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Abstract - Combined effect of buoyancy and surface tension forces in a rotating ferrofluid layer heated from below is 

studied using linear stability analysis of the Navier-Stokes equations supplemented by Maxwell’s equations and the 

appropriate magnetic force. The lower boundary is considered to be rigid at either conducting or insulating to 

temperature perturbations, while upper boundary free open to the atmosphere is flat and subject to a Robin-type of 

thermal boundary condition. The weighted residual Galerkin technique is employed to extract the critical stability 

parameters numerically. It is shown that convection sets in oscillatory motions provided that the Prandtl number ( Pr
) is less than unity. A mechanism for suppressing or augmenting Bénard–Marangoni ferroconvection by Coriolis force 

(Ta ), Biot number ( Bi ), magnetic Rayleigh number ( mR
) and nonlinearity of fluid magnetization ( 3M

) is discussed 

in detail. It is found that the onset of Bénard–Marangoni ferroconvection is delayed with an increase in Ta , Bi  but 

opposite is the case with an increase in 3M
, mR

. A few results are known as recovered to special cases. 

 

Index Terms - ferrofluid, rotation, surface-tension, thermal boundary condition, Prandtl number, Biot number, Galerkin 

technique 

INTRODUCTION 

There has been a significant attention in the study of ferrofluids (FFS) or magnetic fluids (MFs) [1-3]. The heat transfer 

processes in FFs were first studied by Neuringer and Rosenswieg [4]. The thermomechnical interactions taking place in FFs 

may give rise to convection imposed by externally magnetic field and temperature gradients. This study is of great interest 

because it influences upon the function efficiency of many practical devices employing FFs. The convection in FF 

(ferroconvection; FC) layer heated from below in the presence of a vertical magnetic field has been studied by Finlayson [5]. 

FC Ferroconvection can also be induced by surface tension forces provided it is a function of temperature [6-18]. The effect 

of viscosity variations on Bénard–Marangoni-ferroconvection was investigated by Nanjundappa et al. [19]. Sekhar et al. [20] 

have studied the effect of variable viscosity on thermal convection in Newtonian ferromagnetic liquid by different forms of 

boundary conditions. 

Marangoni convection arises when the surface tension of fluid interface depends on the temperature. Schwab [20] 

experimentally examined the stability of flat FF layer when a vertical-temperature gradient and - magnetic field were applied. 

Based on the energy method, a nonlinear stability has been developed by Qin & Kaloni [21] to discuss the impact of gravity 

and surface tension on the motion in a FF layer. Venkatasubramanian & Kaloni [22] analyzed the influence of rotation on 

thermo-convective instability in FF layer. A linear stability analysis in FF layer with deformable free surface and placed in a 

magnetic field has been discussed by Weilepp & Brand [23]. Shivakumara and Nanjundappa [24] have studied the effects of 

Coriolis force and different basic temperature gradients on Marangoni ferroconvection. Shivakumara and Nanjundappa [25] 

have investigated the effect of rotation on the onset of coupled Benard-Marangoni ferroconvection in a horizontal ferrofluid 

layer. Nanjundappa et al. [26] have investigated the combined effect of rotation and MFD viscosity on Bénard-Marangoni 

ferroconvection. Several investigators have studied both types of instabilities in isolation or together in a horizontal ferrofluid 

layer. 
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Motivated by the fact that Coriolis force gives rise to interesting situations in practical and also the importance of buoyancy 

forces, however small it may be, even under reduced gravity environment, the objective of the present work is to study a 

general problem of coupled BBM ferroconvection in a rotating FF layer. In the present investigation, the lower surface rigid 

with isothermal is considered, whereas the non-deformable upper free surface and subjected to surface tension is a function of 

temperature. The problem of eigenvalue is applied numerically by using a GT with Tchebychev polynomials of second kind 

as basis function. 

THE PROBLEM FORMULATION 

Consider layer of FF of constant depth d  in the occurrence of perpendicular magnetic field 0H
. The surfaces are 

maintained the constant temperatures at 
0 / 2 ( 0)T T z 

 and 
0 / 2 ( )T T z d 

. The angular velocity, 

ˆ,k
is rotating uniformly about the vertical axis and bounded above by a non–deformable free–insulating surface. The 

gravity, 
ˆg g k 

, acting downward direction. 

