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Abstract - In this paper we deal with A-Kantorovich operators which are to be generalized. These  A-
Kantorovich operators are some modification of Bernstein operators which depends on parameter A € [—1,1].
We consider here the Stancu type generalization of these type of linear positive operators, A-Kantorovich
operators. We obtain their moments and prove Voronovskaya type theorem as well as Griiss-Voronovskaya
type theorem for such operators.
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INTRODUCTION

In the year 1912, Bernstein [6] introduced the Bernstein polynomials in order to prove Weierstrass first
fundamental theorem. The Bernstein polynomials have too notable approximation properties to make an area
of intensive research. Referring [13]-[16] etc. the Bernstein polynomials of order n are given by

BG0=Y bueor (4)
k=0

where x € [0,1] and b, . (x) = (Z) xk(1 - x)"k,

Recently CAIl Et Al. [7] introduced and considered a new generalization of the Bernstein polynomials
depending on the parameter A as follows:

n
- k
Bualf,) = ) b 0f ()
k=0
where 1 € [-1,1] and
> 2
*  bpo(dx) =bpo(x) — mbnﬂ,l(x)

n—-2k+1 n—-2k-1

¢ bk x) = bur() + {2 b1 e (0) = 2 b e (A )

n2-1

~ A
b bn,n (/1' x) = bn,n (A' x) - bn+1,n (/1: x)

n+1

Particularly, if A = 0 then A-Bernstein operators reduce to the well-known Bernstein operators. Acu et al.
[2],[3] have deeply studied many interesting approximation properties of the A-Bernstein operators such as
uniform convergence, rate of convergence in terms of modulus of continuity, Voronovskaya type pointwise
convergence and shape preserving properties.

The classical Kantorovich operators [17] are the integral modification of Bernstein operators so as to
approximate integrable functions defined on [0,1]. These operators and several other Kantorovich variants
attracted the interest of number of authors viz. Ozarslan-Duman [19], Dhamija-Deo [8], Acu-Rasa [4] and

Copyrights @Kalahari Journals Vol.7 No.12 (December, 2022)
International Journal of Mechanical Engineering
130



Gupta [12] etc. Now the Kantorovich variant of A-Bernstein operators are

Kn,l(f' x) K
n k+1
—(n+ 1)2 Bnlk()l,x)fzﬂf(t)dt (1.1)
k=0 n+1i

In 1983, D.D. Stancu [20] introduced an important generalization of operators for 0 < a < . Our aim is to
consider the Stancu type generalization of operators (1.1) which make our study more general. Several authors
[5], [11] have considered Stancu type generalization for various operators and obtain valuable results. Stancu
type generalization of operators (1.1) for 0 < a < f3, can be represented as

Kot (f, x)
n k+1
_ 3 1 n+t1 _/mt+a d 12
=@+ bu@0 [ f (G e (12)
k=0 n+1

From here we see that « = 8 = 0, operators (1.2) yield operators (1.1). In this paper, we discuss convergence
properties and VVoronovskaya type theorems for operators (1.2). In this paper we provide Griiss-Voronovskaya
type theorem [1] for A-Kantorovich Stancu operators (1.2).

BASIC RESULTS
In this section, we give some results related to our operators. These play important role to find main results.
Lemma-1 For0 < a < g3, if we define
Kzf(eo,x) =1
Kt (e1,x)
( n ){2nx+1 a '1—2x+x"+1—(1—x)"+1}

+—+1
n+pB/(2(n+1) n n?—1
Kt (e3,x)
( n )2 3n(n—1x?—6nx—1 a 2nx+1 «a
n+p

2

3(n+1)? +n.(n+1)+n2
(n—1Dx—2nx? 1-2x-—(1-x)"*?
a(n+1)?n-1) + nn? —1)
nn+1)+ ax”“}]

na(n? —1)

KZf(e3,x)
_ ( n )3 {x3 N 1+ 14nx + 18n(n — 1)x? — 4n(6n + 1)x3}

+2nak{

n+p 4(n+1)3
3na , n3@Bn+1)x*—6nx—1 2nx —1  a?
+——Inx? — = +a +—
(n+p)3 3 (n+1)2 2(n+1) 3n

