒𝜂ℎ(2(−1 + 𝜆) + ℎ(−9 + 2𝜂2(−1 + 𝜆) + 𝜆(5 −

4λ1) + 𝜂(−2 + 4𝜆(−1 + λ1) − 4λ1) + 2𝜆2(−1 + λ1) − 4λ1))(−1 + λ1)
2 − ℎ2(5 − 17𝜆 + 12𝜆2)(−1 + λ1)

3 − 9𝑒2𝜂(4ℎ(−1 +

λ1)(−2 + 𝜂2 + 4λ1 + 2𝜂λ1) +
1

3
(−36ℎ − 85ℎ2 + 12ℎ𝜆 + 43ℎ2𝜆 + 72ℎλ1 + 171ℎ2λ1 − 24ℎ𝜆λ1 − 123ℎ2𝜆λ1 − 36ℎλ1

2 − 63ℎ2λ1
2 +

12ℎ𝜆λ1
2 + 117ℎ2𝜆λ1

2 − 23ℎ2λ1
3 − 37ℎ2𝜆λ1

3) + ℎ2(−1 + λ1)(𝜂
4 + 4𝜂3λ1 + 2𝜂2(7 + 𝜆(−1 + λ1) + λ1 + 2λ1

2) + 2𝜂(7 + 𝜆 + 

12λ1 − 4𝜆λ1 + 5λ1
2 + 3𝜆λ1

2) + 4(λ1(11 + 3λ1) + 𝜆(2 − 5λ1 + 3λ1
2))))), (67) 

etc. 

The HAM series solution for (12) is given by  

 Θ = 𝜓0 + 𝜓1 + 𝜓2 + 𝜓3+. .. (68) 

 

Using Mathematica, we solve (55) to get  𝜓0, 𝜓1, 𝜓2, ... where  

 

 𝜓0 = 𝑒−𝜂, (69) 

 

 𝜓1 =
1

2LeNbt
𝑒−2𝜂(ℎ((1 + Nbt)Nc + LeNbtPr(−1 + λ1)) + 

 𝑒𝜂LeNbt(−
−2ℎLeNbt+ℎNc+ℎNbtNc−ℎLeNbtPr+3ℎLeNbtPrλ1

LeNbt
+ 

 ℎ(−2 − 2𝜂 + Pr𝜂2 + 2Prλ1 + 2Pr𝜂λ1))), (70) 

  

 𝜓2 =
1

24Le2Nbt
2 𝑒−3𝜂(ℎ2(4(2 + 3Nbt + Nbt

2)Nc
2 + 4LeNbtNc((3 + 2Nbt)Pr + NbtSc)(−1 + λ1)Le

2Nbt
2Pr(1 +

4Pr − 𝜆)(−1 + λ1)
2) + 3𝑒2𝜂LeNbt(4ℎLeNbt(−2 + Pr𝜂2 + 2Prλ1 + 2𝜂(−1 + Prλ1)) − 8LeNbt(

1

24Le2Nbt
2 ℎ2(4(2 + 3Nbt + Nbt

2)Nc
2 +

4LeNbtNc((3 + 2Nbt)Pr + NbtSc)(−1 + λ1) + Le2Nbt
2Pr(1 + 4Pr − 𝜆)(−1 + λ1)

2) +
1

2
ℎ(−2 + 2Prλ1) +

1

8Le2Nbt
2 ℎ(−2ℎ(2 + 3Nbt +

Nbt
2)Nc

2 + LeNbtNc(4(1 + Nbt) + ℎ(2 + Nbt(4 + 3Sc + Pr(3 − 6λ1)) + Pr(6 − 6λ1))) + Le2Nbt
2Pr(−1 + λ1)(4 + ℎ(15 − 2𝜆 +

Pr(1 − 4λ1) + 8λ1 + 2𝜆λ1))) +
1

8LeNbt
ℎ2(−2(1 + Nbt)Nc(−2 + 2Prλ1) + LeNbt(−8 + 2Pr(−1 + λ1)(7 + 𝜆(−1 + λ1) + 3λ1) +

Pr2(8 + 12λ1 − 4λ1
2)))) + ℎ2(−2(1 + Nbt)Nc(−2 + Pr𝜂2 + 2Prλ1 + 2𝜂(−1 + Prλ1)) + LeNbt(4(−2 − 2𝜂 + 𝜂) + 2Pr(−2𝜂3 +

𝜂2(2 − 4λ1) + (−1 + λ1)(7 + 𝜆(−1 + λ1) + 3λ1) + 𝜂(−1 + λ1)(7 + 𝜆(−1 + λ1) + 3λ1)) + Pr2(8 + 𝜂4 + 12λ1 + 4𝜂3λ1 − 4λ1
2 −