The stream of Bénard-Marangoni convection for thermocapillary forces (surface tension force), buoyancy forces and viscous 

forces is due to the linearly temperature dependent surface tension ( ) and viscosity (


), respectively. The following 

relations are considered: 

  0 01 T T T    
                  (1) 

  0 01 T T    
                   (2) 

where 
T

, 0
, 0  and 


 are positive constants. 

The Maxwell’s equations for the magnetic field are implemented: 

0H   or 
H



                      (3) 

0B                       (4) 

where, 

 HMB 0




with

 ,M H T
M H

H


               (5) 

)()( 00 aTTKHHMM  
                  (6) 

The equation of momentum for an incompressible FF with rotating frame of reference is 

 
2 20

0 0 0
  p ( )  q 2 q ( )

2

q
q q g M H r

t


    

 
             

           (7) 

The heat equation for an incompressible FF by ignoring the viscous dissipation is 

2
0 , 0 0

, ,

V H t

V H V H

M DT M DH
C H T k T

T Dt T Dt
  
     
        

      



                      (8) 

The mass conservation equation is 

0 q


.                           (9) 

The state equation is 

 0 01 ( )t T T    
              (10) 

The state of undisturbed quiescent is 
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0,q
  

  ,bp p z
 

 ,b z 
 

0 ,b

T
T T z

d
 

 
   

                   (11) 

0
ˆ 

1b
K z

H H k




 
 
 

 


, 
0

ˆ
1b
K z

M M k




 
 
 

 


              (12) 

From (4) and (5), the standard linear stability analysis procedure), we obtain 

0
0 0

0

1 / , 1, 2i i i

M
H M M H H i

H

 
    

               (13) 

 3 3 3 1  M H K T H    
                  (14) 

where, iH
 and iM

 are the components of perturbed magnetic field and magnetization, respectively. 

Taking the curl of (7), linearizing and the resulting equation in z-component is 

2
0 02

w

t z


   

 
   

                    (15) 

is called the equation of vorticity transport with 
y/ux/vξ 

. By taking curl double of (7), linearizing and 

applying (13) and (14) with (3), the resulting equation in the z-component (after by ignoring primes) 

T
K

z
K

z
Tgw

t

2

1

2

0
2

100

2

10
22

0
1

  2  











 












 




                (16) 

As before, using (11) and (12) in (8), and linearizing yields 

2
20 0

0 0 0 0 0 0
(1 ) t

K TT
C K T C w k T

t t z


   



    
      

                           (17) 

On using (13) and (14) with (3), yields 
22/0 0

1 2

1
0

1 (1 )

M H K T

zz




 

 
 
 

  
   

   .            (18) 

The expanded form of each variable in the normal mode analysis 

   
( , , , ) ,

i l x m y
F t x y z F t z e




              (19) 

Using (19), (15) – (18) yields 

222 2
2 2 2 2

0 0
2 2

0
0

 
   w    2  

1
g

a K
a a a a K

t z zz z


 

 
     



    
    

    
    

        

         
   

              (20) 

2
2

02 0 00

2 0 0

0 0

1
(1 )C

K T
K T

a w
z Ct tz




 

  
 

 
  

    
    
      
    

   
 

  
    

  

                (21) 

 2
0 0 2

2

/1
   0

1 1 zz

M H K
a

 


 
 




  

 
           (22) 

2
2

0 0
2

2
w

a
t zz

   


 
   
 
 
 

  


 
.               (23) 
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Thus, (20) – (23) are the governing linearized perturbation equations and they are non-dimensionalized quantities by 

applying the following quantities: 

* ,
z

z
d


 

* ,
d

w w



 

* d,a a
 

2
t* ,t

d




 

2

* ,
d

 



 

2

1  
* , *

     d K d

 
   

   


 

.         (24) 

After using (24) in (20) – (23), we obtain (after neglecting the asterisks) 

2 2
2 2 2 2 2

2 2 w   t m ma a Ta a a a
t z zz z

R R R
 

 
          

         

   

               (25) 

 
2

2
2 2 2

1 wa Pr Pr M
tz t z

M



              

 

        (26) 
2

2

2 3
0a

zz
M




  
 

 
 

                   (27) 
2

2

2

1/2a Ta Dw
tz


  
    

  .                   (28) 

We look for the solutions to (25)-(28) of normal modes kind is 

      , , , ( , ) , , , expw T z t W z t     
        (29) 

where,  denoted as complex frequency, substituting into (25)-(28), we obtain 

2 2 2 2 2 2 2w   t m mD a D a Ta D a a a DR R R         
   

   
                      (30) 

 2 2D Pr  Wa   
                  (31) 