3n3al (1-23n—4)x+ 6n(n—5x%—12n(n—1)x3
+ (n+pB)3 { 6a(n+1)3(n—-1)— (1 —x)"*1
(6n? + 12n+ 7)x™1  (n—1)x —2nx? + (n + Dx"*?
6a(n+ 1)3(n— 1) nn+ D2(n-1) Fax
1—2x+x™1— (1 —x)"*!
n¢(n?-1) }

The proof of the above lemma follows along the lines of Acu-Rasa [4].

Lemma2. For 0 < a < S, central moments for K,‘fjf(f(t),x) are defined by
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a,
an (e; — egx, x)

( - )Kn,l(el:x) + (L — x) K, (€0, %)

m n+p
n 2nx+1 1 —2x+x™1 — (1 —x)n*?
- (n+ﬁ){2(n+1)+ n? —1 ’1}
a
+(n+ﬁ_x>

K2 ((er — egx)?, %)

( n )ZKn,A(ez,X)_< 2n )( ‘ —x)Kn_/—L(el,x)

n+p n+p/\n+p
2
+ (ﬁ - x) Ki’f(eo,x)

n \2[3n(n—1x? —6nx—1 s (n— 1Dx — 2nx?
(n+ﬁ) [ 3(n+ 1)? '{(n+1)2(n—1)
(n + Dx"t? 2n a 2nx +1
AT }]‘(nw)(nw‘x){m
1—2x4x"1— (1 -x)"*! a 2
+ nZ —1 /1}+(m—x> .

Lemma3. Central moments of A-Kantorovich operators yield
|Kr‘if(el — eoX, x)| <opup
|K,ff’f((el - eox)z,X)| <phap

where

LR
Onap = n+p/2(n+1) n n2-1)°

1 n \2 1 a a2 2ai
res = (57) ot rme @) tree—n)
n+pf/ 13n+1)* nn+1) ‘n n(n? —1)
Lemma4. The A-Kantorovich operators yield too
1) lim_,ooK:,’f(el —egx,x) =0
2) 1imn—)ooK76:,f((el —epx)?,x) = 4x2.
CONVERGENCE PROPERTIES OF Kgg

In this section, we investigate some approximation properties of convergence for the mentioned operators and
find the rate of convergence by using moduli of continuity.

Theoreml. For f € C[0,1], there exists
lim Ka? (f, %) = f(x) uniformly on [0,1].
Proof: It is obvious from Lemma 2 that
lim K7 (er, ) = e
on [0,1] uniformly for k = 0,1,2,3. Hence the Bohmann-Korovkin [18] theorem states required proof.
Theorem2. For g € C[0,1], we have

K (9.0 — 90| < 209, P ag )
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where w represents the modulus of continuity.
Proof: Applying the general property of modulus of continuity
(t— X)z

lg(®) —g(x)| = w(g, )

+1]
we obtain
|kl (9.2 — 9(x) s1<,i‘,f(|g<t>—g<x)| x)

< w(g,8) <1 +53 KB ((t - x)?, x))

choosing 6 = /pﬁ'a'ﬁ and then applying lemma 4, we have the required result.
Theorem3. Let g € C1[0,1], we can have

|5 9.2 = 90| < G plg’ @1+ 20 (9", [ohap) [Pl

Proof. Since g € €1[0,1], for x, t € [0,1] we have
g —g(x) =g' ()t —x) + f: 9') —g'(0)}dy.
Operating both sides by Kr‘ff we get
Kng (9 = g0} 0) = g'(OKy (t—x,2) +
K { J ) - g, x}.

Now using well-known property of modulus of continuity, we find

(t—x)?