4𝜂(−2 − 3λ1 + λ1
2) + 𝜂2(6 − 2λ1 + 4λ1

2))))) + 3𝑒𝜂ℎ(−2ℎ(2 + 3Nbt + Nbt
2)Nc

2 + Le2Nbt
2Pr(−1 + λ1)(4 + ℎ(15 + 2𝜂 + 2𝜂2 −

2𝜆 + 8λ1 + 4𝜂λ1 + 2𝜆λ1 + Pr(1 − 2𝜂 + 2𝜂2 − 4λ1 + 4𝜂λ1))) + LeNbtNc(4(1 + Nbt) + ℎ(2 − 12𝜂 + Pr(6 + 4𝜂2 − 6λ1 + 8𝜂λ1) +
Nbt(4 − 8𝜂 + Sc(3 + 2𝜂 + 2𝜂2 + 4𝜂λ1) +  Pr(3 + 2𝜂2 − 6λ1 + 𝜂(−2 + 4λ1))))))), (71) 

etc. 
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The HAM series solution for (13) is given by  

 Φ = 𝜉0 + 𝜉1 + 𝜉2 + 𝜉3+. .. (72) 

Using MATHEMATICA, we solve (56) to get  𝜉0, 𝜉1, 𝜉2, ... where  

 𝜉0 = 𝑒−𝜂 , (73) 

 𝜉1 =
1

2Nbt
(𝑒−2𝜂(ℎNbtSc(−1 + λ1) + 𝑒𝜂(2ℎ + 2ℎNbt + ℎNbtSc − 3ℎNbtScλ1 + ℎ(−2(1 + 𝜂) + 

 Nbt(−2 − 2𝜂 + Sc𝜂2 + 2Scλ1 + 2Sc𝜂λ1))))), (74)  

𝜉2 =
1

24LeNbt
2 𝑒−3𝜂(ℎ2LeNbt

2Sc(1 + 4Sc − 𝜆)(−1 + λ1)
2 + 3𝑒𝜂ℎ(4LeNbt

2Sc(−1 + λ1) + 

ℎ(8(1 + Nbt)Nc + LeNbt(−1λ1)(8Pr + Sc(−2 − 4𝜂 + Nbt(15 + 2𝜂 + 2𝜂2 − 2𝜆 + 8λ1 + 4 + 2𝜆λ1 +Sc(1 − 2𝜂 + 2𝜂2 − 4λ1 +

4𝜂λ1)))))) + 𝑒2𝜂(24ℎLeNbt + 48ℎ2LeNbt + 24ℎLeNbt
2 + 24ℎ2LeNbt

2 −36ℎ2Nc − 36ℎ2NbtNc + 36ℎ2LeNbtPr + 18ℎ2LeNbtSc +

12ℎLeNbt
2Sc + 86ℎ2LeNbt

2Sc − 25ℎ2LeNbt
2Sc2 − 11ℎ2LeNbt

2Sc𝜆 − 60ℎ2LeNbtPrλ1 + 6ℎ2LeNbtScλ1 − 36ℎLeNbt
2Scλ1 −

43ℎ2LeNbt
2Scλ1 − 43ℎ2LeNbt

2Sc2λ1 + 22ℎ2LeNbt
2Sc𝜆λ1 − 43ℎ2LeNbt

2Scλ12 + 20ℎ2LeNbt
2Sc2λ1

2 −11ℎ2LeNbt
2Sc𝜆λ1

2 +
12ℎLeNbt(−2(1 + 𝜂) + Nbt(−2 + Sc𝜂2 + 2Scλ1 + 2𝜂(−1 + Scλ1))) +ℎ2(12(1 + Nbt)Nc(1 + 𝜂) + LeNbt(−4(−6(−2 − 2𝜂 + 𝜂2) +
Pr(3 + 𝜂3 + 𝜂(3 − 9λ1) + 3𝜂2(−1 + λ1) − 9λ1) + Sc(6 + 6𝜂 + 2𝜂3 + 3𝜂2λ1)) + 3Nbt(4(−2 − 2𝜂 + 𝜂2) + 2Sc(−2𝜂3 + 𝜂2(2 −

4λ1) + (−1 + λ1)(7 + 𝜆(−1 + λ1)3λ1) +𝜂(−1 + λ1)(7 + 𝜆(−1 + λ1) + 3λ1)) + Sc2(8 + 𝜂4 + 12λ1 + 4𝜂3λ1 − 4λ1
2 − 4𝜂(−2 −

3λ1 + λ1
2) + 𝜂2(6 − 2λ1 + 4λ1

2))))))).                                                            (75) 

 

The above expressions are the solutions of F, Θ and Φ consists of convergence paremeter ℎ. 
 