 2 2
3D  0a M D   

                  (32) 

 2 2 1/2D a Ta DW    
.                  (33) 

The boundary conditions are 

(0) (0) (0) (0) 0;W DW    
 

(0) 0 or (0) 0D   
           (34) 

2 2 0) (0) 0;(1) (1) (1) (a DW D W M a D      
 

0.(1) (1)D Bi   
                (35) 

METHOD OF SOLUTION 

The GT is applied to obtain the problem of eigenvalue is to study the linear system of Eqs.30–33 with 34 and 35. The 

unknown factors 
, andW  

 can be expanded upon the complete set: 

,                (36) 

,  

Substitute in (30)-(33), multiplying the resulting equations respectively by 
( )iW z

, 
( )i z

,
( )i z

 and 
( )i z

 and carrying out 

the integration by parts from z = 0 to z = 1 and using (30) and (33), we obtain 





n

i

ii zWAW
1

)( 



n

i

ii zCz
1

)( )(





n

i

ii zDz
1

)( )( 



n

i

ii zE
1

)(
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0

0 0 0

0 0 0

00 0

ij ij ij ij
i

ij ij i

iij ij

iij ij

C D E F A

G H C

DI J

EK L

     
     
          
     
                       (37) 

where 

 
1

2 2 2 2 2

0

(2 ) ( )ji j i j i jC D W D W a DW DW a a W W dz     
 

     
1

2 2

0

1 1ji t m j i j iD a R R W dz a Ma DW     
 

1
2

0

ji m j iE a R W D dz 
 

1

0

ji j iF Ta W D dz 
 

1

0

ji j iG W dz  
 

 
1

2

0

( Pr) (1) (1)ji j i j i j iH D D a dz Bi         
 

1

0

ji j iI D dz  
 

 
1

2
3

0

ji j i j iJ D D a M dz     
 

1

0

ji j iK Ta DW dz 
 

 
1

2

0

( )ji j i j iL D D a dz      
 

Equation (37) will have a non-trivial solution, if 

 

0 0
0

0 0

0 0

ij ij ij ij

ij ij

ij ij

ij ij

C D E F

G H

I J

K L



                     (38) 

The eigenvalue is extracted from (38). A trivial function iW ,
 i , i  and i  can be considered to satisfy the boundary 

conditions (34) and (35), such as 

 2 *
i i-1W 1 Tz z 

, 

2 *
i-1

2
1 T

3
i i z z

 
    

  , 
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For lower insulating case: 
1 *

i-1Ti
i z  

, and For lower conducting case: 

*
i-11 T

2
i

z
z
 

   
         (39) 

At this juncture to look at 
1i j 

 and (38) yields 

5

1

3 4 22
2

( 2 Pr) 147 63
2( ) 2( )

( 13 )1575 
Ma

Ta N W D
N R W

a W


 
  

 

 
 
 
 
 

  
        

 
          (40) 

where 

2

1
2 5 / 4a Bi   

, 

2

2
42 13a  

, 

4 2

3
28 420a a   

, 

2

4
14 a

 and 

2

5 3
42 13 M a  

. 

To study the stability of the system, we consider 
i 

 in (40) yields 

2

21 2
2 1 3 42 2 5

2

147 ( 26 Pr) 631 2( 2 Pr) 2( )
21575 ( 169 )

Ma

Ta N W D
N R W i

a W

 
   

 

 
 
 
 
 
  

  
        

  
   (41) 

where 

2 1
2 2 2

2

147 (2 Pr 13 )1 2 2 Pr
3 1 41575 ( 169 )

Ta

a W

 


  



 
    

  
 


 

  
.                   (42) 

The steady onset is governed by 0  and it occurs at ,sMa Ma  

where 

1

53

2

2

147 63
2 2( )

2
1575

Ta N W DsMa N R W

a W






 
 
 
 
 
 
 

 
      

 
          (43) 

The oscillatory convection (i.e.,Hopf bifurcation) occurs at 
0Ma Ma , where 

2
o 1 4 2 4 3

2
54

2( ) 63
2( )

21575

a a a a a N W D
N R W

a a W
Ma



   
     

 



.          (44) 

Here,

2
1 1 2 2

26
Pr

169
a    

, 

2
2 1 3 4 2

2 147
Pr Pr

169 13
a Ta     

, 
3 4

147
Pr

169
a Ta  

 and 

1 4 3
4

1 2

2 Pr

13 26 Pr
a

  

 





 . 