K {01000 - gy < 0t [ =] 530

Therefore
Kl (9.0 — 9| < 19/ @I [K5f (£ = x,2)| + w(g',6) x
{5 @ (¢ - x)2,2) + K“E (|t - x|,x)}.
Applying Cauchy-Schwarz inequality and then from lemma 4
|k (9,200 — 90|

1
lg’ ()] |K,fp’f(t —x,x)| + w(g',8) {EJKzf((t —-x)?%,x) + 1} X

IA

JKef @00

I} A ’ 1 A A
|g (x)lo—n,a,ﬁ + w(g '5) {g pn,a,ﬁ + 1} pn,a,B'

Choosing 6 = / Pﬁ,a,ﬁa we have the desired result. Definition-1 (Peetre's K-functional) Let us consider space

IA

Cg[0, o0) consisting of all those functions f which are continuous as well as bounded and possess the norm ||
f I= supxe[o,) |f (x)|. Then Peetre’s K-functional for § > 0, is defined by

Ka(f,8) = inf 01 f —g Il +8lg" 1},
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where W2 = {g € C5[0,0):g’,g"" € C5[0,)} for § =0 and C > 0. Also 3 an absolutely constant C in
such a way that

Ka(f,8) < Cwn(f,V8)

where w, (f, V&) represents continuous module of f in Cz[0, ©) of second order and

w, (f, \/E) = sup |fr+2n — 2fxsn + fxl

he(0,V8),x€[0,00)
Theorem 4. If g € C[0,1], then for a constant M > 0, we have

1
|K;i‘f(g,x) — g(x)| < Mw, (f,z\/pﬁ,aﬁ + (Ur/},a,ﬁf) + a)(g’,a,’}lalﬁ).

Proof. Let us denote

n (2nx+1 «a 1—2x+x™1— (1 —x)"*1
Oy () = { }

—+ A
n+p 2(n+1)+n+ n?—1
and
Ri% (g,0) = Kyt (9,%) + g(x)
-g (Bg’f(x)). (3.1

This provides us

I?Tif(e()lx) = Krif(e())x) =1

I?ff,’f(el,x) = K:'f(el,x) +x - Gfif(x) =x

Now, we know Taylor's formula for some function h as
t

A =G+ [ (= R0y
X

Therefore operating by the operators I?fff on both sides

t
Rl = heo+ R ( | (r—y)h"(wdy,x)

t
h(x) + Kf < f (t =y)h" (¥)dy, x) -

LA
’ Q, "
[ {ofeo - sjrr oy,
X

From here we can have

AT
+ _f {gn,;l (x) — }’} h" (y)dy
X
2
< Kl ((t = 0% IR + {657 (o) — x| 1”1

2
< {Phap + (oap) JIR L

¢
I?:_f(h, x) — h(X)| < ‘K,;“f <f (t — y)h"(y)dy,x)

In order to equation (3.1), we have
|&f 9.0| < [k (@ 0] + 19001 + g (05 @) <31 g
Il 3.2)
Now for g € C[0,1] and h € W?2[0,1], using equations (3.1) and (3.2) we obtain
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%20 (.0~ 90 + 9 (65 @) - 90|
< 1R (g - hoxl + IREL (hox) = h(x) | +
IhC) =gl + |9 (64 @) - 9|

<S40 g—hlI+{ phap+(07as) IR I +0(g,000p).
Taking the infimum on the RHS overall h € W2[0,1], we have

Kf (9,%) — 90|

A + 4 2
Pna,p ian’“’ﬁ ) +w(g, Ur’la,ﬁ ):

|kl (9.0 — 9| < 4K, | g,

Finally using equivalence between Peetre's K-functional and second order modulus of continuity

1 2
|kt (9.5 = ()| < Mo, (f.z\/p,%,a,,; + (ona) ) + (9, 0nqp)
and hence we get the proof of theorem.