4 RESULTS AND DISCUSSION 

 
The solutions for the system of equations (17) - (19) with the boundary conditions are obtained by homotopy analysis method. Using 

Mathematica equations are solved and the results are shown in the graphs. The convergence of the solution depends on auxiliary linear 

operator 𝐿, auxiliary parameter ℎ and the initial solution. Combined ℎ-curve is plotted to check the convergence of obtained solutions. It 

can be seen in Figure 1 that the h-curves are horizontal in the ranges −0.8 < ℎ𝐹 , ℎΘ, ℎΦ < 0.6. 

In Figure 2 we observed that velocity of a nanofluid decreases with increase in non-Newtonian Williamson parameter 𝜆. From Figures 3, 

4, 5 it is observed that the temperature decreases with increase in Prandtl number 𝑃𝑟, Lewis number 𝐿𝑒 and the ratio of Brownian to 

thermophoretic diffusivities 𝑁𝑏𝑡, where as from Figures 6 and 7 we can observed that the temperature increases with increase in 𝜆 and 

Heat capacity ratio 𝑁𝑐. From Figures 8 and 9, it is observed that nanoparticle volume fraction decreases with increase in Schmidt number 

𝑆𝑐 and 𝑁𝑏𝑡. From Figures 10 and 11 we have observed that the heat transfer in fluid increases with increase in 𝑁𝑏𝑡 and 𝐿𝑒. We have 

obtained radius of convergence for velocity 𝑅 = 5.8479 and for temperature 𝑅 = 51.0204 by drawing Domb-Sykes plot in Figures 12 

and 13.  

 

Tables 1 and 2 shows temperature gradient and nanoparticle volume fraction gradient for different parameters. From Table 1, it is observed 

that the wall temperature gradient decreases with increase in 𝜆 and 𝑁𝑐 while it increases with increase in 𝐿𝑒, 𝑁𝑏𝑡 and 𝑃𝑟. From Table 

2, it can be observed that wall nanoparticle volume fraction gradient decreases with increase in 𝜆 and 𝐿𝑒 while it increases with increase 

in 𝑁𝑏𝑡, 𝑆𝑐 and 𝑁𝑐.  
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5 GRAPHS AND TABLES 

 

 

Figure 1: h-curves 

 

 
  Figure 2: Impact of 𝜆 on velocity profile                                                                    

  

Figure 3: Impact of 𝑃𝑟 on temperature profile 
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Figure 4: Impact of 𝐿𝑒 on temperature profile 

 

     

    Figure 5: Impact of 𝑁𝑏𝑡 on temperature profile 

 

 

    Figure 6: Impact of 𝜆 on temperature profile 
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   Figure 7: Impact of 𝑁𝑐 on temperature profile 

 

   Figure 8: Impact of 𝑆𝑐 on concentration profile 

 

 

                                     

   Figure 9: Impact of 𝑁𝑏𝑡 on concentration profile 
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   Figure 10: Heat transfer in fluid against different values of 𝐿𝑒 

 

 

 

Figure 11: Heat transfer in fluid against different values of 𝑁𝑏𝑡 

             

 

                 Figure 12. Domb-Sykes Velocity Plot          Figure 13. Domb-Sykes Temperature                                                                                               

                       with  𝑅 = 51.0204                        Plot with 𝑅 = 5.8479 
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Table  1: Values of temperature gradient −Θ′(0) when ℎ = −0.6  

  𝜆   𝐿𝑒   𝑁𝑏𝑡   𝑁𝑐   𝑃𝑟   −Θ′(0)  

 0   4   2   0.5   0.5   0.357032  

 0.2           0.35425  

 0.4           0.35173 

 0.2   4   2   0.5   0.5   0.35425 

  10         0.371597  

  20         0.377733  

 0.2   4   0.5   0.5   0.5   0.310047 

    1       0.339205 

    2       0.35425 

 0.2   4   2   0.5   0.5   0.35425  

      1     0.328814  

      2     0.290548  

 0.2   4   2   0.5   0.2   0.214633  

        0.6   0.397238  

        0.8   0.51975  

 

  

     

 

 

 

 

 

Table  2: Values of nanoparticle volume fraction gradient −Φ′(0) when ℎ = −0.06  

  𝜆   𝐿𝑒   𝑁𝑏𝑡   𝑆𝑐   𝑁𝑐   −Φ′(0)  

 0   4   2   0.5   0.5   0.799672  

 0.2           0.799604  

 0.4           0.799535  

 0.2   4   2   0.5   0.5   0.799604  

  10         0.799318  

  20         0.799222  

 0.2   4   0.5   0.5   0.5   0.566004  

    1       0.721423  

    2       0.799604  

 0.2   4   2   0.5   0.5   0.799604  

      1     0.84357 

      2     0.918342  

 0.2   4   2   0.5   0.5   0.799604  

        1   0.80008  

        2   0.801029  
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