The resultant frequency of oscillations is given by 
2

2 2 1

4 2

1 2 Pr147

169 26 1 2 Pr

Ta 


 

 
    

                   (45) 

where 

2

1 2

42 13

65 26

a

a





  and 

4 2

2 4 2

28 420

2 33 70

a a

a a


 


  . 

For the oscillatory occurrence on the onset 2
 should be positive, the necessary conditions are 

2

2

( 2.5)
Pr

( 3.23)

a

a




   and  

2 2
2 4

1

1 2 Pr26

24843 1 2 Pr
Ta


 



 
  

  .                (46) 

From (46), it is evident that oscillatory FTC occurs Pr 1  and Ta  exceeds a threshold. This behaviour is reminiscent of that 

observed in classical viscous case. However, for most of the commercially available FFs, 

whether the based on organic liquid case or water, Pr 1 , hence the oscillatory FTC is ruled out for the instability mode [see 

Venkatasubramanian and Kaloni [22], and Aurenhammer and Brand [27]. Substituting Eq.39 into 38 and leads to 

1 3( , , , , , , ) 0.t mf R R Ma Ta M M a 
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To solve the eigenvalue problem from (30)–(33) by employing the Galerkin-type of WRM. In order to confirm the numerical 

technique is applied, the values 
( , )c cMa a

 are very close to the existing values of Vidal and Acrivos [28] and Davis [29] 

for tBi R 
 under the limiting condition in Table 1 and 2, respectively. 

Comparison of calculated present results agree well with results of previous numerical investigations are given in Tables 1 

and 2. 

Table 1. Comparison of 
 ,c cMa a

for 
0t mBi R R  

 

Ta Vidal and Acrivos [28] Present study 

 
cMa

 ca
 cMa

 ca
 

0 80 2.0 79.61 1.99 

10
2
 92 2.2 91.31 2.17 

10
3
 164 3.0 163.11 2.97 

10
4
 457 5.0 456.23 4.99 

10
5
 1400 8.6 398.36 8.86 

 

Table 2. Comparison of 
 ,c cMa a

for tR
and Bi with

0mR Ta 
 

Bi  R 
Davis [29] cMa

 Present study cMa
 

0 

0 79.61 79.608 

100 68.43 68.484 

200 57.12 57.116 

300 45.49 45.491 

400 33.59 33.589 

500 21.39 21.387 

600 8.857 8.857 

669 0.000 0,000 

10 

0 413.4 413.444 

100 378.7 378.741 

300 305.0 304.980 

500 225.1 225.116 

700 138.6 138.634 

900 44.73 44.730 

989.49 0.000 0.000 

 

The various levels of approximation to cMa
and the corresponding ca

 are also obtain for variation of Ta  when classical 

Marangoni convection and results are shown graphically in Fig. 2. It is seen that with an increase in Galerkin approximations, 

cMa
 goes on increasing and finally 

8i j 
 the present results converge compare well with results of previous study by 

Pradhan [30] and these results obtained by Fourier series method. 
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FIG. 2 . VARIATION OF cMa
VERSES Ta  FOR DIFFERENT ORDERS BY GALERKIN METHOD (PRESENT 

STUDY) AND FOR FOURIER SERIES METHOD (PREVIOUS STUDY) WHEN 3 1M 
,

0mR 
AND 0Bi   

 

Figures 3-7 illustrates the neutral stability curves corresponding for different Ta , Bi , tR
, mR

 and 3M
 as well as different 

bounding surfaces (lower conducting and lower insulating). The neutral stability curves are concave upward for each of these 

boundaries and the curves of lower conducting case lie above lower insulating surfaces. The neutral stability 

curves move upward with increasing Ta  (Fig.3), Bi  (Fig.4) indicating that their effect is to increase the stability region. 

Besides, decrease the stability of the region by increasing tR
 (Fig.5), mR

(Fig.6) and 3M
(Fig.3). 
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FIG. 3. Ma  AGAINST a  FOR 10Bi  , 
100t mR R 

 AND 3 1M 
 



Mahesh Kumar R, C E Nanjundappa 

 

Copyrights @Kalahari Journals               Vol.7 No.2 (February, 2022) 

 International Journal of Mechanical Engineering  

 

1697 

1 2 3 4 5 6
50

100

150

200

250

300

 Lower Conducting

 Lower Insulating
1

1

2

2

5

Bi = 5

a

Ma

 

FIG. 4. Ma AGAINST a  FOR 
100t mR R Ta  

 AND 3 1M 
 

 