Definition2. (Ditzian-Totik modulus of smoothness) [9] Let g € €[0,1] and ¢(x) = /x(1 — x) then Ditzian-
Totik modulus of smoothness of first order is defined as

we(9,t)
h h h
= sup ||lg (x + (;b(x)) -9 (x - ¢(x))| i ) S [0,1]] .
0<hst 2 2 2
The corresponding K-functional of this Ditzian-Totik smoothness is given by
Ky(g,t) = he&{;{o‘l]{ll g—hll +tlgh’l,c >0} .. (3.3)

where W [0,1] = {h: h € ACo. [0,1], ph’ < 0}. AC},[0,1] is the class of absolutely continuous functions on
each [a,b] c [0,1]. The equivalance relation between K-functional and Ditzian-Totik smoothness of first
order is

Ky(g,t) < wg(g,t), (C > 0). (3.4)
Theorem 5. For some g € €?[0,1] and sufficiently large n, there holds an inequality
[K3ef (9.2) = 9) = An(, D)g' () = Ba(x, D)g" ()
< CH*()we(g”,Vn),

where C > 0 and

Afl'ﬁ x, ) = st (e1 — epx, x)

1
Bt 2) =5 Kuf ((ex — eo)%, %)

Proof. For some g € C2[0,1] and t, x € [0,1], Taylor's expansion states that

t
git)y—gx) =({t—x)g' (x) + f t—yg"dy

From here we can have
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1
9() = g(x) = (t=x)g'(x) =5t =x)"g"(x)

fx (= )g" 0y - f (- y)g" @)y
= fxt Ct-n{g") —g" )}y
Operating with K:"f on both sides, we get
|kt (9,2 = 9(0) = 477 (6, D g' (0 = By (6, 09" ()|
< Kt ( f Te-yig —g"(x)|dy|,x> +(3:5)

<K& @2lg" - hli(t — %)% + 2llph’llp~ ()|t —
yI*, %) (3.6)

according to Finta [10], where h € W[0,1]. Now for n to be sufficiently large, using Lemma 4
K% ((e1 — 90)%,%) < C1p2(0), K (9,%) < Cop* (%) 3.7)
From (3.5)-(3.7) and Cauchy Schwarz inequality, we obtain
|kl (9.0 — 9(0) — A7 (6, Dg' () — B (2, g ()]
219" — RIKSL (¢ — 202, %) + 2lph' 9~ (OKEE (It — xI?, %)

B ap 1/2
2llg” — hlIC1 2 (@) + 2lph =2 (x) {Kerf ((er — )% 1)} " x

a,B 4 1/2
{Kof (Cex = eox)*, )}
2C1llg" — hlip?(x) + 2P ™ () - Crp(x) C2p° (x)
CH2(){llg” — hll + ClipR'11}. € = 2C,

Choosing €, = v/n and taking infimum on RHS over h € Wy [0,1], Peetre's K-functional gives the required
result.

Corollaryl. For g € C?[0,1]

lim [K70 (g,%) = g() — 43P (6, )g' (@) — B (6, g ()] = 0

Its proof is obvious.
Theorems6. For f, g € C?[0,1] and x € [0,1],

lim [KF (Fg,2) = K (F, 0K (9,0)] = 8/ (g’ ().

IA

IA

<
<

Proof. We have
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Knt (f9,%) = Knt (f, 0Kt (9,%)

= Kyl (F9.%) = F)9() — (f9)' 47" (6, 1) = (f9)" By (x,4) -
96 [Kf (£.20) = F2) = ARP e, D' () = B (e, DF ()] -
Kl () [Kif (9,%) — g () — 43 (e, g’ () = B (3, ) %
9" @1+ By (2, ) [f(0)g" () + 2f' ()9 () — g COKf (f, )
+47° (e, 1) [f (g () — g COKRE (F %)

Using Theorem 3, Corollary 1 and Theorem 4, we obtain

Tim K7 (£g,%) = Ky (F, 2)Knek (9,

- VILHEOZf’(x)g’(x)Bg’B(x, ) + lim g" (x) [f(X) — KL (f, x)]
x BYF (x,2) + lim g'(x) [f(x) — K,‘fo , x)] A7 (x, 1)

= 8f'(x)g' (x)x2.

Hence the proof of theorem as required.

CONCLUSION

By all counts and with proven results, it is no wonder to say that our operators considered in this research
article are very compatible to the discipline of approximation theory. Results and proof of main theorem are
very precisely explained. Eventually, we may conclude that this research paper is explicit.
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