 

1 2 3 4 5 6
100

200

300

400

500

600

 Lower Conducting

 Lower Insulating

300

500

500

300

0

R
t
 = 0

B = 10, Ta = 100; Rm = 100; 

a

Ma

 

FIG. 5. Ma AGAINST a  FOR 10Bi  , 
100mR Ta 

 AND 3 1M 
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FIG. 6. Ma AGAINST a  FOR 10Bi  , 
100tR Ta 

 AND 3 1M 
 

 

1 2 3 4 5 6
340

360

380

400

420

a

Ma

 Lower Conducting

 Lower InsulatingM
3
 = 1, 2, 5, 25

M
3
 = 1, 2, 5, 25

 

FIG. 7. Ma AGAINST a  FOR 10Bi   AND 
100t mR R Ta  

 

 

In Figs.8-11 analogous to solid curves are corresponding to lower conducting and dotted curves corresponding to lower 

insulating. The locus plot of tcR
 against cMa

 for various Ta  for 10Bi  , 
100mR 

 and 3 1M 
 (see Fig.8). It shows 

that they are bridging the space between lower conducting and lower insulating by increasing in Ta . Clearly, the results of 

BMC advances the FTC compared to lower conducting and lower insulating. Figure 8 reveals that the linear stability analysis 

can be expressed in terms of tcR
 and cMa

, the system with tcR
 eigenvalue is unstable compared to cMa

 eigenvalue, it 
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is noted that 
.c tcMa R
 Besides, it can be observed that an increasing Ta , the critical stability parameters ( tcR

and cMa
) 

increases, thus it has a stabilizing effect on the system. 

 

From Fig.9, it is evident that the deviation of Bi  from 0 to 2 significantly increase in cMa
 and tcR

 in both the cases of 

temperature boundary conditions considered; the least being for 0Bi   and the maximum correspond to 2Bi  . Thus the 

system is found to be more unstable for upper insulating case as compared to upper isothermal condition. This behavior is not 

surprising as the nature of upper surface changes drastically from an insulated surface to a conductive boundary with an 

increase in Bi . It is evident that with an increase in Bi  the temperature perturbations will not grow so easily and therefore 

higher tcR
 and cMa

are needed for the onset. 

0 340 680 1020 1360 1700
0

130

260

390

520

650

Bi = 10; Ta = 100; Rm = 100;

0

 10
2

Mac

R
tc

 Lower Conducting

 Lower Insulating

Ta = 10
3

 

FIG. 8. cMa
AGAINST tcR

FOR DIFFERENT Ta  WHEN 10Bi  , 
100mR 

 AND 3 1M 
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FIG. 9. cMa
AGAINST tcR

FOR DIFFERENT Bi  WHEN 
100mTa R 

 AND 3 1M 
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FIG. 10. 
Mac AGAINST 

Rtc FOR DIFFERENT 
Rm  WHEN 10Bi  , 100Ta   AND 3 1M 

 

 

The variations of cMa
against tcR

is shown in Fig.10 for two types of temperature boundary conditions when 10Bi  , 

100Ta   and 3 1M 
. For 

0mR 
, the case corresponds to only the gravitational force are in effect. The amount of 

0mR 
is associated to the importance of magnetic force. It is observed that an increase in mR

 leads to decrease cMa
and

tcR
 signifying that the FFs carry more heat efficiency than the ordinary viscous fluid case. This is due to an increase the 

destabilizing magnetic force with increasing mR
which the fluid to flow more easily. 

The result of increase in nonlinearity of magnetization (i.e.M3) is shown in Fig. 11 for 10Bi   and 
100mTa R 

. It is 

noticed that, increase in M3 is to decrease tcR
and cMa

, thus mechanism of tcR
 has destabilizing effect on the system but 

this effect is very marginal. 
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FIG. 11. cMa
AGAINST tcR

FOR DIFFERENT 3M
 WHEN 10Bi   AND 

100mTa R 
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CONCLUSIONS 

The effect of Coriolis force is to suppress the FTC and hence rotation plays a stabilizing role on the system. Variations in 

tcR
and cMa

are significant for large Ta values and found to be obscure for small Ta. The increase in magnetic force and 

buoyancy/surface tension force is to destabilize the system. Their effects are complementary in the sense that the tcR
and

cMa
decrease with an increase in mR

. The increase in Bi  and decrease in mR
and M3 are having stabilizing effect on the 

system. The Taylor number and the Biot number significantly influence the dimensions of the convective cells. 
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